用户名: 密码: 验证码:
互穿网络结构铜合金—铁酸镍金属陶瓷的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiFe2O4基金属陶瓷是目前最具工业化应用前景的铝电解惰性阳极材料之一,国内外相继开展了4kA和6kA级铝电解试验,试验发现其导电性能和抗热震性能仍需进一步改善。为改善金属陶瓷惰性阳极的导电性能及抗热震性能,同时又不降低阳极的耐腐蚀性能,本论文系统研究了烧结气氛氧分压和添加金属Ni对Cu与NiFe2O4间润湿性的影响,以及烧结过程中铜合金-铁酸镍金属陶瓷的相反应和烧结行为,在此研究基础上通过优化制备工艺,采用混合粉末烧结与熔渗工艺制备了致密的、具有互穿网络结构的铜合金-铁酸镍金属陶瓷,并研究了材料孔隙度、金属相含量、金属相组成、氧化温度对铜合金-铁酸镍金属陶瓷在空气气氛下氧化行为的影响,以及预氧化处理、电流密度、电解温度对阳极电解腐蚀行为的影响。论文的主要研究成果如下:
     (1)确定了一种可大幅度改善Cu与NiFe2O4间润湿性的方法。通过提高烧结气氛氧分压或向Cu中添加Cu2O可显著改善Cu与NiFe2O4间的润湿性,当Cu中Cu20加入量达7wt%时,1200℃下Cu与NiFe2O4间的润湿角可降至0°,并首次采用无压熔渗工艺制备了致密度达99%、具有互穿网络结构的Cu/NiFe2O4-10NiO金属陶瓷
     (2)明确了NiO与金属相对铜合金-铁酸镍金属陶瓷烧结致密化的作用机制。NiO相在铜合金熔体中存在溶解再析出,从而在液相烧结过程中有利于金属陶瓷的烧结致密化。Cu-Ni金属相中Ni元素的氧化,可促进NiFe2O4相的分解和烧结致密化。
     (3)澄清了金属相中Ni含量升高的原因。NiFe2O4在氮气气氛下脱脂时存在还原现象,生成金属Ni,提高了Fe2+离子浓度。陶瓷相还原生成的金属Ni在烧结过程中被混合加入金属颗粒吞并是引起金属相中Ni含量升高的主要原因。脱脂过程中NiFe2O4相的还原可促进其烧结致密化。
     (4)获得了具有良好导电性和力学性能的铜合金-铁酸镍金属陶瓷。混合粉末烧结工艺制备的40(Cu-50Ni)/NiFe2O4-1ONiO金属陶瓷的抗弯强度达206MPa,断裂韧性达16.1MPa·m1/2,经200℃温差热冲击处理后材料的抗弯强度基本不发生变化,960℃下的电导率达513S/cm。熔渗工艺制备的26Cu/NiFe2O4-10NiO金属陶瓷的力学性能与混合粉末烧结工艺制备的金属含量40wt%的金属陶瓷的相当,具有金属导电特征,其在960℃的电导率达1369S/cm。
     (5)确定了抑制互穿网络结构铜合金-铁酸镍金属陶瓷中金属相快速电化学腐蚀的技术工艺。通过预氧化处理和调控电解温度,可实现金属相的先氧化后溶解腐蚀,避免金属相的快速电化学腐蚀。研究表明对40(Cu-50Ni)/NiFe2O4-10NiO金属陶瓷进行880℃、48h空气预氧化后再进行960℃电解,阳极底部可形成致密的陶瓷层,有利于阻碍电解质的渗透和金属相的电化学腐蚀,从而可获得良好的耐蚀性能。
     本论文的研究成果对金属陶瓷惰性阳极的烧结制备、金属陶瓷与合金导杆的连接,甚至对推动金属陶瓷阳极的工业化应用均具有重要意义。
NiFe2O4based cermets are one of the most promising industrial inert anode materials, which have been carried out4kA and6kA pilot electrolysis. The electrolysis test shown that the electrical conductivity and thermal shock resistance of the cermet anodes need further improving. In order to increase the electrical conductivity and improve the thermal shock resistance of the cermet anodes, while not reducing the corrosion resistance, the effects of oxygen partial pressure and the addition of Ni on the wettability of Cu and NiFe2O4, and the phase reactions and sintering behavior of copper alloy-nickel ferrite cermets during sintering process were firstly studied. Then a dense copper alloy-nickel ferrite cermet with interpenetrating structure was preparated respectively by conventional ceramic process and infiltration through optimizing the sintering condition. The effects of the material porosity, metal phase content, metal phase composition, oxidation temperature on the oxidation behavior of the prepared cermets were studied. Also the influences of pre-oxidation thermal treatment, current density, electrolytic temperature on the corrosion behavior of the cermet anodes with interpenetrating structure were studied. The main results were shown as follow:
     (1) A new method to drastically improve the wettability of Cu and NiFe2O4was developed. It was found that increasing the oxygen partial pressure or adding Cu2O into Cu could improve the wettability of Cu and NiFe2O4. The contact angle decreased to0°at1200℃when Cu2O content was upto7wt%. A Cu/NiFe2O4-10NiO cermet with a relative density of99%and interpenetrating structure was firstly prepared by pressureless infiltration.
     (2) The mechanisms of NiO and the metal phase on the densification of copper alloy-nickel ferrite cermets were clarified. The dissolution precipitation mechanism of NiO was found in copper alloy melt, which was conducive to the sintering densification during liquid sintering process. The oxidation of Ni of Cu-Ni alloy could promote the decomposition and sintering densification of NiFe2O4phase.
     (3) The cause of the increase of Ni content in the metal phase was clarified. The reduction of NiFe2O4was found when binder burnout process was performed in N2, which produced metal Ni and increased the Fe2+content of NiFe2O4. The merging of new formed Ni with the additive Cu-Ni was the main reason that caused the increase of Ni content in the metal phase. The reduction of NiFe2O4during binder burnout process could promate the sintering densification of NiFe2O4.
