用户名: 密码: 验证码:
原位自生TiB晶须增强Al_2O_3/TC4钎焊接头组织结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有高熔点、耐高温、耐腐蚀、耐磨损等特殊性能及抗辐射、耐高频高压绝缘等电气性能的陶瓷材料与具有良好塑韧性金属材的高质量连接一直是工程材料应用研究的重点。钎焊对连接性能差异较大的材料和熔化敏感的材料具有独特优点,因此广泛用于陶瓷与金属的连接,但如何避免因陶瓷与金属间冶金不相容和物性不匹配而产生的钎焊接头残余热应力是目前亟待解决的问题。本课题以降低陶瓷/金属接头残余热应力,提高接头的室温强度和高温强度为目标,将原位自生技术与钎焊相结合,提出一种利用原位自生的TiB晶须增强陶瓷/金属钎焊接头的方法,采用机械混合方法制备的AgCuTi+B、CuTi+TiB_2和Cu+TiB_2复合钎料钎焊Al_2O_3和TC4,研究了原位自生的TiB晶须对接头界面组织及力学性能的影响,并揭示了TiB在钎焊过程中的生成机制。
     通过对钎焊接头界面组织所进行的SEM、EDS、XRD和TEM分析,采用AgCuTi+B复合钎料钎焊Al_2O_3与TC4时,接头界面组织结构为:Al_2O_3/Ti_3(Cu,Al)_3O/Ti_2Cu+Ti_2(Cu,Al)/Ag(s.s)+TiCu+Ti(Cu,Al)+Ti_2Cu+TiB/(αTi)+Ti_2Cu/TC4。当B添加过量或Ti添加量不足时,接头中出现TiB_2颗粒。随B粉添加量增大,Ti_3(Cu,Al)_3O层不变,TiB晶须生成量增加。随Ti粉添加量增大,Ti_3(Cu,Al)_3O层增厚,Ti_2Cu和Ti_2(Cu,Al)混合区先增厚后减薄,TC4向钎料中的溶解量减小。随钎焊温度升高或保温时间延长,Ti_3(Cu,Al)_3O可与Al_2O_3进一步反应生成TiO,TC4向钎料中的溶解量增大,钎缝中Ti_2Cu和Ti_2(Cu,Al)生成量增大,Ti_2Cu和Ti_2(Cu,Al)混合区增厚。
     采用CuTi+TiB_2或Cu+TiB_2复合钎料钎焊Al_2O_3与TC4时,接头界面组织结构均为Al_2O_3/Ti_3(Cu,Al)_3O+Ti_4(Cu,Al)2O/Ti_2Cu+Ti_2(Cu,Al)+Ti_3Al/Ti_2(Cu,Al)/Ti_2Cu+AlCu2Ti+TiB/(αTi)+Ti_2Cu/TC4。随TiB_2添加量增大,TiB晶须生成量增加,钎缝中先出现Ti_2(Cu,Al)组成区,继而该区变得连续并逐渐向Al_2O_3侧移动。随Ti添加量增大,Ti_2Cu晶界处出现(αTi)+Ti_2Cu组织,钎缝中由Ti_2(Cu,Al)组成的区域变连续并逐渐增厚,AlCu2Ti逐渐减少并消失。随钎焊温度升高和保温时间延长,Ti_3(Cu,Al)_3O和Ti_4(Cu,Al)2O组成区增厚;TC4向钎料中溶解量增大,Ti_2Cu生成量增多,而Ti_2(Cu,Al)先增加后减小,且其组成区远离Al_2O_3;Ti_2Cu晶界处的Ti_3Al增加,Ti_2(Cu,Al)和AlCu2Ti消失。
     TiB晶须由钎料中的B或TiB_2与Ti在钎焊过程发生的原位反应而生成,并随B原子在TiB中的扩散而生长。原位自生的TiB尺寸和形貌受B源类型及其添加量、钎焊温度和保温时间的影响。添加B粉时生成的TiB比添加TiB_2时生成的TiB细小。接头中TiB的生成量增多时,TiB逐渐由单独分布变为簇状分布,且其尺寸先增加后减小。随钎焊温度升高和保温时间延长TiB尺寸和生成量逐渐减小。而熔化钎料在Al_2O_3表面的润湿铺展性能则随钎料中添加B或TiB_2量的增加而下降。
     通过有限元模拟Al_2O_3/TC4钎焊接头的残余应力,最大残余拉应力产生在Al_2O_3拐角处,最大残余剪应力产生在靠近Al_2O_3/钎缝界面的Al_2O_3与钎缝中。随接头中TiB生成量增加,Al_2O_3中的最大残余拉应力减小,但靠近Al_2O_3/钎缝界面的Al_2O_3与钎缝处最大残余剪应力增大,而且Al_2O_3中的等效残余应力减小,钎缝中的等效残余应力增大。当接头断裂时,TiB晶须使裂纹扩展时发生偏转,由于TiB的弹性模量高于钎缝的弹性模量,使接头内模量载荷发生转移,将应力从裂纹尖端转移至远离裂纹尖端区域,从而降低裂纹尖端应力集中,提高接头抗剪强度。测试环境为室温时,Al_2O_3/CuTi+TiB_2/TC4钎焊接头的最大抗剪强度为143MPa,比Al_2O_3/CuTi/TC4钎焊接头的抗剪强度提高了239%;Al_2O_3/Cu+TiB_2/TC4钎焊接头的最大抗剪强度为97MPa,比Al_2O_3/Cu/TC4钎焊接头的抗剪强度提高了269%;Al_2O_3/AgCuTi+B/TC4钎焊接头的最大抗剪强度为78MPa,比Al_2O_3/AgCuTi/TC4钎焊接头的抗剪强度提高了81%。TiB晶须高熔点及大长径比的特性,使其作为陶瓷骨架存在于钎缝中,有效提高钎焊接头高温性能,Al_2O_3/Cu+TiB_2/TC4钎焊接头在高温下的抗剪强度比Al_2O_3/Cu/TC4的钎焊接头提高40~125%。
In view of the excellent performance of ceramics, such as the high meltingpoint, high temperture resistance, corrosion resistance, radiation resistance, highfrequency and high voltage resistance, as well as insulation perfomances, it issignificant to join ceramics and metals characterized good ductility. Brazing isapplied widely to join ceramics and metals, because it has unique advantages forjoining great property difference materials and melting sensitively materials.However, it is necessary to avoid the residual stresses of joint caused by metallurgyincompatibility and physical properties mismatch. Combining with in situ synthesistechnology and brazing method, the