用户名: 密码: 验证码:
高压凝固Al-Mg二元合金组织热稳定性及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对Al-20wt.%、Al-30wt.%以及Al-40wt.%合金在不同压力下的凝固行为进行了研究,凝固压力分别为常压、1GPa、2GPa以及3GPa。探讨了Al-Mg二元合金在不同压力下的凝固组织和物相演变规律,对高压凝固后Al-Mg合金的热稳定性进行了深入研究,分析了凝固压力对高镁Al-Mg二元合金力学性能的影响及机理。
     凝固压力对Al-Mg合金凝固组织以及物相组成的影响研究表明:随着凝固压力的增加,Al-20Mg合金中脆性金属间化合物β相的体积分数减少,当凝固压力增加到2GPa以及更高时,Al-20Mg合金转变为大块的Al(Mg)过饱和固溶体。但是过饱和固溶体中Mg元素的分布不均匀,枝晶内的Mg元素含量较低,枝晶间的Mg元素含量较高。Al-30Mg以及Al-40Mg合金在高压凝固条件下β相不能形成,其物相均由Al(Mg)固溶体以及γ相构成。在3GPa压力下凝固时,合金组织是以初生Al(Mg)固溶体为基体,由Al(Mg)固溶体以及γ相组成的共晶组织分布在枝晶间。
     随着凝固压力的增加,Al-30Mg以及Al-40Mg合金的Al(Mg)固溶体与γ相共晶组织形貌发生了很大的变化。在1GPa压力下凝固后合金中的共晶组织均是不规则共晶组织,而在3GPa压力下凝固后转变为层片状共晶组织,这是由凝固过程动力学以及热力学因素所共同决定的。
     凝固压力对Al(Mg)固溶体中Mg元素的固溶度的影响研究表明:凝固压力可以显著的增加Mg元素在Al(Mg)固溶体中的固溶度,Al-20Mg合金可以形成大块的Al(Mg)固溶体,提供了一种新的制备大块Al(Mg)过饱和固溶体的方法。Al-40wt.%Mg(Al-42.2at.%Mg)合金在3GPa压力下凝固时Al(Mg)固溶体中Mg元素的固溶度可以增加到41.6at.%,而在常压室温条件下其平衡固溶度不足1at.%。
     高压凝固之后所得到的Al(Mg)固溶体是不稳定的,在加热过程中会向着稳定的方向转变。研究发现在Al(Mg)固溶体加热过程中形成了富Mg元素的γ相。当延长时效时间或者升高温度时,γ相内部的Mg原子会向周围的Al(Mg)固溶体扩散,导致其Mg元素成分降低,最终γ相会直接转变成稳定的β相。
     高压凝固制备的Al(20Mg)过饱和固溶体中在加热过程中富Mg固溶体容易形成沉淀相,Mg含量较少的固溶体相对不容易析出沉淀相,从而使沉淀相的析出是以一种不均匀的方式完成的。时效过程中β相的形貌会经过一系列的转变:粒状→长条状→团絮状→块状。
     高压凝固对Al-Mg合金力学性能影响研究表明:高压凝固后Al-Mg合金中的金属间化合物体积分数减少,Al(Mg)固溶体体积分数增加,显著提高了合金的拉伸性能。Al-20Mg在常压下凝固为脆性材料,断裂方式为典型的解理断裂,在2GPa以及3GPa压力下转变为塑性材料,断裂方式为典型的韧性断裂,延伸率可达到11%,同时强度也有显著提高,3GPa压力下凝固的抗拉强度是常压下的8.0倍。随着凝固压力的增加,Al-30Mg及Al-40Mg合金强度显著提高, 3GPa压力下凝固后其抗拉强度分别是常压凝固的14.3倍以及11.2倍。Al-30Mg合金的断裂方式由解理断裂向准解理断裂转变。Al-40Mg合金在3GPa压力下凝固之后的Al(Mg)过饱和固溶体基体的断裂方式是解理断裂,其原因是Mg原子过多导致的Mg原子偏聚区域增多。
Solidification behavior of Al-Mg binary alloys under different pressures was studied in this thesis. The Mg contents are 20wt.%, 30wt.% and 40wt.%, respectively. The solidification pressures are normal pressure, 1GPa, 2GPa and 3GPa, respectively. Microstructure evolution and phase constitution in Al-Mg alloys solidified under different pressures were obtained and analyzed. The phase stability of the alloys solidified under high pressure was studied. Effect of high pressure on mechanical properties of Al-Mg alloys was investigated.