     (4) A copper alloy-nickel ferrite cermet with good mechanical property and electrical conductivity was prepared. The bending strength and fracture toughness of40(Cu-50Ni)/NiFe2O4-10NiO cermets prepared by conventional ceramic process were206MPa and16.1MPa·m1/2, respectively. The bending strength hardly decreased after Δ200℃thermal treatment. The electrical conductivity of the cermets was about513S/cm at960℃. The mechanical property and electrical conductivity of26Cu/NiFe2O4-10NiO cermet prepared by infiltration were comparable with that of the cermets with40wt%metal phase content prepared by conventional ceramic process.26Cu/NiFe2O4-10NiO cermet has the characteristic of metal conductivity, whose electrical conductivity was about1369S/cm at960℃.
     (5) A technique that could inhibit the fast electrochemical corrosion of metal phase of copper alloy-nickel ferrite cermets with interpenetrating structure was developed. Oxidation of the metal phase before dissolution could be realized by pre-oxidation thermal treatment and controlling the electrolysis temperature, to avoid the fast electrochemical corrosion of the metal phase. The study showed that a dense ceramic layer could be formed on the bottom of40(Cu-50Ni)/NiFe2O4-10NiO cermet anode when electrolysis was carried out at960℃and pre-oxidized at880℃for48h in air, was conducive to impede the penetration of the electrolyte and metal phase electrochemical corrosion, and well corrosion resistance.
     This research is of great significance on the preparation of cermet inert anode, connection of cermet anode and alloy guide bar, even on the promotion of the industrial application of cermet anode.
引文
[1]2011年12月中国原铝产量报告[EB/OL].[2012-07-20]. http://www.alu.cn/ aluMarket/MarketDisplay_70567.html.
    [2]Galasiu I, Galasiu R, Thonstad J. Inert Anodes for Aluminium Electrolysis [M]. Dusseldorf, Germany:Aluinium-Verlag,2007.
    [3]Alcorn T R, Tabereaux A T, Richards N E, et al. Operational results of pilot cell test with cermet "inert" anodes[C]//Das S K. Light Metals 1993. Warrendale, PA:TMS,1993:433-445.
    [4]张刚.铝电解用NiFe2O4-10NiO基金属陶瓷惰性阳极的致密化与强韧化[D].湖南长沙:中南大学冶金科学与工程学院,2007.
    [5]周科朝,李志友,张雷.铝电解金属陶瓷惰性阳极材料[M].长沙:中南大学出版社,2012.
    [6]McMinn C, de Nora V. Special 2004-The international smelting industry-Inert anodes for aluminium production[J]. Aluminium-Dusseldorf,2004,80(3): 135-139.
    [7]Nguyen T, de Nora V. De Nora oxygen evolving Inert Metallic Anode[C]// Galloway T J. Light Metals 2006. Warrendale, PA:TMS,2006:385-390.
    [8]Grjotheim K, Kvande H, Qiu Z X. Aluminum Electrolysis in a 100A Laboratory Cell with inert electrodes [J]. Metall,1988,42(6):587-589.
    [9]Liu Y X, Thonstad J. Oxygen overvoltage on SnO2-based anodes in NaF-AlF3-Al2O3 melts electrocatalytic effects of doping agents [J]. Electrochimica Acta,1983,28(1):113-116.
    [10]Ray S P. Inert electrode compositions. US:4374050[P], Feb 15,1983.
    [11]Chapman V, Welch B J, Skyllas-Kazacos M. Anodic behaviour of oxidised Ni-Fe alloys in cryolite-alumina melts [J]. Electrochimica Acta,2011,56(3): 1227-1238.
    [12]Chapman V, Welch B J, Skyllas-Kazacos M. High temperature oxidation behaviour of Ni-Fe-Co anodes for aluminium electrolysis [J]. Corrosion Science,2011,53(9):2815-2825.
    [13]Yang J H, Hryn J N, Krumdick G K. Aluminum electrolysis tests with inert anodes in KF-AlF3-based electrolytes[C]//Galloway T J. Light Metals 2006. Warrendale, PA:TMS,2006:421-424.
    [14]Yang J H, Hryn J N, Davis B R, et al. New opportunities for aluminum electrolysis with metal anodes in a low temperature electrolyte system[C]// Tabereaux A T. Light Metals 2004. Warrendale, PA:TMS,2004:321-326.
    [15]Duruz J J, de Nora V. Multi-layer non-carbon metal-based anodes for aluminum production cells and method. US:6077415[P], June 20,2000.
    [16]Crottaz O, Haverkamp R G, Yellepeddi R, et al. Development of techniques for measuring the composition of low temperature electrolytes[C]//Anjier J L, Schneider W. Light Metals 2001. Warrendale, PA:TMS,2001:1195-1199.
    [17]Helle S, Pedron M, Assouli B, et al. Structure and high-temperature oxidation behaviour of Cu-Ni-Fe alloys prepared by high-energy ball milling for application as inert anodes in aluminium electrolysis[J]. Corrosion Science, 2010,52(10):3348-3355.
    [18]Helle S, Brodu B, Davis B, et al. Influence of the iron content in Cu-Ni based inert anodes on their corrosion resistance for aluminium electrolysis [J]. Corrosion Science,2011,53(10):3248-3253.
    [19]Simakov D A, Antipov E V, Borzenko M I, et al. Nickel and nickel alloys electrochemistry in cryolite-alumina melts[C]//S(?)rli M. Light Metals 2007. Warrendale, PA:TMS,2007:489-493.
    [20]Hall C M. Process of reducing aluminium by electrolysis. US:400766[P], Apr 2,1889.
    [21]Hryn J N, Pellin M J. A dynamic inert metal anode[C]//Eckert C E. Light Metals 1999. Warrendale, PA:TMS,1999:377-381.
    [22]Glucina M, Hyland M. Laboratory-scale performance of a binary Cu-Al alloy as an anode for aluminium electrowinning[J]. Corrosion Science,2006,48(9): 2457-2469.