method of in situ synthesizing TiB whiskers tostrengthen ceramic/metal brazed joints is proposed. The method can reduce theceramic/metal joints residual stresses, and improve the joints room-temperature andhigh-temperature shear strength. AgCuTi+B, CuTi+TiB_2and Cu+TiB_2fillersprepared with mechanical mixing are used to braze Al_2O_3to TC4respectively.Effect of TiB on joint microstructure and mechanical properties is investigated. Theformation mechanism of TiB during brazing is revealed.
     According to SEM, EDS, XRD and TEM, the microstructure of Al_2O_3/TC4joint with AgCuTi+B composite fillers is Al_2O_3/Ti_3(Cu,Al)_3O/Ti_2Cu+Ti_2(Cu,Al)/Ag(s.s)+TiCu+Ti(Cu,Al)+Ti_2Cu+TiB/(αTi)+Ti_2Cu/TC4. Excessive Bpowders or deficient Ti powders results in the presence of TiB_2in joint. As the Bincrease, TiB whiskers increase, while Ti_3(Cu,Al)_3O area remains nearly constant.As the Ti powders increase, Ti_3(Cu,Al)_3O area thickens. The area consist of Ti_2Cuand Ti_2(Cu,Al) thickens and then thins. The dissolution of TC4dissolved into liquidbrazing fillers decreases. As brazing temperature rises and holding time extends,Ti_3(Cu,Al)_3O reacts with Al_2O_3to form TiO. The dissolution of TC4dissolved intoliquid brazing fillers increases. Both Ti_2Cu and Ti_2(Cu,Al) increase, and then thearea consist of Ti_2Cu and Ti_2(Cu,Al) thickens.
     The microstructure of Al_2O_3/TC4joint using CuTi+TiB_2or CuTi+TiB_2composite fillers is Al_2O_3/Ti_3(Cu,Al)_3O+Ti_4(Cu,Al)2O/Ti_2Cu+Ti_2(Cu,Al)+Ti_3Al/Ti_2(Cu,Al)/Ti_2Cu+AlCu2Ti+TiB/(αTi)+Ti_2Cu/TC4. When TiB_2increases, TiBwhiskers increase. The area consist of Ti_2(Cu,Al) appears and becomes continuous,then moves to Al_2O_3. When Ti increases,(αTi)+Ti_2Cu appears in Ti_2Cu grainboundaries. The area consist Ti_2(Cu,Al) becomes continuous and thickens. AlCu2Tidecreases gradually, enen disappears. When brazing temperature rises and holdingtime extends, the area consist of Ti_3(Cu,Al)_3O and Ti_4(Cu,Al)2O thickens. The dissolution of TC4dissolved into liquid brazing fillers increases. Ti_2Cu increases,yet Ti_2(Cu,Al) increases at first and then decreases. The area consist of Ti_2(Cu,Al)gradually moves away from Al_2O_3. Ti_3Al increases in the grain boundaries of Ti_2Cu,while Ti_2(Cu,Al) and AlCu2Ti decrease.
     During brazing, B or TiB_2reacts with Ti to form TiB. TiB grows by B atomsdiffusing into TiB. TiB sizes and shapes are responsive to the kind and additiveamount of B source, brazing temperature and holding time. The size of TiBgenerated from B is smaller than that from TiB_2. When it increases, TiB changesfrom single to clusters, and its size increases at first and then decreases. In addition,the size and formation amount of TiB decrease when brazing temperature andholding time increase. When B or TiB_2content increases, the wetting and spreadingof brazing fillers on Al_2O_3decrease.
