用户名: 密码: 验证码:
铝合金薄壁梁结构轻量化设计及其变形行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壁梁具有质量轻,强度高,变形稳定等特点,被广泛的应用于现代汽车车身结构中。汽车薄壁梁结构的典型变形工况为弯曲变形与轴向压缩变形。本文针对两种典型变形工况,系统研究了铝合金薄壁梁的变形行为及设计方法,为汽车铝合金结构的设计开发提供理论支持。
     基于显式动力学有限元分析软件,以混合元胞自动机(HCA)作为优化计算模型,对铝合金前碰撞横梁的结构进行优化设计。针对拓扑优化结果,采用模拟退火法优化横梁壁厚尺寸,获得薄壁、中空且带有加强筋结构的铝合金前碰撞横梁设计方案。通过三点弯曲、摆锤冲击与台车碰撞实验与数值仿真验证,铝合金前碰撞横梁比原钢质横梁质量减轻了25%,抗弯曲性能提高52%,吸能性能提高了45.6%。结果表明,采用元胞自动机优化设计得到的铝合金横梁满足法规要求,具有良好的耐撞性,能够对车身起到较好的防护作用。
     以6063铝合金多胞截面挤压型材为研究对象,通过准静态压缩试验,研究了铝合金薄壁梁结构的轴向压缩变形行为。铝合金薄壁梁试样在180℃条件下时效0min-540min,使用WAW-E600型万能试验机沿轴向压缩薄壁梁试样,研究不同时效状态下铝合金薄壁梁结构的轴向压缩性能。结果表明,随着时效时间的增加,铝合金薄壁梁试样的轴向压缩变形由欧拉模式逐渐转变为手风琴模式,试样的名义载荷与吸能性能也随之增加。时效540min试样以手风琴模式变形,其吸能性能较未时效试样提高99%。研究发现,材料的弹性模量与切线模量对于薄壁梁结构的轴向压缩变形模式有较大的影响。提出使用变形模式参考系数φ判断薄壁梁结构的变形行为。随着φ的降低,试样的变形由欧拉模式转变为手风琴模式。同时,铝合金薄壁梁结构的变形模式会随着材料弹-塑性过渡阶段应力-应变曲线变化率的降低逐渐转变为手风琴模式。
     通过在铝合金薄壁梁结构一端合理开设单排诱导孔,可以使试样的第一峰值载荷降低7%-12%,其变形由欧拉模式转化为混合模式,由钻石模式转化为手风琴模式。与相同时效状态的原始薄壁梁试样相比,开设诱导孔后,试样的变形过程更加规律稳定。在原变形为欧拉模式和钻石模式的铝合金薄壁梁上开设诱导孔后,试样压缩变形的名义载荷增加,吸能性能提高;在原变形为混合模式和手风琴模式的薄壁梁结构上开设诱导孔后,试样的吸能性能略有降低。在180℃条件下时效30min的铝合金薄壁梁试样上开设多排诱导孔,进行了一系列薄壁梁轴向压缩试验,结果表明,诱导孔的位置及孔径对薄壁梁试样的变形行为有较大的影响。当诱导孔直径过大,薄壁梁诱导孔45°对角线位置首先发生失稳变形,试样的压缩变形模式为灯笼模式,是一种全新的薄壁梁压缩变形模式。在该变形模式下,试样的变形载荷波动较小,压溃稳定,但由于可压缩距离减少,试样的总吸能性能有所降低。
     采用万能试验机进行了标准试样准静态拉伸,S型试样准静态拉伸和薄壁梁试样的轴向压缩试验。在准静态轴向压缩试验过程中,6061铝合金薄壁梁试样发生开裂,而6063铝合金试样未发生失效,但是拉伸试验结果表明两种材料具有相同的延伸率。通过光学显微镜观察拉伸试样表面可知,6061铝合金试样表面出现橘皮状组织,而6063铝合金试样表面光滑。使用金相显微镜观察试样的显微组织,6063铝合金为典型的等轴状再结晶组织,而6061铝合金存在大量弥散的金属间化合物,晶粒组织较粗大。使用Cockcroft-Latham韧性断裂准则预测铝合金材料的失效行为。通过单向拉伸试验和数值仿真相结合的方法,得到了铝合金发生韧性断裂的临界应变能,并通过S形试样的拉伸试验及薄壁梁结构的压缩试验与数值仿真结果对比,验证了Cockcroft-Latham韧性断裂准则的准确性。使用该失效准则预测铝合金的失效行为,具有参数求解方便,计算精度高等优点,非常适用于铝合金车身以及零部件在碰撞过程中失效行为的预测。
Thin walled structure with light weight, high strength and good deformationstability are widely used in modern automotive body structure. Typical deformation ofthin-walled structure are bending and axial compression. In this paper, deformationbehaviors and design methods of aluminum thin walled structures were studied. Theresults could be used for the design and optimization of automotive aluminiumstructures.