     Effect of high pressure on solidification microstructure and phase constitution of Al-Mg alloy shows that, the amount of fragileβphase of Al-Mg alloys decreases with increasing solidification pressure. The supersaturated Al(Mg) solid solution was obtained when the Al-20Mg alloy solidified under 2GPa and 3GPa. However, the distribution of Mg solutes in the solid solution is inhomogeneous, i.e. the Mg concentration in the dendrite is lower than that in the interdendriti region. The Al-30Mg and Al-40Mg alloys both contain the Al(Mg) solid solution andγphase solidified under high pressures, and theβphase can not be formed. Furthermore, when solidified under 3GPa, the matrix is the primary Al(Mg) solid solution and the eutectic colonies composed of the Al(Mg) solid solution andγphase distribute in the interdendritic region.
     Morphology of eutectic structure of the Al-30Mg and Al-40Mg alloys changes greatly with increasing pressure. Eutectic structure is composed of the dotted Al(Mg) solid solution andγphase (anomalous eutectic) under 1GPa, but the eutectic structure transforms to lamellar eutectic structure under 3GPa. The transition is determined by the kinetic and thermodynamic aspects during solidification process.
     Effect of high pressure on Mg solubility in Al(Mg) solid solution shows that, the solubility of Mg element in Al(Mg) solid solution can be greatly extended by solidified under high pressures. A bulk Al(20Mg) supersaturated solid solution can be obtained solidified under 2GPa. Thus, solidification under high pressure is a new method to prepare bulk Al(Mg) solid solution. The Mg solubility in Al(Mg) solid solution can be extended up to 41.6at.% in the Al-40wt.%Mg(Al-42.2at.%Mg) alloy solidified under 3GPa, but the eqlibrium solubility of Mg in Al is less than 1 at.% at room temperature and normal pressure.
     Al(Mg) supersaturated solid solution obtained by solidified under high pressures is metastable, and will transform to the stable direction during heating process. It was found that theγphase enriched of Mg atoms is formed during heating process of Al(Mg) solid solution. Prolonging ageing time or increasing temperature, the Mg atoms in theγ phase will diffuse to the Al(Mg) solid solution around it, resulting in the decreasing of Mg content. Finaly, theγphase will directly transform to the stableβphase.
     The precipitation of Al(20Mg) solid solution prepared by solidification under high pressures takes place in a non-uniform manner during heating process, i.e. the precipitates are tend to first formed in the solid solution with higher Mg solubility, and then formed in the solid solution with lower Mg solubility. In addition, the morphology evolution of theβphase will go through a few steps during ageing process: granular→stripe→agglomerate→bulk shape.
     Effect of high pressure solidification on mechanical properties of Al-Mg alloys shows that, the amount of intermetallics decreases and the amount of Al(Mg) solid solution increases in the Al-Mg alloy solidified under high pressure, resulting in the great enhancement of the mechanical properties. The Al-20Mg alloy is fragile and its fracture characteristic is cleavage fracture under normal pressure. However, it can transform to be a ductile material with elongation of 11% when solidified under 2GPa and 3GPa, meanwhile, its strength can be also greatly improved. The ultimate tensile strength (UTS) of Al-20Mg solidified under 3GPa is 8.0 times of that solidified under normal pressure. The strength of Al-30Mg and Al-40Mg alloys are remarkably improved with increasing pressure. The ultimate tensile strength (UTS) of Al-30Mg and Al-40Mgs alloy solidified under 3GPa are 14.3 and 11.2 times of that solidified under normal pressure, respectively. Furthermore, the elongation and yield strength of Al-20Mg and Al-30Mg alloys are also greatly improved. The fracture characteristic can be essentially altered under the condition of high pressure solidification. The Al-30Mg alloy is cleavage fracture under normal pressure, however, it transforms to the quasi-cleavage fracture when solidified under 3GPa. In addition, the supersaturated Al(Mg) solid solution of Al-40Mg alloy solidified under 3GPa exhibits typical brittle fracture characteristic, due to the increased amount of Mg segregation zones.
