用户名: 密码: 验证码:
Al_xCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多主元高熵合金(简称高熵合金)是近新兴的合金材料,它打破了传统合金中主要组成元素为一种或两种的合金设计理念。多主元高熵合金是由至少五种以上的主要元素构成,而且每种元素原子百分比不超过35%。合金主元增多产生的高熵效应,使晶体易于形成简单体心或简单面心结构,并可能伴有晶间化合物以及纳米晶,从而达到固溶强化、沉淀强化和弥散强化效果。通过合金成分优化设计可以使高熵合金在性能上比传统合金具有更大的优势,例如高硬度、高强度、耐高温氧化、耐腐蚀等。
     本文利用真空电磁感应熔炼合成了AlxCoCrCuFeNi (x=0.5,1.0,1.5)(简记为Alx)六主元高熵合金,同时,为进一步提高多主元高熵合金的综合性能,我们通过原位自生合成反应制备了TiC颗粒增强Al0.5高熵合金基(Al0.5CoCrCuFeNi-y vol.%TiC (y=5,10,15),简记为Al0.5-TiCy)复合材料,并对以上材料进行了不同温度的高温时效热处理;利用X射线衍射、高分辨率扫描电镜、高分辨率透射电镜、MTS力学试验系统及显微硬度计结合,对微观组织、力学性能进行了分析讨论。此外,对高熵合金潜在应用于高温环境的特点,本文亦对六主元Alx(x=0.5,1.0,1.5)高熵合金及Al0.5-TiCy (y=5,10,15)复合材料的高温氧化行为进行了讨论。
     研究发现,对于Alo.5CoCrCuFeNi高熵合金,自然冷却(缓冷)形成的树枝晶结构由简单面心立方固溶体组成,而浇铸(快速冷却)形成的等轴晶结构中生成了少量体心立方结构相。经600℃、24h退火热处理后,树枝晶结构Al0.5高熵合金中有少量体心立方结构相生成。同时大量针状富Cu纳米相在枝晶间区域析出,退火后压缩屈服强度由487MPa增至600MPa。等轴晶结构的Al0.5高熵合金的退火前后组织结构无显著变化,铸态屈服强度相比树枝晶大幅提高了11.9%。
     不同Al元素含量等轴晶结构AlxCoCrCuFeNi六主元高熵合金研究结果显示,Al含量均匀分布于基体及晶间区域,对合金中元素分布无显著影响,Co、Cr、Fe、Ni元素主要分布于基体中,而Cu元素偏聚于晶间区域。然而由于原子尺寸效应,合金中固溶体晶体结构随着Al含量的增加发生晶格畸变,基体主晶相由面心立方结构变为体心立方结构,且构成基体的BCC相发生调幅分解。当Al元素摩尔比由0.5增加至1.0时,合金基体内伴随有大量板条状和球形富Cu纳米相析出,致使Alx高熵合金获得优异的综合力学性能,其断裂强度高达1739.3MPa,同时压缩率高约12.1%。Al含量继续增加,合金硬度和强度得以进一步提高,但其塑性下降较明显,断裂形式由韧性断裂变为准解理断裂。结合多种经典强化理论与实验数据综合分析发现,Alx高熵合金的主要强化方式为固溶强化与沉淀析出强化。
     实验所制Al0.5-TiCy (y=5,10,15)复合材料基体为树枝晶,TiC颗粒均匀分布其中。随着TiC增强相体积分数的增加,TiC陶瓷颗粒尺寸由Al0.5-TiC5的200nm长大至Al0.5-TiC15的3um。Al0.5-TiCy (y=5,10,15)复合材料室温压缩屈服强度分别为740MPa、709MPa及680MPa。原位自生TiC颗粒增强Al0.5高熵合金基复合材料的力学性能较之基体有很大提高,以Al0.5-TiC5为例,其室温压缩屈服强度相对于Al0.5高熵合金基体提高近50%。
     Alx (x=0.5,1.0,15)高熵合金及Al0.5-TiCy (y=5,10,15)复合材料的高温氧化试验分别在850、950、1050℃与950℃下大气环境中进行。实验结果表明,Alo.5高熵合金在850、950℃氧化动力学相同,均符合抛物线规律,但当温度升至1050℃时,其氧化动力学曲线基本呈线性,氧化层开裂和剥落严重,导致出现严重的内氧化。与此不同的是,高Al含量的Al1.0CoCrCuFeNi和Al1.5CoCrCuFeNi合金在以上三个温度下的长时氧化行为均符合抛物线规律,,且氧化程度相对较轻。原因在于Al含量增加致使大量Al2O3致密氧化膜生成从而提高了合金的高温抗氧化性能。相比Al0.5高熵合金基体,TiC颗粒增强复合材料高温氧化增重明显减小,氧化速率显著降低,其中Al0.5-TiC5材料950℃下经100h氧化后增重仅为0.5mg/cm2。
Multi-elemental high-entropy alloy (HEA) has drawn extensive attentions in the past decade. As a new type of alloy, HEA is composed of at least five principle elements with the content of each component less than35%, which has gone beyond the designing concept of traditional alloys that basing on only one or two major elemental compositions. The high entropy effect in HEA induced by the increased species of major components results in the easily formation of simple