    [23]Beck T R. Production of aluminum with low temperature fluoride melts[C] //Mannweiler U. Light Metals 1994. Warrendale, Pa:TMS,1994:417-423.
    [24]Gallino I, Kassner M E, Busch R. Oxidation and corrosion of highly alloyed Cu-Fe-Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions[J]. Corrosion Science,2012,63:293-303.
    [25]Helle S, Davis B, Guay D, et al. Electrolytic Production of Aluminum Using Mechanically Alloyed Cu-Al-Ni-Fe-Based Materials as Inert Anodes.[J]. Journal of the Electrochemical Society,2010,157(11):173-179.
    [26]Helle S, Brodu B, Davis B, et al. Ball-Milled Cu-Al based material as inert anode for aluminum production in KF-AIF3 low-temperature electrolyte[C] //Johnson J A. Light Metals 2010. Warrendale, PA:TMS,2010:935-938.
    [27]Cassayre L, Chamelot P, Arurault L, et al. Electrochemical oxidation of binary copper-nickel alloys in cryolite melts[J]. Corrosion Science,2007,49(9): 3610-3625.
    [28]Kovrov V A, Khramov A P, Shurov N I, et al. Metal anodes oxidation rate forecasted by results of electrolysis[J]. Russian Journal of Electrochemistry, 2010,46(6):665-670.
    [29]Lu J, Xia Z. The corrosion performance of a binary Cu-Ni alloy used as an anode for aluminum electrolysis [J]. Applied Mechanics and Materials,2011, 55-57:7-10.
    [30]Xu J L, Shi Z N, Xian Q Z. Corrosion behavior of Cu-Ni-Ag-Al alloy anodes in aluminium electrolysis[J]. Transactions of Nonferrous Metals Society of China, 2004,14(2):397-400.
    [31]丁海洋,卢世刚,阚素荣,等.低温体系中铝电解用Cu-Al合金惰性阳极的研究[J].功能材料,2009,40(增刊):547-549.
    [32]石忠宁,徐君莉,邱竹贤,等.Cu-Ni-Al金属阳极抗氧化耐腐蚀性能研究[J].轻金属,2003(6):22-24.
    [33]石忠宁,徐君莉,高炳亮,等.Cu-Ni-Al'隋性金属阳极铝电解应用测试[J].东北大学学报(自然科学版),2003,24(4):361-364.
    [34]Sekhar J A, Liu J J, Duruz J J. Stable anodes for aluminium production cells. US:551008[P], Apr 23,1996,
    [35]Sekhar J A, Liu J, Deng H, et al. Graded non-consumable anode materials [C]//Welch B. Light Metals 1998. Warrendale, PA:TMS,1998:597-604.
    [36]de Nora V. VERONICA and TINOR 2000 New Technologies for Aluminum Production[J]. The Electrochemical Society Interface,2002,11(4):20-24.
    [37]de Nora V, Nguyen T, von Kaenel R, et al. Semi-vertical de Nora inert metallic anode[C]//S(?)rli M. Light Metals 2007. Warrendale, PA:TMS,2007:501-505.
    [38]Ma X X, He Y D, Wang D R. Inert anode composed of Ni-Cr alloy substrate, intermediate oxide film and a-Al2O3/Au (Au-Pt, Au-Pd, Au-Rh) surface composite coating for aluminium electrolysis[J]. Corrosion Science,2011, 53(3):1009-1017.
    [39]石忠宁,徐君莉,邱竹贤,等.Ni-Fe-Cu'隋性金属阳极的抗氧化和耐蚀性能[J].中国有色金属学报,2004,14(4):591-595.
    [40]丁海洋,卢世刚,阚素荣,等.低温体系中铝电解用NiFe合金阳极的研究 [J].稀有金属,2011,35(1):72-77.
    [41]Weyand J D, Ray S P, Baker F W, et al. Inert anode for aluminium smelting: Final report for the period 29 september 1980-30 september 1985[R], DOE/CS/40158-20. Washington D. C:Aluminum Company of America,1986.
    [42]Gregg J S, Frederick M S, Vaccaro A J, et al. Pilot cell demonstration of cerium oxide coated anodes[C]//Das S K. Light Metals 1993. Warrendale, PA: TMS,1993:465-473.
    [43]Gregg J S, Frederick M S, King H L, et al. Testing of cerium oxide coated cermet anodes in a laboratory cell[C]//Das S K. Light Metals 1993. Warrendale, PA:TMS,1993:455-464.
    [44]张刚.Cu-Ni-NiFe2O4金属陶瓷的制备与性能研究[D].湖南长沙:中南大学材料科学与工程学院,2004.
    [45]田忠良.铝电解NiFe2O4基金属陶瓷惰性阳极及其相关工程技术研究[D].湖南长沙:中南大学冶金科学与工程学院,2005.
    [46]张雷.铝电解用NiFe2O4/M型金属陶瓷惰性阳极材料制备与性能研究[D].湖南长沙:中南大学粉末冶金研究院,2006.
    [47]何汉兵.NiFe2O4-10NiO基陶瓷的致密化、导电和腐蚀性能研究[D].湖南长沙:中南大学粉末冶金研究院,2009.
    [48]王山峰.Cu-Ni-(10NiO-NiFe2O4)金属陶瓷的制备与性能研究[D].湖南长沙:中南大学粉末冶金研究院,2010.
    [49]刘宝刚.NiFe2O4基陶瓷的导电和熔盐腐蚀行为研究[D].湖南长沙:中南大学粉末冶金研究院,2011.
    [50]曹卓远.喷雾干燥NiFe2O4-10NiO/xM型金属陶瓷粉末的制备及烧结特性研究[D].湖南长沙:中南大学粉末冶金研究院,2010.
    [51]Tian Z L, Lai Y Q, Li Z Y, et al. Cup-shaped functionally gradient NiFe2O4-based cermet inert anodes for aluminum reduction[J]. JOM,2009,61(5):34-38.