     According to Al_2O_3/TC4joints residual stresses caculated by finite elementsimulations, the highest residual tensil stress appears on the corner of Al_2O_3, and thehighest residual shear stress appears at Al_2O_3and brazing seam near Al_2O_3/brazingseam interface. With the increasing of TiB content, the highest residual tensil stressin Al_2O_3decreases, the highest residual shear stress in Al_2O_3and brazing seam nearAl_2O_3/brazing seam interface increases, and the equivalent residual stressesdistributed in Al_2O_3decrease, but that in brazing seam decrease. When joint fractureoccurs, TiB whiskers can make cracks deflect during propagation. For the elasticmodulus of TiB is higher than the brazing seam, TiB can transfer the modulus loadin joint, and move stresses at a crack tip to regions remote from the crack tip.Finally, the stress intensity at the crack tip decreases, and the joint shear strength isimproved. At room temperture, the maximum shear strength ofAl_2O_3/CuTi+TiB_2/TC4joints is143MPa, which is239%higher than that of theAl_2O_3/CuTi/TC4joints; the maximum shear strength of Al_2O_3/Cu+TiB_2/TC4jointsis97MPa, which is269%higher than that of the Al_2O_3/Cu/TC4joints; themaximum shear strength of Al_2O_3/AgCuTi+B/TC4joints is78MPa, which is81%higher than that of the Al_2O_3/AgCuTi/TC4joints. At high temperture, the maximumshear strength of Al_2O_3/Cu+TiB_2/TC4joints is40~125%higher than that of theAl_2O_3/Cu/TC4joints. It can be attributed that TiB whiskers exist in joints, acted asceramic skeleton, owing to its high melting point and large aspect ratio.
引文
[1]张勇,何志勇,冯涤.金属与陶瓷连接用中间层材料[J].钢铁研究学报,2007,19(2):1-4+34.
    [2] Naslain R. Design, Preparation and Properties of Non-oxide CMCs forApplication in Engines and Nuclear Reactors: an Overview[J]. CompositesScience and Technology,2004,64(2):155-170.
    [3]钱耀川,丁华东,傅苏黎.陶瓷-金属焊接的方法与技术[J].材料导报,2005,19(11):98-100+104.
    [4]刘会杰,冯吉才.陶瓷与金属的连接方法及应用[J].焊接,1999(6):5-9.
    [5]顾钰熹,邹耀弟,白闻多.陶瓷与金属的连接[M].北京:化学工业出版社,2010:1-7.
    [6]吴铭方,马骋,张超,杨沛.陶瓷/金属钎焊接头强度研究现状[J].焊接技术,2006,35(4):4-6+79.
    [7]李潇一.氧化物陶瓷与金属的活性钎焊工艺及其机理研究[D].天津:天津大学硕士学位论文,2009:6-7.
    [8]丁文锋,徐九华,沈敏,傅玉灿,肖冰,苏宏华.活性元素Ti在CBN与钎料结合界面的特征[J].稀有金属材料与工程,2006,35(8):1215-1218.
    [9]张启运,庄鸿寿.钎焊手册(第二版)[M].北京:机械工业出版社,2008:393.
    [10] Zhu S, Wlosinski W. Joining of AlN Ceramic to Metals Using Sputtered Al or TiFilm[J]. Journal of Materials Processing Technology,2001,109(3):277-282.
    [11] Zhou Y, Ikeuchi K, North T, Wang Z. Effect of Plastic Deformation on ResidualStresses in Ceramic/Metal Interfaces[J]. Metallurgical and MaterialsTransactions A,1991,22(11):2822-2825.
    [12] Zhong Z H, Zhou Z J, Ge C C. Brazing of Doped Graphite to Cu Using StressRelief Interlayers[J]. Journal of Materials Processing Technology,2009,209(5):2662-2670.
    [13] Xian A P. Residual Stress in a Soft-Buffer-Inserted Metal/Ceramic Joint[J].Journal of American Ceramic Society,1990,73(11):3462-3466.
    [14] Kim T W, Park S W. Effects of Interface and Residual Stress on MechanicalProperties of Ceramic/Metal System[J]. Key Engineering Materials,2000,183-187:1279-1284.
    [15] Pietrzak K, Kalinski D, Chmielewski M. Interlayer of Al2O3-Cr FunctionallyGraded Material for Reduction of Thermal Stresses in Alumina-Heat ResistingSteel Joints[J]. Journal of the European Ceramic Society,2007,27(2-3):1281-1286.
    [16] Levy A. Thermal Residual Stresses in Ceramic-to-Metal Brazed Joints[J].Journal of the American Ceramic Society,1991,74(9):2141-2147.
    [17] Brochu M, Pugh M D, Drew R A L. Brazing Silicon Nitride to an Iron-BasedIntermetallic Using a Copper Interlayer[J]. Ceramics International,2004,30(6):901-910.
    [18] Akselsen O M. Advances in Brazing of Ceramics[J]. Journal of MaterialsScience,1992,27(8):1989-2000.