body centered (BCC) or face centered (FCC) structures, and probably accompanied by the formation of inter-crystalline compounds or nano-crystals. Therefore, three strengthening effects can be achieved:solid solution strengthening, precipitation strengthening and dispersion strengthening. Through optimizing the composition, HEAs are capable of possessing higher hardness, higher strength, and better high temperature oxidation and corrosion resistance than traditional alloys.
     In the present study, AlxCoCrCuFeNi (x=0.5,1.0,1.5)(denoted as Alx in the following section) high entropy alloys were prepared using the medium frequency electromagnetic induction method. With the aim of improving the overall performance of HEA, TiC particle-reinforced Al0.5CoCrCuFeNi alloy based composites with different volume fractions of TiC, Al0.5CoCrCuFeNi-y vol.%TiC (y=5,10, and15, denoted by Al0.5-TiCy), were synthesized by in situ reaction. Furthermore, aging procedure was performed on the above materials at different temperatures. The microstructure and mechanical properties of these self-produced alloys were investigated using high resolution transmission electron microscope, scanning electron microscope, material testing system and hardness tester. In addition, the high temperature oxidation behavior of Alx alloys and Al0.5-TiCy composites were also examined as HEAs are potential in high-temperature applications. The findings and conclutions have been drawn as follows.
     Al0.5CoCrCuFeNi alloy with dentrite crystal structures formed with lower cooling rate is composed of simple FCC solid solution. However, small amount of BCC structured phases were generated in the equiaxed polygrain structured Al0.5alloy prepared by induction melting and casting (rapid silidification). Intriguingly, small amount of phases with BCC structure can be also produced in the dentrite structured Al0.5alloy after subjected to annealing at600℃for24h. Moreover, large amount of Cu-rich nano-precipitations existed in the interdendritic regions after annealing treatment, and the compressive yield strength was increased from487MPa to600MPa. In contrast, no obvious variation of phase composition was found in the Al0.5alloy with equiaxed structure under annealing, and its compressive yield strength was enhanced by11.9%compared to the alloy with dendrite structure in as-cast state.