    [52]杨宝刚.金属陶瓷基惰性阳极材料与铝基碱土金属母合金的研制[D].辽宁沈阳:东北大学材料与冶金学院,2000.
    [53]刘宜汉.镍铁尖晶石基惰性阳极制品的研究[D].辽宁沈阳:东北大学材料与冶金学院,2004.
    [54]徐君莉.惰性阳极在低温铝电解质中的应用研究[D].辽宁沈阳:东北大学材料与冶金学院,2004.
    [55]席锦会.镍铁尖晶石基惰性阳极材料的合成工艺研究[D].辽宁沈阳:东北大学材料与冶金学院,2004.
    [56]石忠宁.铝电解惰性金属阳极和金属-氧化铝阳极的研制与测试[D].辽宁沈阳:东北大学材料与冶金学院,2004.
    [57]赵群.铝电解金属陶瓷阳极的制备与性能测试[D].辽宁沈阳:东北大学材料冶金学院,2003.
    [58]张淑婷.纤维增强NiFe2O4基阳极材料的制备及性能研究[D].辽宁沈阳:东北大学材料与冶金学院,2006.
    [59]Ray S P, Rapp R A. Composition suitable for inert electrode. US:4455211 [P], June 19,1984.
    [60]周涛,周科朝,李志友.NiFe2O4/NiFeCuAlSn金属陶瓷的导电性能[J].粉末冶金材料科学与工程,2006,11(3):168-171.
    [61]Lorentsen O. Behaviour of nickel, iron and copper by application of inert anodes in aluminium production[D]. Norway:Norwegian University of Science and Technology,2000.
    [62]Zhang Y S, Wu X X, Rapp R A. Modeling of the solubility of NiO/NiAl2O4 and FeO/FeAl2O4 in cryolite melts[C]//Crepeau P N. Light Metals 2003. Warrendale, PA:TMS,2003:415-421.
    [63]张松斌,赵群.镍铝尖晶石基铝用惰性阳极导电性的初步研究[J].现代技术陶瓷,2003,24(2):7-9.
    [64]田忠良,赖延清,李劫,等.NiFe2O4基金属陶瓷的电导率[J].粉末冶金材料科学与工程,2005,10(2):110-115.
    [65]王兆文,罗涛,高炳亮,等.NiAl2O4基惰性阳极的制备及电解腐蚀研究[J].矿冶工程,2004,24(5):61-63,66.
    [66]Wang Z W, Hu X W, Luo T, et al. Study on spinel-based inert anode for aluminium electrolysis[J]. Journal of Guangdong Non-Ferrous Metals,2005, 15(2-3):93-101.
    [67]Wang Z W, Luo T, Gao B L, et al. Fabrication of Al-Ni-Cu-0 cermet inert anodes and electrolysis testing[C]//Kvande H. Light Metals 2005. Warrendale, PA:TMS,2005:535-538.
    [68]韩永生.铝电解用惰性阳极和多孔陶瓷的制备与性能研究[D].清华大学材料科学与工程,2003.
    [69]张丽鹏,于先进,董云会,等.Mn02掺杂金属陶瓷惰性阳极的制备及性能研究[J].高等学校化学学报,2008,29(1):154-158.
    [70]张丽鹏,于先进,董云会,等.Sm2O3掺杂金属陶瓷惰性阳极的制备及性能研究[J].中国稀土学报,2007,25(2):190-194.
    [71]Shi Z N, Xu J L, Qiu Z X, et al.300 A bench-scale aluminum electrolysis cell with Fe-Ni-Al2O3 composite anode[C]//Kvande H. Light Metals 2005. Warrendale, PA:TMS,2005:1219-1223.
    [72]Cao X Z, Wang Z W, Shi Z N, et al. Study on the conductivity of Fe-Ni-Al2O3 cermet inert anode[C]//S(?)rli M. Light Metals 2007. Warrendale, PA:TMS, 2007:937-939.
    [73]Lorentsen O A, Jentoftsen T E, Dewing E W, et al. The Solubility of Some Transition Metal Oxides in Cryolite-Alumina Melts:Part Ⅲ. Solubility of CuO and Cu2O[J]. Metallurgical and Materials Transactions B,2007,38(5): 833-839.
    [74]Tarcy G P, Gavasto T M, Ray S P. Electrolytic production of metals using a resistant anode. US:4620905[P], Nov 4,1986.
    [75]谢宁,邵文柱,甄良,等.Cu2O-CuAlO2-Cu基金属陶瓷导电性能研究[J].陶瓷科学与艺术,2004,38(2):9-14.
    [76]邵文柱,宋磊,崔玉胜,等.Cu2O-Cu系金属陶瓷制备工艺研究[J].材料科学与工艺,1999,7(1):38-42,47.
    [77]Feng L C, Shao W Z, Zhen L, et al. Cu2O/Cu cermet as a candidate inert anode for Al production[J]. International Journal of Applied Ceramic Technology, 2007,4(5):453-462.
    [78]Xie N, Shao W Z, Zhen L, et al. Electrical conductivity of inhomogeneous Cu2O-10CuAlO2-xCu cermets[J]. Journal of the American Ceramic Society, 2005,88(9):2589-2593.
    [79]Shao W Z, Xie N, Li Y C, et al. Electric conductivity and percolation threshold research of Cu-Cu2O cermet[J]. Transactions of Nonferrous Metals Society of China,2005,15(special 2):297-301.
    [80]邵文柱,沙德生,伊万诺夫V.V.,等.氧化亚铜基金属陶瓷导电性的试验研究[J].材料科学与工艺,1999,7(2):109-112.
    [81]Weyand J D. Manufacturing processes used for the production of inert anodes [C]//Miller R E. Light Metals 1986. Warrendale, PA:TMS,1986:321-339.
    [82]秦庆伟.铝电解惰性阳极及腐蚀率预测研究[D].湖南长沙:中南大学冶金科学与工程学院,2004.
