用户名: 密码: 验证码:
金柑抗冻性及其抗冻DNA结合蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA结合蛋白是指能与单链的或双链的DNA的特异性的或非特异性的序列结合的蛋白质,包括组蛋白、转录因子、DNA聚合酶、RNA聚合酶、’单链结合蛋白、解链酶、连接酶、限制性内切酶以及端粒酶等。DNA结合蛋白结合到DNA的状况改变会导致染色体发生一系列的变化,这种变化在DNA复制、重组、转录、链裂解等过程中都起到关键的作用。
     冻害是农业气象灾害的一种。冻害是农业气象灾害的一种,常发生的有越冬作物冻害、果树冻害和经济林木冻害等多种形式。冻害对相叶橘生产威胁很大,如美国的柑橘生产和中国的柑橘生产常因冻害而遭受巨大损失。金柑是一种重要的常绿的柑橘栽培品种,具有很好的抗寒能力及对某些病虫的抗性,是筛选抗寒基因的重要基因库,以及研究植物抗寒机制的良好试材。
     本项目以抗寒能力显著的金柑为主要试验材料建立抗冻实验模型,通过富集、纯化DNA结合蛋白,再应用双向电泳、质谱等技术系统分析金柑响应低温的DNA结合蛋白,探讨金柑的抗冻过程的转录调控机理。取得研究结果如下:
     挑选生长健壮、粗度比较相近的2年生金柑(Fortunella margarita (Lour.) Swingle)苗用营养钵栽植;所有材料先进行25℃条件平衡;材料平衡后,随机选取部分苗移入控温室内在4℃条件下冷驯化2周,剩余部分继续25℃条件培养;造模时全部金柑苗用棉絮包裹营养钵及根颈,进行-10℃冰冻处理60min;以冷驯化后冰冻处理未表现冻害的金柑为抗冻组,以未冷驯化后冰冻处理表现冻害的金柑为对照组建立金柑抗冻实验模型,为后续试验的材料处理奠定了基础。
     测定了金柑抗冻实验模型下的生理生化指标,发现冷驯化能有效提高金柑叶片中可溶性蛋白、可溶性糖和脯氨酸含量,在冻害的过程中可溶性蛋白、可溶性糖和脯氨酸也会迅速增加,这可能是金柑具有很强的抗寒能力的原因之一。并且发现SOD、CAT和POD三种酶互相协调一致,才能使自由基维持在一个较低的水平,从而降低自由基对膜的损伤,增强植物的抗逆性。三种抗氧化酶协调清除氧自由基可能存在以下数学模型的关系:
     N=X—b×X×Y×Z1—c×X×Y×Z2(其中:N:能导致膜脂过氧化产生MDA的氧自由基;X:实测植物体内的氧自由基含量;Y:实测植物体内SOD酶活性;Z1:实测植物体内CAT酶活性;Z2:实测植物体内POD酶活性。)
     以微晶纤维素为载体,通过DNA单链片段中的磷酸基团与纤维素膜表面的羟基形成磷酸二酯键将DNA固定于微晶纤维素上,再利用复性技术将固定的DNA双链化,得到了双链DNA层析配体。
     应用双链DNA层析配体制备了金柑叶片DNA结合蛋白,并用DNA结合蛋白与纯化的基因组DNA进行了染色质的重建,结果表明DNA-纤维素层析制备的DNA结合蛋白可以与基因组DNA重建染色质。
     应用SDS-PAGE分离DNA结合蛋白,然后应用LC-MS-MS质谱分析了金柑叶片DNA结合蛋白获得2062个肽段信息。对2062个肽段进行了生物信息学分析,从中鉴别出28个同源蛋白;对未能匹配已知蛋白的肽段进行分析,发现其中一些肽段具有转录因子的结构域特征。
     比较了冰冻模型下不同处理的金柑叶片中DNA结合蛋白,发现不同处理的金柑叶片表达的DNA结合蛋白种类和数量存在差异。也发现DNA结合蛋白存在甲硫氨酸氧化的现象,而且不同处理的金柑叶片DNA结合蛋白甲硫氨酸氧化程度存在差异。这提示甲硫氨酸的氧化可能也是一种转录调控的方式。
DNA-binding proteins are proteins that have a specific or general affinity for either single or double stranded DNA. They mainly include histones, transcriptional factors, DNA polymerase, RNA polymerase, single-stranded DNA binding protein, helicase, ligase, restriction endonuclease, telomerase, and etc. The variation of the binding style between DNA-binding protein and DNA would triger a series of changes on chromosome. And this variation plays a critical role on DNA replication, recombination, transcription, chain degradation and other biological processes.