     Microstructural investigations of the dentrite structured Alx (x=0.5,1.0and1.5) alloys revealed that Co, Cr, Fe and Ni are majorly distributed in grain matrices while Cu is riched in grain boundary regions. It indicates that the molar fraction of Al has insignificant effects on the element distribution of Alx series of HEAs. However, lattice distortion occurred in the crystal structure of solid solutions with increasing Al content due to the obvious atomic size difference. As a result, the main FCC phase transformed into BCC accompanied by spinodal decomposition of the latter. It is worth noting that large amount of strip and spherical Cu-rich nano-phases were precipitated with x increasing from0.5to1.0, leading to significant improvement in the overall mechanical properties of the alloy. The ultimate strength of Al1.0alloy reached1739.3MPa and the extension rate was more than12%. The hardness and strength of the alloy can still be enhanced via further increasing Al content. Nevertheless, remarkable degradation of plasticity occurred, and the Alx alloys exhibited variations in the failure modes from ductile fracture to cleavage fracture. The results indicated that solid solution strengthening and precipitation strengthening are the prominent strengthening mechanism of Alx series of HEAs.
     The matrices of in situ synthesized Al0.5-TiCy (y=5,10and15) composites exhibited dentrite structured with TiC particles distributed homogeneously. With the increase of the TiC volume fraction, the average size of TiC ceramic particles increases from200nm of Alo.5-TiC5to3um of Al0.5-TiClO. The compressive yield strength of Al0.5-TiCy (y=5,10and15) composites reached740MPa,709MPa and680MPa, respectively. The mechanical properties of TiC particle-reinforced composites have been improved remarkably compared with those of Al0.5HEA. Take Al0.5-TiC5for an example, the compressive yield strength is almost50%higher than that of Al0.5alloy matrix.
     The high temperature oxidation behavior of Alx alloys and Al0.5-TiCy (y=5,10, and15) composites were examined between850and1050℃in still atmosphere. Results revealed that the oxidation dynamics for Alx alloy exposed at850and950℃are similar, abiding by parabolic law. However, the oxidation kinetic curve becomes almost linear when oxidated at1050℃, with serious cracking and spalling of oxide layer and severe internal oxidation. However, oxidation dynamics for Al1.0and Al1.5alloys with higher Al content deviated from the parabolic raw with much less oxidization. The formation of dense Al2O3film as Al content increases prevented the inner part of the sample from further oxidation. Compared to Al0.5CoCrCuFeNi alloy, the oxidation rate was decreased dramatically in the composites. In particular, the oxidation weight is only0.5mg/cm2for Alo.5-TiC5after oxidized at950℃for100h.
引文
[1]叶均蔚,陈瑞凯.高熵合金[J].科学发展.2004,377:16-21.
    [2]Yeh JW, Chen SK, Gan JY, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiorincipal metallic elements[J]. Metall Mater Trans A,2004,35A:2533-2536.
    [3]Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys[J]. Adv Eng Mater.2008,10:534-535.
    [4]Yeh JW. Recent progress in high-entropy alloys[J]. Ann Chim-Sci Mat.2006,31:633-648.
    [5]Ranganathan S. Alloyed Pleasures:Multimetallic Cocktails[J]. Curr Sci.2003,85:1404-1406.
    [6]Hsu CY, Yeh JW, Chen SK. Wear resistance and high-temperature compression strength of FCC CuCoNiCrA10.5Fe alloy with boron addition[J]. Metall Mater Trans A. 2004,35:1465-1469.
    [7]Greer AL. Confusion by design[J]. Nature.1993,366:303-304.
    [8]Baker H. Metals Handbook[M].10th ed. Metals Park:ASM International,1992,Vol 3.
    [9]Wang WR, Wang WH, Wang SC, et al. Effects of A1 addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics[J].2012,26:44-51.
    [10]Zhang H, Pan Y, He Y. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding[J]. Appl Sur Sci.2011,257:2259-2263.
    [11]Zhou YJ, Zhang Y, Wang YL, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-tempertature mecahnical properties [J]. Appl Phys Lett.2007,90:181904.
    [12]Wu JM, Lin SJ, Yeh JW. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Sci Direct,2006,261:513-519.
    [13]温丽华,寇宏超,王一川AlxCoCrCuFeNi多主元高熵合金的组织与力学性能[J].特种铸造机有色合金.2009,29:579-582.
    [14]Huang PK, Yeh JW, Shun TT, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv Eng Mater.2004,6:74-78.