     The finite element analysis software based on explicit dynamic method wasapplied to the topology optimization of aluminum bumper using hybrid cellularautomata (HCA) as an optimizing model. The results of topology optimization showthat the simulated annealing method can be used for the optimization design of thebumper thickness. The simulation and experiment of bending, charpy impact andcrash were performed. The results indicate that comparing with steel bumper, themass of aluminum bumper was25%lighter, the flexural strength was52%higher andthe crash energy absorption was45.6%higher. The aluminum bumper designed withHCA topology optimization could meet regulatory requirements with goodcrashworthiness and improve the safety performance of vehicles.
     The deformation mode and energy absorption of6063aluminum beam wereinvestigated by quasi-static axial compressions. The aluminum samples were aged attemperature of180℃from30min to540min, respectively. The axially compressedexperiments of aluminum thin-walled beam were studied by using WAW-E600universal testing machine. The load was recorded by computer automatically. Theaxial compression performance of aluminum beam with different heat treatment wereevaluated. The results indicate that the deformation mode of the6063beam graduallychanges from Euler mode to Concertina mode, the mean load and energy absorptionincreases with the increasing of aging time. The sample aged for540min deforme s inconcertina mode, the energy absorption increased about99%as compared with theNo-HT sample. The elastic modulus and tangent modulus of thin-walled structure hassignificant impact on the deformation mode during compression. The referencecoefficient of deformation modes φ was proposed to evaluate the deformationbehavior of thin-walled structure. With the reducing of φ, deformation mode of thespecimen changes from Euler mode to Concertina mode. The deformation of aluminum thin-walled structure gradually changes to Concertina mode with thereducing of strain harden rate.
     By reasonably inducing a single row of holes at the end of aluminum beam, thefirst peak load could be reduced about7%-12%, and the deformation mode is alsochanged. The deformation behaviors change from Euler mode to Mixed mode, or fromDiamond mode to Concertina mode with inducing holes. Comparing with the originalsample in the same aging state, the deformation process of thin-walled beams withinducing hole is more regularity and stability. A series of axial compression tests withmulti-rows of induced holes were studied for30min aged aluminum beams at180℃.The results showed that the position and diameter of induced holes ha s greater impacton the deformation behavior of specimens. Especially, when induced holes diameterare too large, the position at45°diagonal of holes occurred bucking distortion. Thethin-walled beams deforms in a new mode, the Lantern mode. In this deformationmode, the fluctuation of deformation load is low. Because of the less compressiondistance, the total energy absorption of aluminum beams reduced in Lantern mode.
     Tensile tests with traditional samples and S-shaped samples were carried out. Theaxially compressed experiments of aluminum beam were studied by WAW-E600tester.In the compression process,6061aluminum beams fracture along the specimens, and6063samples deforms without failure. However, the tensile test results show that thetwo materials have the same elongation. Tension specimens was observed by opticalmicroscope, the results showed that the surface morphology of6061alloy was orangepeel, and the surface of6063alloy was smooth. The microstructural of deformedspecimens were observed on MM-6metallographic microscope, it was found that6063was typical equiaxed recrystallized microstructure, while6061was coarse grain.The Cockcroft-Latham ductile fracture criterion was used to predict the deformationcracking. According to uniaxial tensile test results and numerical simulations, thecritical strain energy of aluminum fracture was obtained. Comparison between thepredition and experiment results indicates that Cockcroft-Latham criterion is verysuitable for predicting vehicle structures failure during collision with high accuracy.