    [19] Abed A, Bin H P, Jalham I S, Hendry A. Joining of Sialon Ceramics by aStainless Steel Interlayer[J]. Journal of the European Ceramic Society,2001,21(16):2803-2809.
    [20]朱定一,王永兰,高积强,浩宏奇,金志浩. Al2O3/Ni-Ti钎料/Nb的封接及其组织和性能的研究[J].西安交通大学学报,1997,31(3):38-42.
    [21]冀小强,李树杰,马天宇,张艳.用Zr/Nb复合中间层连接SiC陶瓷与Ni基高温合金[J].硅酸盐学报,2002,30(3):305-310.
    [22] Lemus J, Drew R A L. Joining of Silicon Nitride with a Titanium FoilInterlayer[J]. Materials Science and Engineering: A,2003,352(1-2):169-178.
    [23] Ksiazek M, Mikulowski B. Bond Strength and Microstructure Investigation ofAl2O3/Al/Al2O3Joints with Surface Modification of Alumina by Titanium[J].Materials Science and Engineering: A,2008,495(1-2):249-253.
    [24]方洪渊,冯吉才.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社,2005:156-159.
    [25]邹家生,翟建广,吴斌,陈铮. Cu-Ni-Ti钎料连接Si3N4/In718接头强度及断裂分析[J].焊接技术,2003,32(3):8-10+3.
    [26]林国标,黄继华,张建纲,毛建英,李海刚. SiC陶瓷与Ti合金的Ag-Cu-Ti-TiC复合钎焊研究.第十一次全国焊接会议.上海:中国机械工程学会焊接学会,2005:26-29.
    [27]林国标,黄继华,毛建英,李海刚. SiC陶瓷与钛合金(Ag-Cu-Ti)-SiCp复合钎焊接头组织结构研究[J].航空材料学报,2005,25(6):24-28.
    [28] Zhang J, He Y M, Sun Y, Liu C F. Microstructure Evolution of Si3N4/Si3N4JointBrazed with Ag-Cu-Ti+SiCpComposite Filler[J]. Ceramics International,2010,36(4):1397-1404.
    [29] Yang J G, Fang H Y, Wan X. Al2O3/Al2O3Joint Brazed WithAl2O3-Particulate-Contained Composite Ag-Cu-Ti Filler Material[J]. Journal ofMaterials Science&Technology,2005,21(5):782-784.
    [30] Qin Y Q, Yu Z S. Joining of C/C Composite to TC4Using SiCParticle-Reinforced Brazing Alloy[J]. Materials Characterization,2010,61(6):635-639.
    [31] He Y M, Zhang J, Liu C F, Sun Y. Microstructure and Mechanical Properties ofSi3N4/Si3N4Joint Brazed with Ag-Cu-Ti+SiCp Composite Filler[J]. MaterialsScience and Engineering: A,2010,527(12):2819-2825.
    [32]林国标,黄继华,张建纲,毛建英,李海刚. SiC陶瓷与Ti合金的(Ag-Cu-Ti)-W复合钎焊接头组织结构研究[J].材料工程,2005(10):17-22.
    [33] Lin G B, Huang J H, Zhang H, Liu H Y. Microstructure and MechanicalPerformance of Brazed Joints of Cf/SiC Composite and Ti Alloy UsingAg-Cu-Ti-W[J]. Science and Technology of Welding&Joining,2006,11(4):379-383.
    [34] He Y M, Zhang J, Sun Y, Liu C F. Microstructure and Mechanical Properties ofthe Si3N4/42CrMo Steel Joints Brazed with Ag-Cu-Ti+Mo Composite Filler[J].Journal of the European Ceramic Society,2010,30(15):3245-3251.
    [35]熊进辉,黄继华,张华,赵兴科. Cf/SiC复合材料与钛合金Ag-Cu-Ti-Cf复合钎焊[J].焊接学报,2010,31(5):77-80+117.
    [36] Zhu M G, Wetherhold R C, Chung D D L. Evaluation of the Interfacial Shear ina Discontinuous Carbon Fiber/Mortar Matrix Composite[J]. Cement andConcrete Research,1997,27(3):437-451.
    [37] Zhu M G, Chung D D L. Active Brazing Alloy Containing Carbon Fibers forMetal–Ceramic Joining[J]. Journal of the American Ceramic Society,1994,77(10):2712-2720.
    [38] Zhu M G, Chung D. Improving the Strength of Brazed Joints to Alumina byAdding Carbon Fibres[J]. Journal of Materials Science,1997,32(20):5321-5333.
    [39] Lin G B, Huang J H, Zhang H. Joints of Carbon Fiber-Reinforced SiCComposites to Ti-Alloy Brazed by Ag-Cu-Ti Short Carbon Fibers[J]. Journal ofMaterials Processing Technology,2007,189(1-3):256-261.
    [40] Chang H, Choi S C, Park S W, Kim T W. Effects of Residual Stress on FractureStrength of Si3N4/Stainless Steel Joints with a Cu-Interlayer[J]. Journal ofMaterials Engineering and Performance,2002,11(6):640-644.