    [15]高家称,李锐AlZnSnSbPbMnMg高熵合金显微组织和耐热性的研究[J].功能材料.2009,4:602-610.
    [16]徐朝政,姜肃猛,马军.两种电弧离子镀Ni-Co-Cr-Al-Si-Y涂层的高温氧化行为[J].金属学报.2009,45:964-970.
    [17]叶均蔚,陈瑞凯,林树均.高熵合金的发展状况[J].工业材料杂志(繁体).2005,224:71-79.
    [18]Yeh JW, Chen SK, Gan JY, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiorincipal metallic elements[J]. Metall Mater Trans A,2004,35A:2533-2536.
    [19]Chen YY, Hong UT, Shih HC, et al. Electrochemical kinetics of high entropy alloys in aqueous environments-a comparison with type 304 stainless steel[J]. Corr Sci. 2005,47:2679-2699.
    [20]Hsu YJ, Chiang WC, Wu JK. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5%sodium chloride solution[J]. Mater Chem Phys.2005,92:112-117.
    [21]Ren B, Liu ZX, Li DM, et al. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution[J]. Mater Corr.2011,63:828-834.
    [22]Hermas AA, Ogura K, Adachi T. Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperature[J]. Electrochem Acta. 1999,40:837-844.
    [23]Itzhak D, Peled P. The effect of Cu addition on the corrosion behavior of sintered stainless steel in H2SO4 environment[J]. Corr Sci.1986,26:49-54.
    [24]姚陈忠,张鹏,李高仁,等.电化学制备Fe13.8Co28.7Ni4.0Mn22.1Bi14.9TM16.5高熵合金及其软磁性研究[J].中国稀土学报.2008,8:367-369.
    [25]Inoue A. Bulk amorphous alloys with soft and hard magnetic properties[J]. Mater Sci Eng A. 1997,226:357-363.
    [26]Inoue A. High-strength bulk amorphous-alloys with low critical cooling rates[J]. Mater Trans JIM.1995,36:886-875.
    [27]Inoue A, Takeuchi A, Zhang T. Ferromagnetic bulk amorphous alloys[J]. Mater Trans A. 1998,29:1779-1793.
    [28]Inoue A. Bulk Amorphous Alloys[M]. Zurich:Trans Tech Publications,1999.
    [29]Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Adv Eng Mater.2004,6:299-303.
    [30]Tong CJ, Yeh JW. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metall Mater Trans A.2005,36A:1263-1271.
    [31]Chen TK, Shun TT, Yeh JW, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surf Coat Tech.2004,188:193-200.
    [32]Chen YY, Duval T, Hung UD. Microstructure and electrochemical properties of high-entropy alloys as a comparison with type-304 stainless steel[J]. Corros Sci.2005,47:2257-2279.
    [33]Hsu CY, Yeh JW, Chen SK. Wear resistance and high-temperature compression strength of FCC CuCoNiCrA10.5Fe alloy with boron addition[J]. Metall Mater Trans A. 2004,35:1465-1469.
    [34]Tong CJ, Chen MR, Chen SK, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metall Mater Trans A. 2005,36A:1263-1271.
    [35]Wu JM, Lin SJ, Yeh JW, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear.2006,261:513-519.
    [36]Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Adv Eng Mater.2004,6:299-303.
    [37]Tong CJ, Yeh JW. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metall Mater Trans A.2005,36A:1263-1271.
    [38]Chen TK, Shun TT, Yeh JW, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surf Coat Tech.2004,188:193-200.
    [39]Chen YY, Duval T, Hung UD. Microstructure and electrochemical properties of high-entropy alloys as a comparison with type-304 stainless steel[J]. Corros Sci.2005,47:2257-2279.
    [40]Hsu CY, Yeh JW, Chen SK. Wear resistance and high-temperature compression strength of FCC CuCoNiCrA10.5Fe alloy with boron addition[J]. Metall Mater Trans A. 2004,35:1465-1469.