引文
[1]许珞萍,邵光杰.汽车轻量化用金属材料及其发展动态.上海金属.2002,24(3):1-7
    [2] Engler O, Hirsch J. Texture control by thermomechanical processing of AA6xxxAl-Mg-Si sheet alloy for automotive applications-a review. Material Science andEngineering A.2002,336(1-2):249-262
    [3]张译中.国外汽车用非钢材料的开发及应用.汽车工艺与材料.2002(10):37-38
    [4]彭晓东,李玉兰,刘江.轻合金在汽车上的应用.机械工程材料.1999,23(2):1-5
    [5]彭志辉,甘卫平.汽车工业用铝材的开发与应用.汽车工艺与材料.1999(4):1-6
    [6]黄佩贤.轻质材料铝合金在汽车上的应用.上海汽车.2002(1):37-38
    [7]关绍康,姚波,王迎新.汽车铝合金车身板材的研究现状及发展趋势.机械工程材料.2001,25(5):12-14
    [8]王祝堂,田荣璋.铝合金及其加工手册.长沙:中南大学出版社,2005:33-34
    [9]丁向群,何国求,陈成澍.6000系汽车车用铝合金的研究应用进展.材料科学与工程学报.2005,23(2):302-305
    [10]黄伯云,李成功,石力开.中国材料工程大典第4卷有色金属材料工程(上).北京:化学工业出版社,2005,96
    [11] Miller W S, Zhuang L, Bottema J, et al. Recent deve lopment in aluminium alloysfor the automotive industry. Materials Science and Engineering A.2000,280(1):37-49
    [12]马鸣图,柏建仁.汽车轻量化材料及相关技术的研究进展.新材料产业,2006,6:37-42
    [13]王智文.汽车轻量化技术发展现状初探.汽车工艺与材料,2009,2:1-6
    [14]王冠,周佳,莫建虎等.铝合金汽车前碰撞横梁的研制及碰撞性能分析.汽车内外饰产品及新材料国际研讨会,2009,6:192-197
    [15]向东,付定发,娄燕,王冠,李落星,等. Al-Mg-Si多胞截面型材准静态轴向压缩研究.中国有色金属学报,2012,(07):1843-1854
    [16]葛龙.基于耐撞性仿真的轿车车身轻量化研究:[上海交通大学硕士学位论文].上海:上海交通大学,2003
    [17] Zhang Z H, Liu S T, Tang Z L. Design optimization of cross-sectionalconfiguration of rib-reinforced thin-walled beam. Thin-Wall Structure,2009,47:868-878
    [18] John H H. Adaptation in Natural and Artificial Systems. Michigan: University ofMichigan Press,1975:35-40
    [19] Goel T, Stander N. Adaptive simulated annealing for glo bal optimization inLS-OPT. IN: Proceedings of the7th European LS-DYNA Conference. California:LSTC,2009:1-8
    [20]朱建丰,徐世杰.基于自适应模拟退火遗传算法的月球软着陆轨道优化.航空学报,2007,28(4):806-812
    [21]张勇,李光耀,孙光永.汽车车身耐撞性与NVH多学科设计优化研究.中国机械工程,2008,19(14):1760-1763
    [22] Charles L. Penninger, Neal M. Patel, Glen L. Niebur, Andres Tovar, John E.Renaud.A fully anisotropic hierarchical hybrid cellular automaton algorithm tosimulate bone remodeling. Mechanics Research Communications,2008,35(1,2):32-42
    [23] Toyoda T, Kita E. Structural optimization using cellular automata. InverseProblems in Engineering Mechanics,2000:583-590
    [24] Canyurt O E, Hajela P. A cellular framework for structural analysis andoptimization. Computer Methods in Applied Mechanics and Engineering.2005,194(30-33):3516-3534
    [25] Back T, Breukelaar R. Using Genetic Algorithms to Evolve Behavior in CellularAutomata. Unconventional Computation,2005,3699:1-10
    [26] Gog A, Chira C. Cellular Automata Rule Detection Using Circular AsynchronousEvolutionary Search. Hybrid Artificial Intelligence Systems,2009:261-268
    [27] Missoum S, Gurdal Z, Setoodeh S. Study of a new local update scheme forcellular automata in structural design. Structural and MultidisciplinaryOptimization,2004,(2):103-112
    [28]王妍,郭连水.拓扑优化设计中混合元胞自动机方法应用研究.机械工程师,2009(1):100-102
    [29]郭连水, Punit Bandi, John E.一种大变形多空间域连续体结构拓扑优化方法.北京航空航天大学学报,2009,35(2):227-230
    [30]王安麟,王炬香,刘传国,胡宗武.基于CA的结构拓扑设计的研究-平面薄板加强筋拓扑形态创成的仿真.机械强度,2001,23(2):181-186
    [31]赵当军,罗贤海,荣钢.基于元胞自动机的杆系结构弹塑性分析及软件开发.陶瓷学报.2007,28(2):117-122
    [32]刘天湖,孙友松.新材料新工艺在新型汽车开发中的应用.金属成形工艺,2001(1):49-52
    [33] Schultz R A, Haupricht W J. Trends in aluminium use for passenge cars and lighttrucks in north America. Light Metal Age,1999,57(1,2):108-114
    [34] Miller W S, Zhuang L,Bottema J. Recent devel opment in aluminium alloys forthe automotive industry. Materials Science and Engineering A,2000,280(3):37-49
    [35] Shahmanesh N. Lightening the materials. Automotive Engineering,2003(9):70