     Freezing injury is a kind of meteorological hazards of agriculture, which mainly occurs on overwintering crops, fruit trees and economic forests. Thus it is a huge threat to agricultural production. For example, citrus production in U.S. and citrus production in China suffered huge losses due to freezing injury. Fortunella margarita is an evergreen tree and has the capablity to withstand freezing temperature, some diseases and insects. Therefore, it is a great research object for the isolation of freezing-resistant genes and the investigation of anti-freezing mechanism in plants.
     In this project, Fortunella margarita was used as the primary material for establishing a freezing tolerance experiment model. Low temperature stress-responsive DNA-binding proteins in the cold acclimation of Fortunella margarita were analyzed by 2-D electrophoresis and mass spectrometry techniques. Furthermore, the transcription regulation mechanism of Fortunella margarita's freezing resistance process was investigated.
     Two-year old, vigorous and similar-sized Fortunella margarita (Lour.) Swingle seedlings were transplanted in cultivate pots and grown under greenhouse conditions(25℃)for 3 weeks; then some seedlings were selected at random and transferred to grow in a growth champer(4℃)for cold acclimation for 2 weeks. During the establishment of freezing tolerance experiment model, growth pots and low parts of seedling stalks were coverd lightly by cotton materials and treated under -10℃for 60min; The cold stress-treated seedlings which displayed certain degrees of injury were regarded as the experimental group, while those untreated seedlings with no cold injury would be the control group; The sucessful establishment of freezing tolerance experiment model lays a solid foundation for subsequent study.
     In addition, the physiologic and biochemical index under the freezing tolerance experiment model were examined. It was found that cold acclimation can effectively improve the content of soluble protein, soluble sugar and proline. And this may be one of the reasons explained the capacity of cold resistance in Fortunella margarita. It was also found that SOD, CAT and POD were coordinated with each other to maintain the relative low level of free radicals. Thus the free radicals'damage to membrane was largely reduced and then the stress tolerance capability in plants was improved in this way. The mathematic model of the oxygen radicals elimination by anti-oxidization enzymes is as following, N=X—b×X×Y×Zi—c×X×Y×Z2 (N:oxygen radicals responsible for the produce of MDA in lipid membrane peroxidization; X:the content of oxygen radicals in plants; Y:SOD activity in plants Z1: CAT activity in plants Z2:POD activity in plants)
     Microcrystalline cellulose was used to immobilize DNA through a process that phosphate groups in single-stranded DNA fragment can bind with hydroxyl groups to form Phosphodiester bonds. And techniques based on DNA re-denaturalization characteristics were used to acquire double-stranded DNA chromatography ligand from the stabilized DNA.
     DNA-binding proteins in leaves of Fortunella margarita were prepared by dsDNA chromatography ligand, and then mixed with purified genome DNA for chromatin reconstitution. The result indicates that DNA-binding proteins prepared by DNA-cellulose chromatography technique can combine with genome DNA for chromatin reconstitution.
     SDS-PAGE was applied to isolate DNA-binding proteins; then LC-MS-MS was taken to analyze these DNA-binding proteins and 1614 peptide sequences were acquired. Bioinformatics analysis indicates that among these peptide sequences.28 kinds of protein were identified. And quite a name of unmatched peptides were found to have structural characteristics similar with some classic domain structures in transcription factors.
     Under the freezing tolerance experiment model, the comparision of DNA-binding proteins in leaves of Fortunella margarita with different treatments was also conducted. The result indicates that there are differences in the quality and quantity of expressed DNA-binding proteins during Fortunella margarita's cold acclimation. Also there is a fact of methionine oxidization in DNA-binding proteins. Therefore. this phenomenon indicates that methionine oxidization may be one of the regulators in transcription regulation.
引文
[1]王宝山,主编.逆境植物生物学[M].北京:高等教育出版社,2010.
    [2]凡改恩,石学根,徐建国.冻害对柑橘生长发育的影响及影响柑橘冻害的因素[J].浙江柑橘,2009,26(3):23-24
    [3]马智才.柑橘冻害调查及预防措施[J].西北园艺:果树,2007,4:52
    [4]李亚东,卢春雨,裴嘉博.低温冷害对越橘开花坐果的影响及成因分析[J].中国果树,2008,4:26-28.