    [41]Tong CJ, Chen MR, Chen SK, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metall Mater Trans A. 2005,36A:1263-1271.
    [42]Wu JM, Lin SJ, Yeh JW, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear.2006,261:513-519.
    [43]Hung PK, Yeh JW, Shun TT. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv Eng Mater.2004,6:74-78.
    [44]Tsai MH, Yuan H, Cheng G, Xu W, Tsai CW, et al. Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy[J]. Intermetallics.2013,32:329-336.
    [45]Tsai CW, Chen YL, Tsai MH, Yeh JW, Shun TT, Chen SK. J Alloys Compd.2009, 486:427-435.
    [46]Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci Eng A.2004,375:213-218.
    [47]Wang XF, Zhang Y, Qiao Y, et al. Noval microstructure and properties of multicomponent CorCuFeNiTix alloys[J]. Intermetallics.2007,15:357-362.
    [48]Zhou YJ, Zhang Y, Wang FJ, et al. Effect of Cu addition on the microstructure and mechanical properties of CoCrFeNiTi0.5 solid-solution alloy[J]. J Alloys Comp. 2008,466:201-204.
    [49]周云军,张勇,王艳丽.多组元Alx(TiVCrMnFeCoNiCu)100-x高熵合金系微观组织研究[J].稀有金属材料与工程.2007,36:2136-2139.
    [50]Kuznetsov AV, Shaysultanov DG, Stepanov ND, Salishchev GA, Senkov ON. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater Sci Eng A.2012,533:107-118.
    [51]Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Materialia.2012,60:5723-5734.
    [52]Hsu YJ, Chiang WC, Wu JK. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5%sodium chloride solution[J]. Mater Chem Phys.2005,92:112-117.
    [53]Omer N, Dogan Benjiam C. Evaluated temperature corrosion of CoCrCuFeNiAl0.5Bx high-entropy alloys in simulated syngas containing H2S. Oxid Met.2013, DOI 10.1007/s11085-013-9407-x.
    [54]王艳萍.AlFeCrCoNiCu系多主元高熵合金及其复合材料的组织与性能[D].哈尔滨:哈尔滨工业大学,2009.
    [55]刘为亮.钇与TiC对AlCrFeNiCo高熵合金组织及性能的影响[M].哈尔滨:哈尔滨工业大学,2010.
    [56]Liu L, Zhu JB, Li L, Li JC. Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys[J]. Materials and Design.2013,44:223-227.
    [57]Cai Yanzhi, Yin Hongfeng, Pan Liqing. Microstructure and mechanical properties of Ti3SiC2/TiC-Al2O3 composites synthesized by reactive hot pressing[J]. Mater Sci Engi A. 2013,571:137-143.
    [58]Huang LJ, Geng L, Peng HX. In situ (TiBw+TiCp)/Ti6A14V composites with a network reinforcement distribution[J]. Mater Sci Engi A.2010,527:6723-6727.
    [59]Surbrahmanyam J, Vijakumar M. Prepagating high-temperature synthesis[J]. J Mater. 1992,27(23):62-69.
    [60]Martin Marietta Corp. Metal-second phase composited by direct addition:US,4915908[P]. 1990.
    [61]Martin Marietta Corp. Process for forming metal-ceramic composites:US,4710348[P].1987.
    [62]Anhajanian MK. Properties and microstructures of Lanxide Al2O3/Al ceramic composite materials[J]. J Mater Sci.1989,24:658-670.
    [63]张国军,金宗哲.材料的原位合成技术[J].材料导报.1997,11:14.
    [64]Lee BI, Einarsrud MA. Low-temperature synthesis of aluminum nitride via liquid-liquid mix carbothermal reduction[J]. J Mater Sci Lett.1990,9:1389-1391.
    [65]Forslund B, Zheng J. Carbothermal synthesis of aluminum nitride at elevated nitrogen pressures. Part 1:Effect of process parameters on conversion rate[J]. J Mater Sci. 1993,28:3125-3131.