    [41] Yuan B, Zhang G J. Microstructure and Shear Strength of Self-joined ZrB2andZrB2-SiC with Pure Ni[J]. Scripta Materialia,2011,64(1):17-20.
    [42] Suganuma K, Okamoto T, Koizumi M, Shimada M. Method for PreventingThermal Expansion Mismatch Effect in Ceramic-Metal Joining[J]. Journal ofMaterials Science Letters,1985,4(5):648-650.
    [43] Ksiazek M, Sobczak N, Mikulowski B, Radziwill W, B W, M. W. Influence ofSurface Modification of Alumina on Bond Strength in Al2O3/Al/Al2O3Joints[J].Journal of Materials Science,2005,40(9-10):2513-2517.
    [44] Jadoon A K, Ralph B, Hornsby P R. Metal to Ceramic Joining via a MetallicInterlayer Bonding Technique[J]. Journal of Materials Processing Technology,2004,152(3):257-265.
    [45] Zhu D Y, Ma M L, Jin Z H, Wang Y L. The Effect of Molybdenum NetInterlayer on Thermal Shock Resistance of Al2O3/Nb Brazed Joint[J]. Journal ofMaterials Processing Technology,1999,96(1-3):19-21.
    [46]吴铭方,马骋,杨敏,杨沛. Ti(C,N)基金属陶瓷/40Cr钢钎焊接头减应措施[J].焊接技术,2006,35(3):18-19+7.
    [47] Kontsevol O Y, Gornostyrev Y N, Freeman A J. Electronic Mechanism ofImpurity-Dslocation Interactions in Intermetallics: NiAl[J]. PhilosophicalMagazine Letters,2001,81(7):445-163.
    [48] Zhou Y, Bao F H, Ren J L, North T H. Interlayer Selection and Thermal-Stressesin Brazed Si3N4-Steel Joints[J]. Materials Science and Technology,1991,7(9):863-868.
    [49]张春光,乔冠军,金志浩. Ni-Ti焊料部分液相瞬间连接高纯Al2O3-Kovar工艺的研究[J].稀有金属材料与工程,2002,31(4):299-302.
    [50] Qin Y Q, Feng J C. Active Brazing Carbon/Carbon Composite to TC4with Cuand Mo Composite Interlayers[J]. Materials Science and Engineering: A,2009,525(1-2):181-185.
    [51] Zorc B, Kosec L. A New Approach to Improve the Properties of Brazed Joints[J].Welding Journal,2000,79(1):24-31.
    [52]孙德超,柯黎明,邢丽,刘鸽平.陶瓷与金属梯度过渡层的自蔓延高温合成[J].焊接学报,2000,21(3):44-46+3.
    [53] Yu M H, Zhou B, Bi D B, Shaw D. Preparation of Graded Multilayer Materialsand Evaluation of Residual Stresses[J]. Materials&Design,2010,31(5):2478-2482.
    [54] Fernie J A, Drew R A L, Knowles K M. Joining of Engineering Ceramics[J].International Materials Reviews,2009,54(5):283-331.
    [55] Lin G B, Huang J H, Zhang H, Zhao X K. Joints of Cf/SiC Composite toTi-Alloy with In Situ Synthesized TiCxImproved Brazing Layers[J]. MaterialsTransactions,2006,47(4):1261-1263.
    [56] Lin G B, Huang J H. Brazed Joints of Cf-SiC Composite to Ti Alloy UsingAg-Cu-Ti-(Ti+C) Mixed Powder as Interlayer[J]. Powder Metallurgy,2006,49(4):345-348.
    [57] Xiong J H, Huang J H, Wang Z, Lin G B, Zhang H, Zhao X. Joining of Cf/SiCComposite to Ti Alloy Using Composite Filler Materials[J]. Materials Scienceand Technology,2009,25(8):1046-1050.
    [58] Blugan G, Kuebler J, Bissig V, Janczak-Rusch J. Brazing of Silicon NitrideCeramic Composite to Steel Using SiC-Particle-Reinforced Active BrazingAlloy[J]. Ceramics International,2007,33(6):1033-1039.
    [59] Cui C X, Shen Y T, Meng F B, Kang S B. Review on Fabrication Methods of InSitu Metal Matrix Composites[J]. Journal of Materials Science&Technology,2000,16(6):619-626.
    [60] Reddy B, Das K, Das S. A Review on the Synthesis of In Situ Aluminum BasedComposites by Thermal, Mechanical and Mechanical–Thermal Activation ofChemical Reactions[J]. Journal of Materials Science,2007,42(22):9366-9378.
    [61] Fleetwood M J. Mechanical Alloying the Development of Strong Alloys[J].Materials Sciences and Technology,1986,2(12):1176-1182.
    [62] Liu Gen Mao, Zou Gui Sheng, Wu Ai Ping, Zhang De Ku. Improvements of theSi3N4Brazed Joints with Intermetallics[J]. Materials Science and Engineering: A,2006,415(1-2):213-218.