    [5]李学斌,王依清.柑橘冷害的发生与预防措施[J].浙江柑橘,2008,25(4):17-18.
    [6]庞学群,陈燕妮,黄雪梅,等.冷害导致砂糖橘果实品质劣变[J].园艺学报,2008,35(4):509-514.
    [7]代红军,曾洪学.植物抗冻性研究进展[J].农业科学研究,2006,27:71-74.
    [8]马文月.植物冷害和抗冷性的研究进展[J].安徽农业科学,2004,32(5):1003-1006.
    [9]孙伟;王秀珍;黄敬峰;金志凤.低温冻害对浙江省柑橘生产的研究[J].科学通报,2010,27(1):32-37.
    [10]吕建兴,潘传快,祁春节.突发事件对柑橘流通的影响机理及其对策——以2008年雪灾冻害、柑橘大实蝇事件为例[J].华中农业大学学报,2010,6:46-51.
    [11]钟广炎,陈力耕.柑橘种质资源抗寒性与叶片结构的关系[J].中国柑橘,1994,23(2):16-17.
    [12]简令成,孙德兰,施国雄,等.不同柑橘种类叶片组织的结构与抗寒性的关系[J].园艺学报,1986,13(3):163-168.
    [13]Cao, Q, W F Kong, P F Wen. Plant freezing tolerance and genes express in cold acclimation[J]. Acta Ecologica Sinica,2004,24(4):806-811.
    [14]Yelenosky, G. Cold hardiness in Citrus[J]. Hortic Rev,1985,7:201-238
    [15]孟庆瑞,杨建民,樊英利.果树抗寒机制研究进展[J].河北农业大学学报,2002,25:87-91.
    [16]孙中海,章文才.柑橘叶片各种膦脂含量与抗寒性关系的研究[J].果树科学,1990,7(3):136-140.
    [17]黄义江,王宗清.苹果属果树抗寒性的细胞学鉴定[J].园艺学报,1982,9(3):23-30.
    [18]张凤琪.零度低温对于温州蜜柑抗寒锻炼的作用[J].园艺学报,1986,13(3):209-211
    [19]何若韫.植物低温逆境生理[M].北京:中国农业出版社,1995.
    [20]刘祖祺,林定波ABA/GAs调控特异蛋白质与柑橘的抗寒性[J].园艺学报,1993,20(4):335-340.
    [21]马翠兰,刘星辉,胡又厘.PP333对柚越冬期抗寒性调控的研究[J].果树科学,1999,16(3):197-201.
    [22]李卫,孙中海,章文才,刘道宏.多效唑提高柑橘原生质体抗寒性的研究[J].湖北大学学报(自然利·学版),1997,19(1):79-82.
    [23]罗正荣,章文才.PP333对柑橘抗冻力以及叶片内源ABA和GA3含量的影响[J].植物生理学通讯,1992,28(3):182-184.
    [24]朱素琴.膜脂与植物抗寒性关系研究进展[J].湘潭师范学院学报(自然科学版),2004,24(4):49-54.
    [25]罗正荣,章文才.应用Logistic方程测定柑橘抗冻力的探讨[J].果树科学,1994,11(2):100-102.
    [26]王泽槐,梁立峰.香蕉冷害过程叶片抗坏血酸含量及过氧化氢酶活性的变化[J].华南农业大学学报,1994,15(3):71-76.
    [27]罗新义,冯吕军,李红,等.低温胁迫下肇东苜蓿SOD、脯酸酸活性变化初报[J].草业学报.2004, 26(4):79-82.
    [28]周碧燕,陈杰忠,季作梁,等.香蕉越冬期间SOD活性和可溶性蛋白质含量的变化[J].果树科学,1999,16(3):192-196.
    [29]Kamel A.H. Tartoura, Sahar A. Youssef. Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions. Scientia Horticulturae,2011,130(4),:862-868
    [30]Luo Yan, Liu Yu Bo, Dong Yu Xiu, Gao Xin-Qi, Zhang Xian Sheng. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. Journal of Plant Physiology,2009,166(4):385-394
    [31]姜卫兵,王业遴,马凯.渗透保护物质在无花果抗寒性发育中的作用[J].园艺学报,1992,19(4):371-372.
    [32]王淑杰,王家民,李亚东.可溶性蛋白、可溶性糖含量与葡萄抗寒性关系的研究[J].北方园艺,1996,2:13-14.