    [83]Qin Q W, Lai Y Q, Xiao J, et al. Preliminary testing of NiFe2O4-NiO as ceramic matrix of cermet inert anode in aluminum electrolysis [J]. Transactions of Nonferrous Metals Society of China,2003,13(5):1208-1212.
    [84]Li J, Lai Y Q, Zhou K C, et al. Preparation and preliminary testing of cermet inert anode for aluminum electrolysis [J]. Transactions of Nonferrous Metals Society of China,2003,13(3):663-670.
    [85]段华南.Cu-Ni-NiO-NiFe2O4金属陶瓷在冰晶石氧化铝熔体中的电解腐蚀行为研究[D].湖南长沙:中南大学冶金科学与工程学院,2005.
    [86]Olsen E, Thonstad J. Nickel ferrite as inert anodes in aluminium electrolysis: Part I-Material fabrication and preliminary testing[J]. Journal of Applied Electrochemistry,1999,29(3):293-299.
    [87]Olsen E, Thonstad J. Nickel ferrite as inert anodes in aluminium electrolysis: Part II-Material performance and long-term testing[J]. Journal of Applied Electrochemistry,1999,29(3):301-311.
    [88]Wang C F, Li G X, Qu S L, et al. Influence of Adding Y2O3 on the Structure of the Cu-Containing Cermet[J]. Journal of Rare Earths,1993,11(3):191-195.
    [89]王传福,李国勋,屈树岭,等.添加Y203对含铜金属陶瓷结构的影响[J].中国稀土学报,1993,11(2):127-130.
    [90]Wang C F, Li G X. Influence of Metal Additives on the Electrical Conductivities of the Oxide Ceramics as an Electrode Material [J]. Rare Metals, 1993,(2):126-130.
    [91]谭占秋.NiFe2O4基金属陶瓷材料的稀土掺杂研究[D].湖南长沙:中南大学粉末冶金研究院,2009.
    [92]甘雪萍,李志友,谭占秋,等.Yb2O3掺杂对10Cu-(10NiO-NiFe2O4)金属陶瓷烧结性能的影响[C]:第十二届全国青年材料科学技术研讨会,中国南京,2009.
    [93]陶玉强,刘建元,李志友,等.Yb2O3或Y203掺杂Cu-(NiFe2O4-10NiO)'隋性阳极的导电性和耐蚀性[J].中国有色金属学报,2011,21(5):1137-1144.
    [94]Gan X P, Li Z Y, Tan Z Q, et al. Influence of Yb2O3 addition on microstructure and corrosion resistance of 10Cu/(10NiO-NiFe2O4) cermets[J]. Tansaction of Nonferrous metal society of China,2009,19(6):1514-1519.
    [95]王昊,周科朝,李志友,等.NiFe2O4-NiO复合陶瓷的熔盐腐蚀行为[J].粉末冶金材料科学与工程,2012,17(2):263-269.
    [96]赖延清,张勇,张刚,等.CaO掺杂对10NiO-NiFe2O4复合陶瓷烧结致密化的影响[J].中国有色金属学报,2006,16(8):1355-1360.
    [97]赖延清,张刚,张勇,等.CaO掺杂10NiO-NiFe2O4复合陶瓷的导电性能[J].中国有色金属学报,2006,16(9):1608-1614.
    [98]Li J, Zhang G, Lai Y Q, et al. Densification and sintering dynamics of 10NiO-NiFe2O4 composites doped with CaO[J]. J. Cent. South Univ. Technol., 2007,14(5):629-632.
    [99]田忠良,赖延清,张刚,等.CaO掺杂Cu/(NiFe2O4-10NiO)金属陶瓷致密化及力学性能[J].矿产保护与利用,2010(4):38-42.
    [100]田忠良,赖延清,张刚,等.CaO掺杂Cu/(NiFe2O4-10NiO)金属陶瓷导电性能研究[J].矿产保护与利用,2010(1):45-48.
    [101]张勇.10NiO-NiFe2O4基金属陶瓷的低温烧结致密化[D].湖南长沙:中南大学冶金科学与工程学院,2007.
    [102]He H B, Xiao H N, Zhou K C. Effect of additive BaO on corrosion resistance of xCu/(10NiO-NiFe2O4) cermet inert anodes for aluminum electrolysis[J]. Transactions of Nonferrous Metals Society of China,2011,21(1):102-108.
    [103]He H B, Zhou K C, Li Z Y, et al. Effect of BaO addition on electric conductivity of xCu/10NiO-NiFe2O4 cermets [J]. Transactions of Nonferrous Metals Society of China,2008,18(5):1134-1138.
    [104]何汉兵,黄伯云,李志友,等.BaO掺杂对10NiO-NiFe2O4复合陶瓷烧结致密化的影响[J].中国有色金属学报,2008,18(5):852-855.
    [105]吴海明.CoO掺杂NiFe2O4基金属陶瓷的性能研究[D].湖南长沙:中南大学粉末冶金研究院,2010.
    [106]吴海明,李志友,甘雪萍,等.CoO掺杂对15(20Ni-Cu)/(NiO-NiFe2O4)金属陶瓷导电性能的影响[J].粉末冶金材料科学与工程,2011,16(2):206-211.
    [107]Xi J H, Yao G C, Liu Y H. Effect of additive V2O5 on sintering and corrosion rate of cermet inert anodes in aluminium electrolysis[C]//Galloway T J. Light Metals 2006. Warrendale, PA:TMS,2005:479-483.
    [108]席锦会,姚广春,刘宜汉,等.添加剂对Ag/NiFe2O4金属陶瓷惰性阳极性能的影响[J].功能材料,2006,37(2):216-221.
    [109]席锦会,姚广春,刘宜汉,等.五氧化二钒对铁酸镍基金属陶瓷惰性阳极导电行为的影响[J].硅酸盐学报,2006(01).
    [110]田忠良,赖延清,张刚,等.铝电解用NiFe2O4-Cu金属陶瓷惰性阳极的制备[J].中国有色金属学报,2003,13(6):1540-1545.