    [36]刘少华.基于LS-DYNA的轿车保险杠耐撞性研究:[吉林大学硕士学位论文].长春:吉林大学,2008
    [37] Marzbanrad J, Alijanpour M, Kiasat M S. Design and Analysis of an AutomotiveBumper Beam in Low-speed Frontal Crashes. Thin-Walled Structures,2009,47(8-9):902-911
    [38]顾力强,林忠钦,赵亦希等,轿车保险杠低速碰撞试验研究.上海交通大学学报,2003,37(1):137-140
    [39]王立振.汽车保险杠RCAR碰撞试验研究:[江苏大学硕士学位论文].镇江:江苏大学,2012
    [40]上官文斌,屈求真.轿车保险杠系统的结构型式及其法规要求.汽车安全,1997,1:37-39
    [41] Glance P M, Daroczy G. Computer-aided Design, Analysis and Testing ofAutomotive Bumpers. SAE Technical Paper,1988,10:42-65
    [42]周惦武,刘金水,肖锋,肖新民.铝合金挤压型材工艺及在汽车中的应用.金属成型工艺,2004,22:62-64
    [43] Murray N W, Khoo P S. Some basic mechanism in the local buckling ofthinwalled steel structures. International Journal of Mechanical Sciences.1981,23(12):703-713
    [44] Kotelko M, Lim T H, Rhodes J. Post-failure of box sections beams under purebending (an experimental study). Thin-walled Structures.2000,38:179-194
    [45] Kotelko M. Load-capacity estimation and collapse analysis of thin-walled beamsand columns-recent advances. Thin-walled Structures.2004,42(2):153-175
    [46] Moon S P, Byung C L. Prediction of Bending Collapse Behaviours ofThin-Walled Open Section Beams. Thin-walled Structures.1996,25(3):185-206
    [47]钟志华,张维刚,曹立波,何文.汽车碰撞安全技术.北京:机械工业出版社,2003
    [48] Liu Y C, Day M L. Bending collapse of thin-walled beams with channelcross-section. Int J Crashworthiness,2006,11(3):251-62
    [49] Abramowicz W, Wierzbicki T. Axial crushing of multicorner sheet metal columns.Appl. Mech,1989,56:113-120
    [50] Abramowicz W. Simplifed crushing analysis of thin-walled columns and beams,Rozprawy Inzynierskie. Eng Trans,1981,29(1):5-26
    [51] Ohkubo Y, Akamatsu T, Shirasaw K. Mean crushing strength of closed-hatsection members. SAE paper74004,223-231
    [52] Johnson W, Soden P D, Al-Hassani S T S. Inextensional collapse of thin-walledtubes under axial compression. J. Strain Analysis,1977,12:317-330
    [53] Meng Q, AI-Hassani S T S, Soden P D. Axial crushing of square tubes. Int. J.Mech. Sci.,1983,25:747-773
    [54] Reid S R, Reddy T Y, Gray M D. Static and dynamic axial crushing of foam filledsheet metal tubes. Int. J. Mech. Sci.,1986,28:295-322
    [55] Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walledstructures. J. Appl. Mech.,1983,60:727-739
    [56] Mamalis A G, Manolakos D E, Viegelahn G L, Vaxevaridis N M, Johnson W. Onthe inextensional axial collapse of thin PVC conical shells. Int. J. Mech. Sci.,1986,28:323-335
    [57] Kecman D. Bending collapse of rectangular and square section tubes. Int. J.Mech. Sci.,1983,25:623-636
    [58] Kotelko M, Krolak M. Collapse behaviour of triangular cross-section girderssubject to pure bending. Thin-Walled Structures,1993,15:127-141
    [59] Magee C L, Thornton P H. Design considerations in energy absorption bystructural collapse. SAE paper780434:2041-2055
    [60] Mahmood H F, Paluszny A. Design of thin-walled columns for crash energymanagement their strength and mode of collapse. SAE paper811302:4039-4050
    [61] Mahmood H F, Paluszny A. Analytical technique for simulating crash response ofvehicle structures composed of beam elements. SAE paper860820:4293-4303
    [62] Mahmood H F, Paluszny A, Tang X. Crash analysis of thin-walled beam typestructures. SAE paper88094:4908-4917
    [63] Wierzbicki T, Abramowicz W. Development and implementation of specialelements for crash analysis. SAE paper880894:103-109