    [33]牛立新,贺普超.葡萄枝叶脯氦酸含量与其抗寒性关系探讨[J].北方园艺,1989,6:16-17.
    [34]林定波,颜秋生,沈德绪.柑橘抗羟脯氦酸细胞变异系的选择及其抗寒性研究[J].浙江农业大学学报,1999,25(1):94-98.
    [35]林定波,刘祖祺,张石城.多胺对柑橘抗寒力的效应[J].园艺学报,1994,3:222-226.
    [36]Buchanan BB,Gruissem W,Jones RL.Biochemistry &Molecular Biology of Plants.Rockville Maryland:The American Society of Plant Physiologists,2000
    [37]钟克亚,叶妙水,胡新文,郭建春.转录闪子CBF在植物抗寒中的重要作用.遗传,2006,28(2):249-254.
    [38]Breyne, P, M Zabeau. Genome-wide expression analysis of plant cell cycle modulated genes[J].Curr Opin Plant Biol,2001,4(2):136-142.
    [39]Sanchez-Ballesta, M T, M Rodrigo. M T Lafuente, A Granell L Zacarias. Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the Flavedo of fruit but responsive to cold and water stress in leaves[J].J Agric Food Chem,2004,52 (7):1950-1957.
    [40]van Wijk, K J. Challenges and prospects of plant proteomics[J].Plant Physiol.2001.126:501-508.
    [41]龙桂友.柑橘低温诱导相关基因的克隆与表达分析[D].湖南农业大学博士学位论文,2007
    [42]Cushman, J C. H J Bohnert. Genomics approaches to plant stress[J]. Curr Opin Plant Biol,2000,3 (2): 117-124.
    [43]Jia. Y, H S del Rio, A L Robbins, E S Louzada. Cloning and sequence analysis of a low temperature-induced gene from trifoliate orange with unusual pre-mRNA processing[J].Plant Cell Rep. 2004,23(3):159-166.
    [44]Hara, M, Y Wakasugi, Y Ikoma, M Yano, K Ogawa, T Kuboi. cDNA sequence and expression of a cold-responsive gene in citrus unshiu[J]. Biosci Biotechnol Biochem,1999,63(2):433-437.
    [45]Cai, Q, G A Moore, C L Guy. An unusual group 2 LEA gene family in citrus responsive to low temperature[J]. Plant Mol Biol,1995,29(1):11-23.
    [46]Zivy, M, D de Vienne. Proteomics:a link between genomics, genetics and physiology[J].Plant Mol Biol, 2000,44:575-580.
    [47]卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展[J].生物学杂志,2002,19(4):1-3.
    [48]马歌丽.蛋白质组研究的进展[J].郑州轻工业学院学报(自然科学版),2001,16(2):7-10.
    [49]Kaiser L. From genome to functional genomics[J]. Science,2000,288:1715.
    [50]Yiming, G, S Shihua, J Yuxiang, et al. Plant proteomics in the post-genomic era[J]. Acta Botanica Sinica,2002,44(6):631-641.
    [51]张田.蛋白质与蛋白质组学的研究进展[J].云南师范大学学报,2003,23(1):51-53.
    [52]Anderson, N L, N G Anderson. Proteome and proteomics:new technologies, new concepts, and new words[J].Electrophoresis,1998,19:1853-1861.
    [53]Pandey, A, M Mann. Proteomics to study genes and genomes[J].Nature,2000,405:837-846.
    [54]Wilkins, M R, J C Sanchez, A A Gooley, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J].Biotechnol Genet Eng Rev, 1996,13:19-50.
    [55]Larsen, M R, P Roepstorff. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis[J].Fresenius J Anal Chem,2000, 366:677-690.
    [56]Natera, S H, N Guerreiro, M A Djordjevic. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis[J].Mol Plant Microbe Interact,2000,13:995-1009.
    [57]Goodlett, D R, E C Yi. Proteomics without polyacrylamide:qualitative and quantitative uses of tendem mass spectrometry in proteome analysis[J].Funct Integr genomics,2002,(2):138-153.
    [58]谷瑞升.刘群录,陈雪梅.等.一种省时高效的木本植物蛋白双向电泳分析方法[J].北京林业大学报,1999,21(15):7-10.
    [59]熊兴东.许丽艳.沈忠英.等.一种优化的双向凝胶电泳方法[J].油头大学学报,2002.17(3):5-9.