    [66]Sigl L, Mataga PA, Dalgleish BJ, et al. On the toughness of brittle materials reinforced with a ductile phase[J]. Acta Metell.1988,36:945-953.
    [67]鲁玉祥,陶春虎NiAl金属间化合物热爆合成动力学的研究[J].材料科学与工艺.1997,4:5-8.
    [68]Kircher TA. In Metal Matrix, Carbon and Ceramic Matrix composite[C]. USA:NASA,1989.
    [69]Wu JM, Lin SJ, Yeh JW, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear.2006,261:513-519.
    [70]Hung PK, Yeh JW, Shun TT. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv Eng Mater.2004,6:74-78.
    [71]Lin YC, Cho YH. Elucidating the microstructral and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ[J]. Surf Coat Tech.2009,203:1694-1701.
    [72]Varalakshmi S, Raom GA, Kamaraj M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy after mechanical alloying[J]. J Mater Sci.2010,45:5158-5163.
    [73]Yeh JW. Recent progress in high-entropy alloys[J]. Ann Chim-Sci Mat.2006,31:633-648.
    [74]Chen YY, Hong UT, Yeh JW, et al. Mechanical properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288℃ high-purity water[J]. Appl Phys Lett.2005,87:261918.
    [75]Yao CZ, Zhang P, Liu M, et al. Electrochemical preparation and megnetic study of Bi-Fe-Co-Ni-Mn high-entropy alloy[J]. Electrochim Acta.2008,53:8359-8365.
    [76]Hung YS, Chen L, Lui HW, et al. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy[J]. Mater Sci Eng A. 2007,457:77-83.
    [77]Wu WH, Yang CC, Yeh JW. Industral develement of high-entropy alloys[J]. Ann Chim-Sci Mater.2006,31:737-747.
    [78]叶均蔚,陈瑞凯.高熵合金[J].科学发展.2004,377:16-21.
    [1]Chen TK, Shun TT, Yeh JW, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surf Coat Tech.2004,188-189:193-200.
    [2]Chen YY, Duval T, Hung UD. Microstructure and electrochemical properties of high-entropy alloys as a comparison with type-304 stainless steel[J]. Corros Sci.2005,47:2257-2279.
    [3]Hsu CY, Yeh JW, Chen SK. Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition[J]. Metall Mater Trans A. 2004,35:1465-1469.
    [4]Tong CJ, Chen MR, Chen SK, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metall Mater Trans A. 2005,36A:1263-1271.
    [5]Wu WH, Yang CC, Yeh JW. Industral develement of high-entropy alloys[J]. Ann Chim-Sci Mater.2006,31:737-747.
    [6]Wang LM, Chen CC, Yeh JW, et al. The microstructure and strenthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys[J]. Mater Chem Phys. 2011,126:880-885.
    [7]Zhang KB, Fu ZY, Zhang JY, et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy[J]. J Alloys Comp.2010,502:295-299.
    [8]Zhang H, Pan Y, He Y, Jiao H. Microstructure and properties of FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl Surf Sci.2011,257:2259-2263.
    [9]Fu Z, Chen W, Fang S, Zhang D, Xiao H. Alloys behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys and Compd.2013,553:316-323.
    [10]Fu Z, Chen W, Fang S, Zhang D. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Materials and Design. 2013,44:535-539.
    [11]Zhu C, Lu ZP, Nieh TG Incipient plasticity and dislocation nucleation of FeCoCrNiMn high entropy alloy. Acta Materilia.2013,61:2993-3001.
    [12]Tariq NH, Naem M, Hkhter JI. Effevt of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J Alloys Compd.2013,556:79-85.
    [13]Raynor GV. Hume-Rothery and theDevelopment of the Science of Alloy Formation[J]. J Inst Metals.1970,98:321-327.
    [14]Wang XF, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multi-component CoCrCuFeNiTix alloys[J]. Intermetallics.2007,15:357-362.