    [64] Najafi A, Rais-Rohani M. Mechanics of axial plastic collapse in multi-cell,multi-corner crush tubes. Thin Walled Structures,2011,49:1-12
    [65]张立玲,高峰.金属薄壁吸能结构耐撞性研究进展.机械工人热加工,2006,56(1):76-78
    [66] Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes.Structural and Multidisciplinary Optimization,1998,16(1):37-46
    [67] Kim H S. New extruded multi-cell aluminum profile for maximum crash energyabsorption and weight efficiency. Thin-Walled Structure,2002,40(4):311-327
    [68] Yamazaki K, Han J. Maximization of the crushing energy absorption ofcylindrical shells. Advances in Engineering Software,2000,31(6):425-434
    [69] Chiandussi G, Avalle M. Maximization of the crushing performance of a tubulardevice by shape optimization. Computers&Structures,2002,80(27-30):2425-2432
    [70]杜星文,宋宏伟.圆柱壳冲击动力学及耐撞性设计.北京:科学出版社,2004:22-218
    [71] Hsu S S, Jones N. Dynamic axial crushing of aluminium alloy6063-T6circulartubes. Latin American Journal of Solids and Structures,2004,1(3):277-296
    [72] Andrews K R F, England G L, Ghani E. Classification of the axial collapse ofcylindrical tubes under quasi-static loading. International Journal of MechanicalSciences,1983,25(9-10):687-696
    [73] Abramowicz W, Jones N. Transition from initial global bending to progressivebuckling of tubes loaded statically and dynamically. International Journal ofImpact Engineering,1997,19(5-6):415-437
    [74] Guillow S R, Lu G, Grzebieta R H. Quasi-static axial compression of thin-wailedcircular aluminium tubes. International Journal of Mechanical Sciences,2001,43(9):2103-2123
    [75] Alexander J M. An approximate analysis of the collapse of thin cylindrical shellsunder axial loading. Quarterly Jnl. of Mechanics&App. Maths,1960,13(1):10-15
    [76] Abramowicz W, Jones N. Dynamic axial crushing of circular tubes. InternationalJournal of Impact Engineering,1984,2(3):263-281
    [77] Abramowicz W, Jones N. Dynamic progressive buckling of circular and squaretubes. International Journal of Impact Engineering,1986,4(4):243-270
    [78] Abramowicz W. The effective crushing distance in axially compressedthin-walled metal columns. International Journal of Impact Engineering,1983,1(3):309-317
    [79] Wierzbicki T, Bhat S U. A moving hinge solution for axis ymmetric crushing oftubes. International Journal of Mechanical Sciences,1986,28(3):135-151
    [80] Wierzbicki T, Bhat S U, Abramowicz W, et al. Alexander revisited-A two foldingelements model of progressive crushing of tubes. International Journal of Solid sand Structures,1992,29(24):3269-3288
    [81] Singace A A, Elsobky H, Reddy T Y. On the eccentricity factor in the progressivecrushing of tubes. International Journal of Solids and Structures,1995,32(24):3589-3602
    [82] Singace A A, Elsobky H. Further experimental investigation on the eccentricityfactor in the progressive crushing of tubes, International Journal of Solids andStructures,1996,33(24):3517-3538
    [83] Gupta N K, Gupta S K. Effect of annealing, size and cutouts on axial collapsebehavior of circular tubes. International Journal of Mechanical Sciences,1993,35(7):597-613
    [84] Gupta N K, Velmurugan R. Consideration of internal folding and non-symmetricfold formation axisymmetric axial collapse round tubes. International Journal ofSolids and Structures,1997,34(20):2615-2630
    [85] Guillow S R, Lu G, Grzebieta R H. Quasi-static axial compression of thin-wailedcircular aluminium tubes. International Journal of Mechanical Sciences,2001,43(9):2103-2123