    [63]张德库,吴爱萍,邹贵生,刘根茂.利用金属间化合物增强陶瓷钎焊接头[J].稀有金属材料与工程,2006,35(3):423-427.
    [64]张德库,邹贵生,吴爱萍,刘根茂.利用金属间化合物增强陶瓷钎焊接头强度[J].航空材料学报,2005,25(5):25-28.
    [65]张德库,邹贵生,吴爱萍,刘根茂.利用金属间化合物增强陶瓷钎焊接头—接头组织与界面反应[J].材料工程,2005(5):15-18.
    [66] Huang L J, Geng L, Li A B, Yang F Y, Peng H X. In situ TiBw/Ti-6Al-4VComposites with Novel Reinforcement Architecture Fabricated by Reaction HotPressing[J]. Scripta Materialia,2009,60(11):996-999.
    [67] Huang L J, Geng L, Peng H X. In situ (TiBw+TiCp)/Ti6Al4V Composites with aNetwork Reinforcement Distribution[J]. Materials Science and Engineering: A,2010,527(24-25):6723-6727.
    [68] Sahay S S, Ravichandran K S, Atri R, Chen B, Rubin J. Evolution ofMicrostructure and Phases in In Situ Processed Ti-TiB Composites ContainingHigh Volume Fractions of TiB Whiskers[J]. Journal of Materials Research,1999,14(11):4214-4223.
    [69] Panda K, Ravi Chandran K. Synthesis of Ductile Titanium-Titanium Boride(Ti-TiB) Composites with a Beta-Titanium Matrix: The Nature of TiB Formationand Composite Properties[J]. Metallurgical and Materials Transactions A,2003,34(6):1371-1385.
    [70]吕维洁,张小农,张荻,吴人洁,卞玉君,方平伟, H.Mori.原位(TiB+TiC)/Ti复合材料中TiB/Ti界面的微结构研究[J].电子显微学报,2001,20(1):56-62.
    [71]吕维洁,张小农,张荻,吴人洁,卞玉君,方平伟.原位合成TiB/Ti基复合材料增强体的生长机制[J].金属学报,2000,36(1):104-108.
    [72]吕维洁,张荻,张小农,吴人洁.原位合成TiB/Ti复合材料的微观结构及力学性能[J].上海交通大学学报,2000,34(12):1606-1609+1614.
    [73]吕维洁,张小农,张荻,吴人洁,卞玉君,方平伟.原位合成TiC和TiB增强钛基复合材料的微观结构与力学性能[J].中国有色金属学报,2000,10(2):163-169.
    [74]吕维洁.原位自生钛基复合材料研究综述[J].中国材料进展,2010,29(4):41-48+7.
    [75] Loretto M, Konitzer D. The Effect of Matrix Reinforcement Reaction onFracture in Ti-6Ai-4V-Base Composites[J]. Metallurgical and MaterialsTransactions A,1990,21(6):1579-1587.
    [76] Radhakrishna Bhat B V, Subramanyam J, Bhanu Prasad V V. Preparation ofTi-TiB-TiC&Ti-TiB Composites by In-Situ Reaction Hot Pressing[J]. MaterialsScience and Engineering A,2002,325(1-2):126-130.
    [77] Lv W J, Zhang D, Zhang X N, Wu R J, Sakata T, Mori H. HREM Study ofTiB/Ti Interfaces in a Ti-TiB-TiC In Situ Composite[J]. Scripta Materialia,2001,44(7):1069-1075.
    [78] Li B S, Shang J L, Guo J J, Fu H Z. In Situ Observation of Fracture Behavior ofIn Situ TiBw/Ti Composites[J]. Materials Science and Engineering A,2004,383(2):316-322.
    [79] Schuh C, Dunand D C. Whisker Alignment of Ti-6Al-4V/TiB Compositesduring Deformation by Transformation Superplasticity[J]. International Journalof Plasticity,2001,17(3):317-340.
    [80] Gorsse S, Chaminade J P, Le Petitcorps Y. In situ Preparation of Titanium BaseComposites Reinforced by TiB Single Crystals Using a Powder MetallurgyTechnique[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9-10):1229-1234.
    [81] Kobayashi M, Funami K, Suzuki S, Ouchi C. Manufacturing Process andMechanical Properties of Fine TiB Dispersed Ti-6Al-4V Alloy CompositesObtained by Reaction Sintering[J]. Materials Science and Engineering A,1998,243(1-2):279-284.
    [82] Ma X Y, Li C R, Zhang W J. The Thermodynamic Assessment of the Ti-Si-NSystem and the Interfacial Reaction Analysis[J]. Journal of Alloys andCompounds,2005,394(1-2):138-147.
    [83] Lemus-Ruiz J, Aguilar-Reyes E A. Mechanical Properties of Silicon NitrideJoints Using a Ti-foil Interlayer[J]. Materials Letters,2004,58(19):2340-2344.
    [84] Ravi Chandran K, Panda K, Sahay S. TiBw-Reinforced Ti Composites:Processing, Properties, Application Prospects, and Research Needs[J]. JOM,2004,56(5):42-48.