    [111]赖延清,张刚,李劫,等.金属含量对Cu-Ni-NiFe2O4金属陶瓷导电性能的影响[J].中南大学学报(自然科学版),2004,35(6):880-884.
    [112]张淑婷,姚广春,刘宜汉,等.常、热压烧结NiFe2O4/Ag金属陶瓷性能比 较[J].功能材料,2005,36(3):371-373.
    [113]Zhang L, Li Z Y, Zhou K C, et al. Sintering of the NiFe2O4-10NiO/xNi Cermet[J]. J. Cent. South Univ. Technol.,2006,13(4):332-336.
    [114]Lai Y Q, Li X Z, Li J, et al. Effect of metallic phase species on the corrosion resistance of 17M-(10NiO-NiFe2O4) cermet inert anode of aluminum electrolysis[J]. J. Cent. South Univ. Technol.,2006,13(3):214-218.
    [115]Li J, Zhang G, Ye S L, et al. Effect of metallic content on mechanical property of Ni-(10NiO-NiFe2O4) cermets[J]. J. Cent. South Univ. Technol.,2006, 13(4):347-352.
    [116]席锦会,姚广春,刘宜汉,等.Ag含量对NiFe2O4基金属陶瓷惰性阳极性能的影响[J].功能材料,2006,37(6):880-882.
    [117]李枝林,李志友,张雷,等.17(xNi-Cu)/(NiFe2O4-1 ONiO)金属陶瓷的制备与性能[J].粉末冶金材料科学与工程,2007,12(3):187-192.
    [118]李枝林.金属相对(NiFe2O4+10NiO)基金属陶瓷的影响[D].湖南长沙:中南大学粉末冶金研究院,2007.
    [119]Zhang G, Li J, Lai Y Q, et al. Effect of metallic phase content on mechanical properties of (85Cu-15Ni)/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis[J]. Transactions of Nonferrous Metals Society of China,2007, 17(5):1063-1068.
    [120]李新征.xM/(10NiO-NiFe2O4)金属陶瓷的烧结性能、导电性能与耐腐蚀性能研究[D].湖南长沙:中南大学冶金科学与工程学院,2006.
    [121]Tian Z L, Lai Y Q, Li J, et al. Effect of Ni content on corrosion behavior of Ni/(10NiO-90NiFe2O4) cermet inert anode[J]. Transactions of Nonferrous Metals Society Of China,2008,18(2):361-365.
    [122]李宇春,田忠良,李志友,等.粉浆浇注法制备较大尺寸金属陶瓷材料的试验研究[J].粉末冶金材料科学与工程,2003,8(1):75-79.
    [123]Lai Y Q, Zhang Y, Tian Z L, et al. Effect of adding methods of metallic phase on microstructure and thermal shock resistance of Ni/(90NiFe2O4-10NiO) cermets[J]. Transactions of Nonferrous Metals Society of China,2007,17(4): 681-685.
    [124]孙小刚.Ni-NiFe2O4-NiO金属陶瓷惰性阳极的致密化及力学性能研究[D].湖南长沙:中南大学冶金科学与工程学院,2005.
    [125]Li J, Zhang G, Lai Y Q, et al. Preparation and properties of 4.25Cu-0.75Ni/ NiFe2O4 cermet[J]. J. Cent. South Univ. Technol.,2005,12(3):284-289.
    [126]杨建红,王化章,刘业翔,等.铝电解用NiO-NiFe2O4基金属陶瓷的制备和性能研究[J].中南矿冶学院学报,1993,24(3):326-331.
    [127]王山峰,甘雪萍,周科朝,等.金属颗粒初始状态对10NiO-NiFe2O4基金属陶瓷烧结及导电性能的影响[J].粉末冶金材料科学与工程,2011,16(2):296-302.
    [128]刘恺.NiFe2O4基金属陶瓷的烧结气氛及其变气氛烧结制备技术研究[D].湖南长沙:中南大学冶金科学与工程学院,2010.
    [129]Zou Z, Wei C J, Tian Z L, et al. Effect of Sintering Atmosphere on Phase Composition and Mechanical Property of 5Cu/(10NiO-NiFe2O4) Cermet Anodes for Aluminum Electrolysis[C]//Lindsay S J. Light Metals 2011. Warrendale, PA:TMS,2011:1135-1139.
    [130]Chen D, Zou Z, Tian Z L, et al. Effect of sintering atmosphere on phase composition and mechanical properties of 5Ni-10NiO-NiFe2O4[J]. Trans. Nonferrous Met. Soc. China,2012,22(1):124-128.
    [131]张凯.变气氛连续烧结法制备NiFe2O4基功能梯度金属陶瓷惰性阳极[D].湖南长沙:中南大学冶金科学与工程学院,2008.
    [132]秦庆伟,张刚,赖延清,等.烧结工艺对铝电解NiFe2O4-Cu金属陶瓷阳极性能的影响[J].武汉科技大学学报(自然科学版),2006,29(5):436-439.
    [133]Rhamdhani M A, Hayes P C, Jak E. Subsolidus Phase Equilibria of the Fe-Ni-O System[J]. Metallurgical and Materials Transactions B,2008,39(5): 690-701.
    [134]Condolf C, Gabriel A, Pisch A, et al. Thermodynamic Sintering and Microstructure of Nickel Ferrite Based Material[J]. Advances in Science and Technology,2006,45:45-54.
    [135]Liu B G, Zhou K C, Li Z Y, et al. Microstructure and DC electrical conductivity of spinel nickel ferrite sintered in air and nitrogen atmospheres[J]. Materials Research Bulletin,2010,45(11):1668-1671.
    [136]McLachlan D S, Blaszkiewicz M, Newnham R E. Electrical Resistivity of Composites [J]. Journal of the American Ceramic Society,1990,73(8): 2187-2203.
    [137]Batoo K M, Kumar S, Lee C G. Finite size effect and influence of temperature on electrical properties of nanocrystalline Ni-Cd ferrites[J]. Current Applied Physics,2009,9(5):1072-1078.