    [86] Pugsley A G, Macaulay M R. The large-scale crumpling of thin cylindricalcolumns. Quarterly Jnl. of Mechanics&App. Maths,1960,13(1):1-9
    [87] Jones N, Abramowicz W. Static and dynamic axial crushing of circular andsquare tubes. In: Reid SR, editor. Metal forming and impact mechanics. Oxford:Pergamon Press,1985,225-247
    [88] Abramowicz W. Extremal paths in progressive plasticity. International Journal ofImpact Engineering,1996,18(7-8):753-764
    [89] Li S, Reid S R. On the symmetry conditions for laminated fibre-reinforcedcomposite structures, International Journal of Solids and Structures,1992,29(23):2867-2880
    [90] Abramowicz W. The effective crushing distance in axially compressedthin-walled metal columns. International Journal of Impact Engineering,1983,1(3):309-317
    [91] Abramowicz W, Jones N. Dynamic axial crushing of square tubes. InternationalJournal of Impact Engineering,1984,2(2):179-208
    [92] Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes.Structural and Multidisciplinary Optimization,1998,16(1):37-46
    [93] Nagel G M, Thambiratnam D P. A numerical study on the impact response andenergy absorption of tapered thin-walled tubes. International Journal ofMechanical Sciences,2004,46(2):201-216
    [94] Nagel G M, Thambiratnam D P. Computer simulation and energy absorption oftapered thin-walled rectangular tubes. Thin-Walled Structures,2005,43(8):1225-1242
    [95] Nagel G M, Thambiratnam D P. Dynamic simulation and energy absorption oftapered thin-walled tubes under oblique impact loading.International Journal ofImpact Engineering,2006,32(10):1595-1620
    [96] Swift H W. Plastic Instability Under Plane Stress. Journal of the Mechanics andPhysics of Solids,1952,1:1-18
    [97] Hill R. On Discontinuous Plastic States with Special Reference to LocalizedNecking in Thin Sheets. Journal of the Mechanics and Physics of Solids,1952(1):19-30
    [98] Sing W M, Rao K P. Prediction of sheet metal formability using tensile testresults. Journal of Materials Processing Technology,1993,37:37-51
    [99] Storen S, Rice J R. Localized Necking in Thin Sheets. Journal of the Mechanicsand Physics of Solids,1975,23(6):421-441
    [100] Marciniak Z, Kuczynski K. Limit Strains in Processes of Stretch-Forming SheetMetal. International Journal of Mechanical Science,1967,9:609-620
    [101]陈光南,胡世光.成形极限曲线的新概念.机械工程学报,1994,30(4):82-85
    [102] Ramaekers J A H. A criterion for local necking. Journal of Materials ProcessingTechnology,2000,103:165-171
    [103] Hora P, Tong L, Reissner J. Mathematical prediction of FLC using macroscopicinstability criteria combined with micro structural crack propagation models. IN:Proceedings of Plasticity’2003,2003:364-366
    [104] Keeler S P. Determination of forming limits in automotive stamping. IN: SAETechnical paper, No.650535,1965
    [105] Goodwin G M, Mctall L. Application of strain analysis to sheet metal formingproblems in the press shop. IN: SAE Technical paper, No.680093,1968
    [106] Stoughton T B. The influence of the material model on the stress-based forminglimit criterion. IN: SAE Technical paper, No.2002-01-0157,2002
    [107] Wang Z T. Forming limits for sheet metals under tensile stresses. Journal ofMaterials Processing Technology,1997,71:418-421
    [108] Zeng D, Chappuis L, Xia Z C, et al. A path independent forming limit criterionfor sheet metal forming simulations. IN: SAE Technical paper,No.2008-01-1445,2008.