    [60]何瑞锋.丁毅,张剑锋,等.植物叶片蛋白质双向电泳技术的改进与优化[J]..遗传,2000,22(5):319-321.
    [61]Jurgen. B. R Hanschke. M Sarvas. Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein[J].Appl Microbiol Biotechnol,2001. 55:326-332.
    [62]Vener, A V, A Harms. M R Sussman. et al. Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membrances of Arabidopsis thaliana[J].J Biol Chem, 2001.276:6959-6966.
    [63]Zhu. H. M Bilgin. R Bangham. et al. Global analysis of protein activities using proteome chips[J].Science,2001,293:2101-2105.
    [64]Jong-Soon, C. K Dae-Sup. L Jinsuk, et al. Proteome analysis of Lightinduced proteins in Synechocystis sp.PCC 6803:identification of proteins separated by 2D-PAGE using N-terminal sequencing and MALDI-TOF MS[J].Mol Cells,2000,10(6):705-711.
    [65]Fang Chiung-Yao, Chen Hsiang-Ying, Wang Meilin, et al. Global analysis of modifications of the human BK virus structural proteins by LC-MS/MS. Virology,2010,402(1):164-176.
    [66]Mari Maeland Nilsen, Kai-Erik Uleberg, Emiel A.M. Janssen, et al. From SELDI-TOF MS to protein identification by on-chip elution. Journal of Proteomics, In Press, Corrected Proof, Available online 23 July 2011.
    [67]Laurie T. Krug, Naoki Inoue, Philip E. Pellett. Differences in DNA Binding Specificity among Roseolovirus Origin Binding Proteins. Virology,2001,288, (1):145-153.
    [68]时俊华,陶敏,许丹,等.Z-DNA结合蛋白与Zα结构域[J].生命的化学,2008,28(4):165-168.
    [69]魏荣,李佐.有关序列特异性DNA结合蛋白的一些最新研究进展[J].山西农业大学学报,2000,20(1):83-85
    [70]Woo AJ, Dods JS, Susanto E, et al. A proteomics approach for the identification of DNA binding activities observed in the electrophoretic mobility shift assay[J]. Mol Cell Proteomics,2002,1(6): 472-478
    [71]Stead JA, Keen JN, Mc Dowall KJ, et al. The identification of nucleic acid-interacting proteins using a simple proteomics-based approach that directly incorporates the electrophoretic mobility shift assay[J]. Mol Cell Proteomics.2006,5(9):1697-1702
    [72]Sun YM, Zhang Y, Zeng LQ. Broad profiling of DNA-binding transcription factor activities improves regulatory network construction in adult mouse tissues[J]J Proteome Res.2008,7(10): 4455-4464.
    [73]Daifeng Jiang,Harry W.Jarrett,et al. Methods for proteomic analysis of transcription factors[J]. Journal of Chromatography A,2009,1216(41):6881-6889
    [74]Kadonaga JT, Tjian R. Affinity purfication of sequence-specific DNA binding protein S[J]. Proceedings of the National Academy of Sciences, USA,1986,85:5889-5893
    [75]Gabrielsen OS, Hornes E, Korsnes L. et al. Magnetic DNA affinity purification of yeast transcription factor tau--a new purification principle for the ultrarapid isolation of near homogeneous factor[J]. Nucleic Acids Res.1989.17(15):6253-6267
    [76]Dirusso C, Rogers RP. Jarrett HW. Novel DNA-sepharose purification of the FadR transcription factorfJ]. Journal of Chromatography. A.1994,677(1):45-52
    [77]Strobl LJ, Zimber-Strobl U. Magnetic DNA affinity purification of a cellular transcription factor[J]. Methods Mol Biol.2001,174:271-277
    [78]Locasale JW, Napoli AA, Chen SF. et al. Signatures of protein-DNA recognition in free DNA binding sites[J]. Journal of Molecular Biology.2009.386(4.6):1054-1065
    [79]Guy Nimrod. Andras Szilagyi. Christina Leslie, et al. Identification of DNA-binding Proteins Using Structural. Electrostatic and Evolutionary Features[J].Journal of Molecular Biology,2009. 387(4):1040-1053
    [80]Tonooka K, Kabashima T, Yamasuji M. et al. Facile determination of DNA-binding nuclear factor-KB by chemiluminescence detection[J]. Analytical Biochemistry,2007,364(1):30-36
    [81]Rosenfeld PJ. Kelly TJ. Purification of nuclear factor I by DNA recognition site sffinity chromatography [J]. The Journal of Biological Chemistry.1986,261(3):1398-1408
    [82]Bulyk M L,Gentalen E,Lockhart D J,Church G M.Quantifying DNA-protein interactions by double-stranded DNA arrays.Nat.Biotechnol.1999,17:573-577
    [83]白云飞.双链DNA芯片的制备及其应用研究[D].东南大学博士学位论文,2004
    [84]杨华,李煌,彭国平,等.微晶纤维素上固定总DNA及其固定效率的快速检测.湖南省生物化学与分子生物学会2009年学术年会,2009.12,湖南长沙
    [85]刘杰.低温胁迫下柑桔生理生化变化及差异蛋白质的表达[D].湖南农业大学硕十论文,2006
    [86]Sukumaran, N P. An excise leaflet test for evaluating potato frost tolerance[J].Hortisci,1972,7: 467-468.