    [85] Ma Z Y, Tjong S C, Gen L. In-Situ Ti-TiB Metal-Matrix Composite Prepared bya Reactive Pressing Process[J]. Scripta Materialia,2000,42(4):367-373.
    [86] De Graef M, L fvander J P A, Mccullough C, Levi C G. The Evolution ofMetastable BfBorides in a Ti---Al---B Alloy[J]. Acta Metallurgica et Materialia,1992,40(12):3395-3406.
    [87]张虎,高文理,张二林,金云学,曾松岩. Ti-Al-B合金空心管状初生TiB的生长机制[J].复合材料学报,2001,18(4):50-53.
    [88] Qin Y X, Lv W J, Qin J N, Zhang D. Oxidation Behavior of In Situ SynthesizedTiB/Ti Composite in Air Environment[J]. Materials Transactions,2004,45(12):3241-3246.
    [89] Qin Y X, Lv W J, Zhang D, Qin J N, Ji B. Oxidation of In Situ Synthesized TiCParticle-Reinforced Titanium Matrix Composites[J]. Materials Science andEngineering: A,2005,404(1-2):42-48.
    [90] Qin Y X, Zhang D, Lv W J, Pan W. Oxidation Behavior of In Situ Synthesized(TiB+TiC)/Ti-Al Composites[J]. Materials Letters,2006,60(19):2339-2345.
    [91] Gorsse S, Miracle D B. Mechanical Properties of Ti-6Al-4V/TiB Compositeswith Randomly Oriented and Aligned TiB Reinforcements[J]. Acta Materialia,2003,51(9):2427-2442.
    [92] Fan Z, Miodownik A P, Chandrasekaran L, Ward-Close M. The Young's Moduliof In Situ Ti/TiB Composites Obtained by Rapid Solidification Processing[J].Journal of Materials Science,1994,29(4):1127-1134.
    [93] Tsang H T, Chao C G, Ma C Y. Effects of Volume Fraction of Reinforcement onTensile and Creep Properties of In-Situ TiB/Ti MMC[J]. Scripta Materialia,1997,37(9):1359-1365.
    [94] Saito T, Takamiya H, Furuta T. Thermomechanical Properties of P/M βTitaniumMetal Matrix Composite[J]. Materials Science and Engineering A,1998,243(1-2):273-278.
    [95] Hill D, Banerjee R, Huber D, Tiley J, Fraser H L. Formation of Equiaxed Alphain TiB Reinforced Ti Alloy Composites[J]. Scripta Materialia,2005,52(5):387-392.
    [96] Marray J L, Liao P K, Spear K E. ASM Handbook: Alloy Phase Diagram[M].ASM INTERNATIONAL: Materials Park,OH,1992:285.
    [97] Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagram[M].ASM international Metals park.,1995:2283.
    [98] Kelkar G P, Carim A H. Al Solubility in M6X Compounds in the Ti-Cu-OSystem[J]. Materials Letters,1995,23(4-6):231-235.
    [99]战磊. Ni-Ti-C/B4C-BN体系燃烧合成反应行为与机制[D].长春:吉林大学博士学位论文,2010:107-114.
    [100] Kozlova O, Braccini M, Voytovych R, Eustathopoulos N, Martinetti P, DevismesM F. Brazing Copper to Alumina Using Reactive CuAgTi Alloys[J]. ActaMaterialia,2010,58(4):1252-1260.
    [101] Carim A H, Mohr C H. Brazing of Alumina with Ti4Cu2O and Ti3Cu3OInterlayers[J]. Materials Letters,1997,33(3–4):195-199.
    [102] Kelkar G P, Carim A H. Synthesis, Properties, and Ternary Phase Stability ofM6X Compounds in the Ti-Cu-O System[J]. Journal of the American CeramicSociety,1993,76(7):1815-1820.
    [103] Kelkar G P, Spear K E, Carim A H. Thermodynamic Evaluation ofReaction-Products and Layering in Brazed Alumina Joints [J]. Journal ofMaterials Research,1994,9(9):2244-2250.
    [104] Arroyave R, Eagar T W, Kaufman L. Thermodynamic Assessment of theCu-Ti-Zr System[J]. Journal of Alloys and Compounds,2003,351(1-2):158-170.
    [105]冯海波. SPS原位TiB增强Ti基复合材料的组织结构与TiB生长机制[D].哈尔滨:哈尔滨工业大学博士学位论文,2005:5.
    [106] Allred A L. Electronegativity Values from Thermochemical Data[J]. Journal ofInorganic and Nuclear Chemistry,1961,17(3-4):215-221.
    [107]余毅,薛卫东. α-Al2O3(0001)表面电子结构的理论研究[J].四川大学学报(自然科学版),2004,41(4):825-828.
    [108]吕维洁,覃业霞,张荻,张小农,吴人洁.原位合成增强体TiB层错的透射电镜分析[J].上海交通大学学报,2003,37(2):245-247.