    [109]曹宏深.复合变形路径下的板材冲压成形极限应变(I)-冲压成形极限应变的立论与解析.机械工程学报,2008,44(2):54-61
    [110] Narasimhan K. A novel criterion for predicting forming limit strains. IN:Proceedings of NUMIFORM’2004,2004,850-855
    [111] Hou B, Lin Z Q, Li S H, et al. Prediction of forming limit in virtual sheet metalforming based on thickness gradient criterion. IN: Proceedings of Numisheet’2008, Interlaken, Switzerland,2008:253-257
    [112] Johnson G R, Cook W H. Fracture characteristics of three metals subjected tovarious strains, strain rates, temperatures and pressures. Engineering FractureMechanics,1985,21:31-48
    [113]郑长卿,周利,张克实.金属韧性破坏的细观力学及其研究应用.北京:国防工业出版社,1995,130-157
    [114] Freudenthal A M. The inelastic behavior of engineering mater ials and structures.New York: Wiley,1950,216-279
    [115] Cockcroft M G, Latham D J. Ductility and the workability of metals. Journal ofthe Institute of Metals,1968,96:33-39
    [116] Wilikins M L, Streit R D, Reaugh J E. Cumulative strain damage model ofductile fracture:simulation and prediction of engineering fracture tests.UCRL-53058, Lawrence Livermore Laboratory, Livermore, California,1980
    [117] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journalof Engineeering Materials and Technology,1985,107:83-89
    [118] Chow C L, Yu L G, Demeri M Y. A unified damage approach for predictingforming limit diagrams. ASME Trans. Journal of Engineering Materials andTechnology,1997,119:346-353
    [119] McClintock F A. A criterion of ductile fracture by the growth of holes. Journalof Applied Mechanics,1968,35:363-371
    [120] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stressfields. Journal of the Mechanics and Physics of Solids,1969,17:201-217
    [121] Gurson A L. Continuum theory of ductile rupture by void nucleation andgrowth:Part I. Yield criterion and flow rules for porous ductile media. ASMETrans.Journal of Engineering Materials and Technology,1977,99:2-15
    [122] Tucker M T, Horstemeyer M F, Whittington W R, et al. The e ffect of varyingstrain rates and stress states on the plasticity, damage and fracture of aluminumalloys. Mechanics of Material,2010,42:895-907
    [123] Ungureanu V, Kotelko M, Mania R J, et al. Plastic mechanisms database forthin-walled cold-formed steel members in compression and bending.Thin-Walled Structures,2010,48:818–826
    [124] Kim Y I, Park G J. Nonlinear dynamic response structural optimization usingequivalent static loads. Comput Methods Appl Mech Engrg,2010,199:660-676
    [125] Neumann J V. The theory of self-reproduction automata. Urbana: University ofIuinois Press,1996:64-87
    [126] Wolfram S. Statistical mechanics of cellular attomata. Reviews of ModernPhysics,1983,55(3):601-644
    [127] Tovar A. Bone remodeling as a hybrid cellular automaton optimizationprocess[D]. Indiana: School of Aerospace and Mechanical Engineering,University of Notre Dame,2004
    [128] Tovar A, Patel N M, Niebur G L, et al. Topology optimization using a hybridcelluar automaton method with local control rules. Journal of MechanicalDesign,2006,128(6):1205-1216
    [129] Goel T, Roux W, Stander N. A topology optimization tool for LS-DYNA user:LS-OPT/topology. IN:Proceedings of the7th European LS-DYNA Conference.California: LSTC,2009:1-9
    [130] Noble J P, Goldthorpe B D, Church P, et al. The use of the Hopkinson bar tovalidate constitutive relations at high rates of strain. Journal of the Mechanicsand Physics of Solids,1999,47(5):1187-1206
    [131] LS-DYNA keyword user’s manual. California: Livermore Software TechnologyCorporation, July2006Version971