    [138]Reddy P V, Rao T S. A Study of the Semiconducting Properties of Mixed Mn-Mg Ferrites[J]. Physica Status Solidi (a),1983,77(1):K63-K67.
    [139]Devan R S, Kolekar Y D, Chougule B K. Effect of cobalt substitution on the properties of nickel-copper ferrite[J]. Journal of Physics:Condensed Matter, 2006,18:9809.
    [140]Liu B G, Zhang L, Zhou K C, et al. Electrical conductivity and molten salt corrosion behavior of spinel nickel ferrite[J]. Solid State Sciences,2011,13(8): 1483-1487.
    [141]王昊.Nb2O5掺杂NiFe2O4基金属陶瓷导电和熔盐腐蚀行为的研究[D].长沙:中南大学粉末冶金研究院,2012.
    [142]赖延清,田忠良,秦庆伟,等.复合氧化物陶瓷在Na3AlF6-Al203熔体中的溶解性[J].中南工业大学学报,2003,34(3):245-248.
    [143]Keller R, Rolseth S, Thonstad J. Mass transport considerations for the development of oxygen-evolving anodes in aluminum electrolysis[J]. Electrochimica Acta,1997,86(7):723-730.
    [144]Thonstad J, Olsen E. Cell operation and metal purity challenges for the use of inert anodes[J]. JOM,2001,53(5):36-38.
    [145]Diep Q B, Dewing F W, Sterten A. The solubility of Fe2O3 in cryolite-alumina melts[J]. Metallurgical and Materials Transactions B,2002,33(1):140-142.
    [146]Welch B J. Inert anodes-The status of the materials science, the opportunities they present and the challenges that need resolving before commercial implementation[C]//Bearne G. Light Metals 2009. Warrendale, PA:TMS,2009: 971-978.
    [147]Johansen H G, Thonstad J, Sterten A. Iron as contaminant in a VS Soderberg cell[C]//Higbie K B. Light Metals 1977. Warrendale, PA:TMS,1977:253-261.
    [148]DeYoung D H. Solubilities of oxides for inert anodes in cryolite-based melts[C] //Miller R E. Light Metals 1986. Warrendale, PA:TMS,1986:299-307.
    [149]秦庆伟,赵恒勘,赖延清,等.NiFe2O4陶瓷的制备及其在Na3AlF6-Al203中的溶解性研究[J].矿产保护与利用,2003(3):39-43.
    [150]Wang H, Thonstad J. The behaviour of inert anodes as a function of some operating parameters[C]//Boxall L G. Light Metals 1989. Warrendale, PA: TMS,1989.
    [151]赖延清,秦庆伟,段华南,等.NiFe2O4基金属陶瓷材料的制备及其耐腐蚀性能[J].中南大学学报(自然科学版),2004,35(6):885-890.
    [152]Lai Y Q, Tian Z L, Li J, et al. Results from 100 h electrolysis testing of based cermet as inert anode in aluminum reduction[J]. Transactions of Nonferrous Metals Society of China,2006,16(4):970-974.
    [153]Chin P, Sides P J, Keller R. The transfer of nickel, iron, and copper from hall cell melts to molten aluminum[J]. Canadian Metallurgical Quarterly,1996, 5(12):855-863.
    [154]Chin P C. The behavior of impurity species in Hall-Heroult aluminum cells[D]. Pittsburgh, PA, USA:Carnegie Mellon University,1992.
    [155]Tarcy G P. Corrosion and passivation of cermet inert anodes in cryolite-type electrolytes [C]//Miller R E. Light Metals 1986. Warrendale, PA:TMS,1986: 309-320.
    [156]Windisch C F, Marschman S C. Electrochemical polarization studies on Cu and Cu-containing cermet anodes for the aluminum industry[C]//Miller R E. Light Metals 1986. Warrendale, PA:TMS,1986.
    [157]Lorentsen O A, Thonstad J. Electrolysis and post-testing of inert cermet anodes[C]//Schneider W. Light Metals 2002. Warrendale, PA:TMS,2002: 457-462.
    [158]Antipov E V, Borzenko A G, Denisov V M, et al. Electrochemical behavior of metals and binary alloys in cryolite-alumina melts[C]//Galloway T J. Light Metals 2006. Warrendale, PA:TMS,2006:403-408.
    [159]Levesque P, Gerlach L. The Metallography of Ferrites[J]. Journal of the American Ceramic Society,1956,39(3):119-120.
    [160]束德林.金属力学性能[M].第2版.北京:机械工业出版社,1999.
    [161]陈孜.NiFe2O4-Cu基金属陶瓷与金属的磷酸盐粘接特性研究[D].湖南长沙:中南大学粉末冶金研究院,2010.
    [162]Liu J Y, Li Z Y, Tao Y Q, et al. Phase evolution of 17(Cu-10Ni)-(NiFe2O4-10NiO) cermet inert anode during aluminum electrolysis[J]. Transactions of Nonferrous Metals Society of China,2011,21(3):566-572.
    [163]黄培云.粉末冶金原理[M].第2版.北京:冶金工业出版社,1997.
    [164]刘开琪,徐强,张会军.金属陶瓷的制备与应用[M].北京:冶金工业出版社,2008.
    [165]梁英教,车荫昌主编.无机物热力学数据手册[M].辽宁:东北大学出版社,1993.
    [166]Travitzky N A, Shlayen A. Microstructure and mechanical properties of Al2O3/CU-O composites fabricated by pressureless infiltration technique [J]. Materials Science and Engineering A,1998,244(2):154-160.
    [167]Diemer M, Neubrand A, Trumble K P, et al. Influence of Oxygen Partial Pressure and Oxygen Content on the Wettability in the Copper-Oxygen-Alumina System[J]. Journal of the American Ceramic Society,1999,82(10): 2825-2832.
    [168]Saiz E, Cannon R M, Tomsia A P. High-temperature wetting and the work of adhesion in metal/oxide systems[J]. Annual Review of Materials Research, 2008,38:197-226.