    [87]沈漫.常春藤质膜透性和内源激素与抗寒性关系初探[J]园艺学报,2005,32(1):141-144.
    [88]缴丽莉,倪志云,路丙社,白志英,周如久,冯蕾.低温胁迫对青榨槭幼树抗寒指标的影响[J].河北农业大学学报,2006,29(4):44-47.
    [89]徐康,夏宜平,徐碧玉,林田,杨霞.以电导法配合Logistic方程确定茶梅‘小玫瑰’抗寒性[J].园艺学报,2005,32(1):148-150.
    [90]孙金月,赵玉田,梁博文,刘方,尤勇.HRGP在小麦抗寒锻炼过程中的变化及其与抗寒性的关系[J].植物遗传资源学报,2004,5(1):6-11.
    [91]杨亚军,郑雷英,王新超.冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J].茶叶科学2004,24(3):177-182.
    [92]徐桂云,范金石,焦奎.纳米颗粒在DNA固定化中的应用进展[J].传感器与微系统,2008,27(7):5-8.
    [93]孟庆军,马耀宏,杨艳.DNA传感器技术概况[J].山东科学,2004,17(1):59-63
    [94]孔德领代军.球形纤维素固定化DNA制备免疫吸附剂[J].高等学校化学学报,2000.21(12):1848-1851
    [95]Bjellqvist, B, J C Sanchez, C P asquali, et al. Micropreparative two-dimensional electrophoresis allowing the separation of samples containing milligram amounts of proteins[J]. Electrophoresis. 1993,14:1375-1378.
    [96]M凯里.ST斯梅尔.著.陈晓红,李明刚,刘强,主译.真核生物转录调控[M].北京:科学出版社,2002
    [97]Pabo.C.O.&Sauer.R.T.Transcription factors:structural families and principles of DNA recognition. Anmt. Rev.Biochem.,1992.61,1053-1095
    [98]David S Latchman主编.刘进元,等注解.真核生物转录因子(注解版第5版)[M].北京:科学出版社,2008:42-51
    [99]Fernandez, J, F Gharahdaghi. S M Mische, Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS)[J]. Electrophoresis,1998,19(6):1036-1045.
    [100]Gharahdaghi, F, C R Weinberg, D A Meagher, et al. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel:a method for the removal of silver ions to enhance sensitivity[J]. Electrophoresis,1999,20:601-605.
    [101]Yun Ho Kim, April H. Berry, Daniel S. Spencer, et al. Comparing the effect on protein stability of methionine oxidation versus mutagenesis:steps toward engineering oxidative resistance in proteins[J]. Protein Eng. (2001) 14 (5):343-347.
    [102]Christopher S. Hayes, Berenice Illades-Aguiar, Lilliam Casillas-Martinez, et al. In Vitro and In Vivo Oxidation of Methionine Residues in Small, Acid-Soluble Spore Proteins from Bacillus Species[J]. J Bacteriol,1998,180(10):2694-2700.
    [103]Matthew J. Wood, Judith Helena Prieto, Elizabeth A. Komives. Structural and functional consequences of methionine oxidation in thrombomodulin[J]. Biochimica et Biophysica Acta 2005,1703:141-147
    [104]Wang Zheng-Yu, Masahiro Shimonaga, Yoshiyuki Muraoka, et al. Methionine oxidation and its effect on the stability of a reconstituted subunit of the light-harvesting complex from Rhodospirillum rubrum. Eur. J. Biochem.2001,268:3375-3382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700