    [132]檀晓红.汽车前碰撞横梁横梁碰撞仿真分析及其结构优化[D].上海:上海大学应用数学和力学研究所,2003:13-84
    [133]宋友贵,陈玲,田守信,王云.反射镜体轻量化结构设计的对比研究.兵工学报,2000,21(2):137-139
    [134] GB/T17354-1998,汽车前、后端保护装置
    [135]吴胜军.基于ANSYS的汽车保险杠碰撞的数值模拟.拖拉机与农用运输车,2008,35(4):18-20
    [136]钟志华.汽车耐撞性分析中的有限元法.汽车工程,1994,16(1):1-6
    [137] Chen D H, Ushijima K. Estimation of the initial peak load for circular tubessubjected to axial impact. Thin-Walled Structures,2011,49(7):889-898
    [138]杨华.汽车碰撞试验缓冲吸能装置的计算机仿真与试验研究:[湖南大学硕士论文].长沙:湖南大学,2002
    [139] Zhang X, Cheng G D, Zhang H. Theoretical prediction and numericalsimulation of multi-cell square thin-walled structures. Thin-Walled Structures,2006,44(11):1185-1191
    [140] Zhang X, Cheng G D. A comparative study of energy absorption characteristicsof foam-filled and multi-cell square columns. International Journal of ImpactEngineering,2007,34(11):1739-1752
    [141]张金换,杜汇良,马春生,等.汽车碰撞安全性设计.北京:清华大学出版社,2010:190-204
    [142] Wierzbicki T, Schneider F. The energy equivalent flow stress. Crashworthinessapplication. Impact&Crashworthiness Laboratory Report No.15,1998
    [143] Abramowicz W. The macro element approach in crash calculations. IN:Ambrosio J A C, Pereira M F O S, Silva F P, editors. Crashworthiness oftransportation systems: structural impact and occupant protection. NATO ASISeries E: Applied Sciences. Vol.332. Dordrecht: Kluwer,1997
    [144] Wierzbicki T, Abramowicz W. The mechanics of deep plastic collapse ofthin-walled structures. IN: Jones N, Wierzbicki T, editors. Structural Failure.New York: Wiley,1989
    [145] Santosa S, Wierzbicki T, Hanssen AG, Langseth M. Experimental and numericalstudies of foam-flled sections. International Journal of Impact Engineering,2000,24:509-34
    [146] Chen W G, Wierzbicki T. Relative merits of single-cell, multi-cell andfoam-flled thin-walled structures in energy absorption. Thin-Walled Structures,2001,39:287-306
    [147] Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing ofsquare aluminum extrusions with aluminum foam fller. International Journal ofImpact Engineering,2000,24:347-83
    [148] Kormi K, Webb D C, Montague P. Crash behavior of circular tubes with largeside openings. Int J Mech Sci,1993,35(3/4):193-208
    [149] Sahu S K, Datta P K. Dynamic stability of curved panels with cutouts. J SoundVib,2002,251(4):683-96
    [150] Sahu S K, Datta P K. Dynamic stability of laminated composite curved panelswith cutouts. J Eng Mech ASCE,2003,1245-53
    [151] Arnold B, Altenhof W. Experimental observations on the crush characteristicsof AA6061T4and T6structural square tubes with and without circulardiscontinuities. Int J Crashworthiness,2004,9(1):73-87
    [152] Arnold B, Altenhof W. Finite element modeling of the axial crushing of AA6061T4and T6and AA6063T5structural square tubes with circular discontinuities.SAE SP-1937Safety Test Methodology and Structural Crashworthiness, SAEInternational,2005:11-26
    [153] Krauss C A, Laananen D H. A parametric study of crush initiators for athin-walled tube. Int J Vehicle Des,1994,15(3-5):385-401
    [154] Abah L, Limam A, Dejeammes M. Effects of cutouts on static and dynamicbehaviour of square aluminum extrusions. IN: Fifth International Conference onStructures Under Shock and Impact, Greece, June24-26,1998:122-31
    [155] Lee S, Hahn C, Rhee M, Oh J. Effect of triggering o n the energy absorptioncapacity of axially compressed aluminum tubes. Mater Des,1999,20(1):31-40
    [156]吴卷,詹梅,蒋华兵,等.一种改进的Lemaitre韧性断裂准则及其在旋压成形中的应用.航空学报,2011,32(7):1309-1317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700