    [109] Meng Q C, Feng H B, Chen G C, Yu R H, Jia D C, Zhou Y. Defects Formationof the In Situ Reaction Synthesized TiB Whiskers[J]. Journal of Crystal Growth,2009,311(6):1612-1615.
    [110] Feng H, Zhou Y, Jia D, Meng Q. Stacking Faults Formation Mechanism of InSitu Synthesized TiB Whiskers[J]. Scripta Materialia,2006,55(8):667-670.
    [111] Feng H B, Meng Q C, Zhou Y, Jia D C. Spark Plasma Sintering of FunctionallyGraded Material in the Ti–TiB2–B System[J]. Materials Science and Engineering:A,2005,397(1-2):92-97.
    [112] Xiong H P, Wan C G, Zhou Z F. Joining of Si3N4to Si3N4UsingRapidly-Solidified CuNiTiB Brazing Filler Foils[J]. Journal of MaterialsProcessing Technology,1998,75(1-3):137-142.
    [113] He P, Yang M X, Lin T S, Jiao Z. Improving the Strength of Brazed Joints withIn Situ Synthesized TiB Whiskers[J]. Journal of Alloys and Compounds,2011,509(29): L289-L292.
    [114] Elrefaey A, Tillmann W. Effect of Brazing Parameters on Microstructure andMechanical Properties of Titanium Joints[J]. Journal of Materials ProcessingTechnology,2009,209(10):4842-4849.
    [115]尚俊玲,李邦盛,郭景杰. Al对原位自生Ti基复合材料中TiB晶须增强相生成的作用[J].稀有金属材料与工程,2003,32(4):258-260.
    [116]孙力玲,董连科,张静华,胡壮麒.定向凝固高温合金晶界形貌的分形描述[J].金属学报,1994,30(5):200-203.
    [117]钟云波,任忠鸣,孙秋霞,江志文,邓康,徐匡迪.电磁场中金属凝固界面前沿颗粒的推斥/吞没行为[J].金属学报,2003,30(12):1269-1275.
    [118] Stefanescu D, Juretzko F, Catalina A, Dhindaw B, Sen S, Curreri P. ParticleEngulfment and Pushing by Solidifying Interfaces: Part II. MicrogravityExperiments and Theoretical Analysis[J]. Metallurgical and MaterialsTransactions A,1998,29(6):1697-1706.
    [119] Juretzko F, Stefanescu D, Dhindaw B, Sen S, Curreri P. Particle Engulfment andPushing by Solidifying Interfaces: Part1. Ground Experiments[J]. Metallurgicaland Materials Transactions A,1998,29(6):1691-1696.
    [120]曾建民,孙仙奇,周开文.颗粒混杂铝合金的流动性[J].特种铸造及有色合金,1999(S1):18-19.
    [121]雷永平,韩丰娟,夏志东,冯吉才,刘会杰.陶瓷/金属钎焊接头残余应力的测量及数值计算[J].中国机械工程,2004,15(9):768-771.
    [122]梅志,顾明元,吴人洁.金属基复合材料残余应力测量的新方法[J].宇航材料工艺,1996(6):38-44.
    [123]卢金斌,徐九华. Ag-Cu-Ti钎焊金刚石的界面结构及热应力分析[J].稀有金属材料与工程,2009,38(4):642-646.
    [124]熊柏青,楚建新,职任涛,肖纪美,陆建栋,王连伟.残余热应力对Si3N4/金属钎焊接头性能的影响[J].中国有色金属学报,1998,8(2):210-213.
    [125] Buhl S, Leinenbach C, Spolenak R, Wegener K. Influence of the BrazingParameters on Microstructure, Residual Stresses and Shear Strength ofDiamond–Metal Joints[J]. Journal of Materials Science,2010,45(16):4358-4368.
    [126] Zhang J X, Chandel R S, Chen Y Z, Seow H P. Effect of Residual Stress on theStrength of an Alumina-Steel Joint by Partial Transient Liquid Phase (PTLP)Brazing[J]. Journal of Materials Processing Technology,2002,122(2-3):220-225.
    [127]秦优琼. C/C复合材料与TC4钎焊接头组织及性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:80.
    [128] Jiang Z H, Lian J S, Yang D Z, Dong S L. An Analytical Study of the Influenceof Thermal Residual Stresses on the Elastic and Yield Behaviors of ShortFiber-Reinforced Metal Matrix Composites[J]. Materials Science andEngineering: A,1998,248(1-2):256-275.
    [129] Wang X L, Hubbard C R, Spooner S, David S A, Rabin B H, Williamson R L.Mapping of the Residual Stress Distribution in a Brazed Zirconia-Iron Joint[J].Materials Science and Engineering A,1996,211(1-2):45-53.
    [130] Li J C M, Sanday S C. Dispersion Toughening[J]. Acta metallurgica,1986,34(3):537-543.
    [131] Ye F, Liu L M, Wang Y J, Zhou Y, Peng B, Meng Q C. Preparation andMechanical Properties of Carbon Nanotube Reinforced Barium AluminosilicateGlass-Ceramic Composites[J]. Scripta Materialia,2006,55(10):911-914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700