    [15]Zhang KB, Fu ZY, Zhang JY, et al. [J]. Mater Sci Forum.2009,620:383-386.
    [16]Zhou YJ, Zhang Y, Kim TN, et al. Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties[J]. Mater Lett.2008,62:2673-2676.
    [17]Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multi-principal elements-novel alloy design concepts and outcomes[J]. Adv Eng Mater.2004,6:299-303.
    [18]Zhou YJ, Zhang Y, Wang FJ, et al. [J]. Appl Phys Lett.2008,92:241917.
    [19]Takeuchi A, Inoue A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of Main Alloying Element[J]. Mater Trans A.2005,46:2817-2829.
    [20]Niessen AK, Miedema AR, Boer FR, et al. Enthalpies of formation of liquid and solid binary alloys based on 3d metals:V. Alloys of nikel[J]. Physica B:Condensed Matter. 1988,152:303-346.
    [21]Niessen AK, Miedema AR, Boer FR, et al. Enthalpies of formation of liquid and solid binary alloys based on 3d metals:Ⅳ. Alloys of cobalt [J]. Physica B+C.1988,151:401-432.
    [22]Takeuchi A, Inoue A. Quantitative evalution of critical cooling rate for metallic glasses[J]. Mater Sci Eng A.2001,304:446-451.
    [23]Zhang Y, Zhou YJ, Lin JP, et al. Solid Solution Phase Formation Rules for multicomponent Alloys[J]. Adv Eng Mater.2008,10:534-538.
    [24]Miedema AR, Chatel PF, Boer FR. Cohesion in alloys-fundamentals of a semi-empirical model[J]. Physica B.1980,100:1-28.
    [25]Kittel C. Introduction to solid state physics[M].6th ed. New York:John Wiley and Sons Inc.,1986.
    [26]Yang X, Zhang Y. Prediction of high entropy stabilized solid solution in multi-component alloys. Mater Chem Phys.2012,132:233-238.
    [27]安运铮.热处理工艺学[M].北京:机械工业出版社,1988.
    [1]Swalin RA. Thermodynamics of Solids[M].2nd ed. New York:John Wiley & Sons,1991.
    [2]Peng LM, Wang JH, Li H, et al. Microstructure and mechanical behavior of NixAly-Al2O3 in situ composites by pre-oxidation followed by hot-pressed reactive sintering[J]. Mater Sci and Eng A.2006,425:339-345.
    [3]Sriharitha R, Murty BS, Kottada RS. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x=0.45,1,2.5,5 mol) high entropy alloys[J]. Intermetallics. 2013,32:119-126.
    [4]Zhang Y, Yang X, Liaw PK. Alloy Design and Properties Optimization of High-Entropy Alloys[J]. Jom.2012,64:830-838.
    [5]Reed-Hill RE, Abbaschian R. Physical Metallurgy Principles[M].3th ed. Boston:PWS Publishing Company,1994.
    [6]Wang FJ, Zhang Y, Chen GL. Atomic packing efficiency and phase transition in a high entropy alloy[J]. J Alloys Comp.2009,478:321-324.
    [1]王艳萍.AlCrFeCoNiCu系多主元合金及其复合材料的组织与性能[D].哈尔滨:哈尔滨工业大学,2009.
    [2]Wang FJ, Zhang Y, Chen GL. Atomic packing efficiency and phase transition in a high entropy alloy[J]. J Alloys Comp.2009,478:321-324.
    [3]Zhang KB, Fu ZY, Zhang JY, et al. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys[J]. Mater Sci Eng A.2009,508:214-219.
    [4]Courtney T. Mechanical Behavior of Materials[M]. New York:McGraw-Hill,1990.
    [5]丁雨田,刘芬霞,胡勇.Fe-Ga合金薄带的显微组织及磁致伸缩性能[J].特种铸造机有色合金.2008,28:341-343.
    [6]Huang PK, Yeh JW, Shun TT. Multi-principal element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv Eng Mater.2004,6:74-78.