    [169]ASM Handbook:Alloy Phase Diagrams, Vol.3[M]. London:ASM Publishing, 1992.
    [170]Kulkarni A D, Johnson R E. Thermodynamic studies of liquid copper alloys by electromotive force method:Part II. The Cu-Ni-O and Cu-Ni systems[J]. Metallurgical and Materials Transactions B,1973,4(7):1723-1727.
    [171]Kulkarni A D. The thermodynamic studies of liquid copper alloys by electromotive force method:Part Ⅰ. The Cu-O, Cu-Fe-O, and Cu-Fe systems[J]. Metallurgical and Materials Transactions B,1973,4(7):1713-1721.
    [172]Rioult F, le Pijolat M, Valdivieso F, et al. High-temperature oxidation of a Cu-Ni based cermet:Kinetic and microstructural study[J]. Journal of the American Ceramic Society,2006,89(3):996-1005.
    [173]Zhang J L, Shi J X, Gong M L. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process[J]. Journal of Solid State Chemistry,2009,182(8):2135-2140.
    [174]Lima Jr E, Drago V, Fichtner P F P, et al. Tetrataenite and other Fe-Ni equilibrium phases produced by reduction of nanocrystalline NiFe2O4[J]. Solid State Communications,2003,128(9/10):345-350.
    [175]Lilova K I, Shih K, Pao C W, et al. Thermodynamics of NiAl2O4-NiFe2O4 Spinel Solid Solutions[J]. Journal of the American Ceramic Society,2012, 95(1):423-430.
    [176]Zhang J L, Shi J X, Gong M L. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process[J]. Journal of Solid State Chemistry,2009,182(8):2135-2140.
    [177]Li F, Liu X F, Yang Q Z, et al. Synthesis and characterization of Ni1-xZnxFe2O4 spinel ferrites from tailored layered double hydroxide precursors[J]. Materials Research Bulletin,2005,40(8):1244-1255.
    [178]Srinivasan M P, Bera S, Narasimhan S V. Preparation and Characterization of Ni-Ferrite Coating on Carbon Steel Coupons[J]. J. Mater. Sci. Technol,1999, 15(5):473-477.
    [179]Shie J L, Chen Y H, Chang C Y, et al. Thermal Pyrolysis of Poly(vinyl alcohol) and Its Major Products[J]. Energy Fuels,2002,16(1):109-118.
    [180]Schneider F, Schmalzried H. Thermodynamic Investigation of the System Ni-Fe-O[J]. Zeitschrift Fur Physikalische Chemie Neue Folge,1990,166(8): 1-18.
    [181]Ostyn K M, Carter C B, Koehne M, et al. Internal Reactions in Oxide Solid Solutions[J]. Journal of the American Ceramic Society,1984,67(10):679-685.
    [182]Paladino A E. Phase Equilibria in the Ferrite Region of the System Fe-Ni-O[J]. Journal of the American Ceramic Society,1959,42(4):168-175.
    [183]Corso S, Tailhades P, Pasquet I, et al. Preparation conditions of pure and stoichiometric NixFe3-xO4 bulk ceramics[J]. Solid State Sciences,2004,6(8): 791-798.
    [184]Kim H, Lee J, Kim J. Densification Behaviors of Fine-Alumina and Coarse-Alumina Compacts during Liquid-Phase Sintering with the Addition of Talc [J]. Journal of the American Ceramic Society,2000,83(12):3128-3134.
    [185]Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles [J]. International Materials Reviews,2008,53:326-352.
    [186]Schicker S, Erny T, Garcia D E, et al. Microstructure and mechanical properties of Al-assisted Sintered Fe/Al2O3 Cermets[J]. Journal of the European Ceramic Society,1999,19(13-14):2455-2463.
    [187]Birks N, Meier G H, Pettit F S. Introduction to the High-temperature Oxidation of Metals[M].2nd Edition. Cambridge:Cambridge Univ Pr,2006.
    [188]Haugsrud R. High-temperature oxidation of Cu-10 wt% Ni and Cu-15 wt% Ni at 900℃-1050℃ [J]. Corrosion Science,2000,42(2):383-399.
    [189]何汉兵,刘锋,宋云峰,等.铝电解用NiFe2O4-10NiO基陶瓷铁元素优先腐蚀研究[J].功能材料,2012,43(10):1239-1243.
    [190]程迎军.铝电解槽阳极—熔体电热场及惰性阳极热应力的计算机仿真与优化[D].中南大学,2003.
    [191]Kovrov V A, Khramov A P, Zaikov Y P, et al. Studies on the oxidation rate of metallic inert anodes by measuring the oxygen evolved in low-temperature aluminium electrolysis[J]. Journal of Applied Electrochemistry,2011,41(11): 1301-1309.
    [192]王家伟,赖延清,李劫,等.惰性阳极工业化实现的途径之一——低温铝电解[J].有色矿冶,2005,21(4):28-32.
    [193]王家伟.Na3AlF6-K3AlF6-AlF3体系的初晶温度、Al2O3溶解能力及NiFe2O4基惰性阳极低温电解腐蚀研究[D].湖南长沙:中南大学冶金科学与工程学院,2008.
    [194]Grjotheim K, Kvande H. Physico-chemical properties of low-melting baths in aluminium electrolysis[J]. Metall,1985,39(6):510-513.
    [195]Grjotheim K, Kvande H, Welch B J. Low-melting baths in aluminium electrolysis[C]//Miller R E. Light Metals 1986. Warrendale, PA:TMS,1986: 417-423.
    [196]刘业翔,李劫,等.现代铝电解[M].北京:冶金工业出版社,2008.
    [197]卢惠民,方克明,洪彦若,等.惰性TiB2阴极在低温铝电解中的应用[J].矿冶,1999,8(1):50-53.
    [198]李海涛.铝电解中阳极气体析出行为的研究[D].辽宁沈阳:东北大学材料与冶金学院,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700