    [7]上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社,1979.
    [8]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1991:160-164.
    [1]张二林,朱兆军,曾松岩.自生颗粒增强Ti基复合材料的研究进展[J].稀有金属.1999,23:436-443.
    [2]Nurminen JI, Brody HD, Jaffe RI. Titanium Science and Technology[M]. New York:Plenum Press,1973:1893-1897.
    [3]Cahn RW, Hillingsg WB, Sears GW. Molecular Mechanism of Solidification[J]. Acta Metall. 1964,12:421-439.
    [4]Riaz S, Flower HM. Changes in 8-TiC stoichiometry during heat treatment of TiC reinforced Ti composites. Mater Sci Tech.1999,15(12):1341-1348.
    [5]Miracle D, Lipsitt H. Mechanical properties of fine-grained substoichiometric TiC. Journal of American Ceramic Society.1983,66(5):92-96.
    [6]Storms EK. Refractory Materials:vol.2, The refractory carbides. Academic Press, New York, 1971:6-9.
    [7]Brodkin D. Processing-Sructure-Properties Relations in Titanium Carbide-Titanium Boride Composites Fabricated by Transient Plastic Phase Processing. PhD thesis, Drexel University. 1996:239-241.
    [8]Badini C, Ubertilli, Puppo D, Fino P. High temperature behavior of a Ti-6Al-4V/TiCp composite processed by BE-CIP-HIP method. J Mater Sci.2000,35:3903-3912.
    [1]杜洪强,田素贵,于兴福,等.NiCoCrAlYSi涂层对镍基单晶合金高温氧化特性的影响[J].稀有金属材料与工程.2008,37:1555-1559.
    [2]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.
    [3]李铁藩.金属的高温氧化和热腐蚀[M].北京:化学工业出版社,2003.
    [4]Liu PS, Liang KM, Zhou HY. High-temperature protective coatings on superalloys[J]. Trans Nonferrous Met Soc China.2002,12(4):798-803.
    [5]黄乾尧,李汉康,等.高温合金[M].北京:冶金工业出版社:2002.
    [6]朱日章,卢亚轩.耐热钢和耐高温合金[M].北京:化学工业出版社,1996.
    [7]朱日章,何亚东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995.
    [8]N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature Oxidation of Metals. Cambridge University Press.2006.
    [9]Pint B A, Martin J R, Hobbs L W. Solid State Ionics,1995; 78:99.Ji G, Zhang Z, Liu Y, Ding XD, Sun J, Ren XB. Effect of surface oxidation on detwinning stress and transformation temperature of Ti-50Ni shape memory alloy[J]. J Alloys Comps.2006,10:1010-1025.
    [10]Nijdam TJ, Kwakernaak C, Sloof WG. The effect of alloy microstructure redinement on short-term thermal oxidation of NiCoCrAlY alloys. Metall Mater Trans. 2006,37A(3):683-693.
    [11]Li HF, Tao SF, Zhou ZH, Sun LD, Gong SK. Element diffusion during fabrication of EB-PVD Ni-Al coating and its 1100℃ isothermal oxidation behavior. Surf Coat Tech. 2007,201(15):6589-6592.
    [12]Shi J, Karlsson AM, Baufeld B, Bartsch M. Evolution of surface morphology of thermo-mechanically cycled NiCoCrAlY bond coats. Mater Sci Eng A.2006,434(1-2):39-52.
    [13]Pedraza F, Grosseau JL, Dinhut JF. Evolution of oxide scales on an ODS FeAl intermetallic alloy during high temperature exposure in air. Intermetallics.2005,(13):27-33.
    [14]科洛梅采夫.耐热扩散涂层[M].马志春译.北京:国防工业出版社.1998.132-137
    [15]李正伟,何业东,齐慧斌,高唯.金属氧(硫、碳、氮)化物单位体积标准生成自由能图[J].中国有色金属学报.1998,8:55-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700