引文
[1] Mcmillan P F. New materials from high-pressure experiments[J]. Nature Materials. 2002,1:19-25
    [2] Sharma S M,Sikka S K. Pressure induced amorphization of materials[J]. Progress in Materials Science. 1996,40:1-77
    [3] Zaug J M,Soper A K,Clark S M. Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks[J]. Nature Materials. 2008,7(11):890-899
    [4] Schilling J S. The use of high pressure in basic and materials science[J]. Journal of Physics and Chemistry of Solids. 1998,59(4):553-568
    [5]阿.依.巴迪舍夫.金属和合金在压力下结晶[M].哈尔滨工业大学出版社,1987
    [6] Liao S C,Mayo W E,Pae K D. Theory of high pressure low temperature sintering of bulk nanocrystalline TiO2[J]. Acta Materialia. 1997,45(10):4027-4040
    [7] Wei Z J,Wang Z L,Wang H W, et al. Evolution of microstructures and phases of Al-Mg alloy under 4 GPa high pressure[J]. Journal of Materials Science. 2007,42(17):7123-7128
    [8] He D W,He M,Kiminami C S, et al. Effects of pressure on the solidification of Al-Mn alloy[J]. Journal of Materials Research. 2001,16:910-913
    [9] Balik J,Lukac P,Kubin L P. Inverse critical strains for jerky flow in Al-Mg alloys[J]. Scripta Materialia. 2000,42(5):465-471
    [10] Bethencourt M,Botana F J,Cano M J, et al. Using EIS to analyse samples of Al-Mg alloy AA5083 treated by thermal activation in cerium salt baths[J]. Corrosion Science. 2008,50(5):1376-1384
    [11] Bournane M,Nedjar M,Sirenko A F. Precipitation in solid solutions of Al-Mg[J]. Scripta Materialia. 1999,40(3):375-382
    [12] Canadinc D,Maier H J,Gabor P, et al. On the cyclic deformation response of ultrafine-grained Al-Mg alloys at elevated temperatures[J]. Materials Science and Engineering A. 2008,496(1-2):114-120
    [13] Chen S W,Huang C C. Solidification curves of Al-Cu, Al-Mg and Al-Cu-Mg alloys[J]. Acta Materialia. 1996,44(5):1955-1965
    [14] Cheng X M,Morris J G. Texture, microstructure and formability of SC and DC cast Al-Mg alloys[J]. Materials Science and Engineering A. 2002,323(1-2):32-41
    [15] Cui G R,Ma Z Y,Li S X. Periodical plastic flow pattern in friction stir processed Al-Mg alloy[J]. Scripta Materialia. 2008,58(12):1082-1085
    [16] Fei W D,Kang S B. A study on the precipitates in T4 treated Al-Mg alloys[J]. Scripta Materialia. 1996,34(3):357-362
    [17] Gasior W,Moser Z,Pstrus J. Densities of solid aluminum-magnesium (Al-Mg) alloys[J]. Journal of Phase Equilibria. 2000,21(2):167-171
    [18] Inagaki H. Precipitation of theβ-phase in Al-Mg alloys[J]. Zeitschrift Fur Metallkunde. 2005,96(1):45-53
    [19] Klugkist P,Ratzke K,Faupel F, et al. Structural effects on diffusion in metallic glasses: the pressure dependence of Ni diffusion in as-quenched and relaxed Co42Zr58[J]. Philosophical Magazine Letters. 1999,79(10):827-836
    [20] Soignard E,Benmore C J,Yarger J L. A perforated diamond anvil cell for high-energy x-ray diffraction of liquids and amorphous solids at high pressure[J]. Review of Scientific Instruments. 2010,81(3):1-9
    [21] Bocanegra P E,Reverte C,Aymonier C, et al. Gasification study of winery waste using a hydrothermal diamond anvil cell[J]. Journal of Supercritical Fluids. 2010,53(1-3):72-81
    [22] Wang Y,Han Y H,Gao C X, et al. In situ impedance measurements in diamond anvil cell under high pressure[J]. Review of Scientific Instruments. 2010,81(1):1-4
    [23]陈启武,熊湘君,邓福铭.超高压技术研究[J].矿冶工程. 2001,21:62-65
    [24] Nakamura R,Fujita K,Iijima Y, et al. Diffusion mechanisms in B2 NiAl phase studied by experiments on Kirkendall effect and interdiffusion under high pressures[J]. Acta Materialia. 2003,51:3861-3870
    [25] Badding J V,Parker L J,Nesting D C. High-pressure synthesis of metastable materials[J]. Journal of Solid State Chemistry. 1995,117(2):229-235
    [26]王文魁.亚稳相的高压暴露[J].高压物理学报. 1989,3:257-268
    [27] Amaya K,Shimizu K,Eremets M I. Search for superconductivity under ultra-high pressure[J]. International Journal of Modern Physics B. 1999,13(29-31):3623-3625
    [28] Shimizu K,Kimura T,Furomoto S, et al. Superconductivity in the nonmagnetic state of iron under pressure[J]. Nature. 2001,412(6844):316-318
    [29] Struzhkin V V,Hemley R J,Mao H K, et al. Superconductivity at 10-17 K in compressed sulphur[J]. Nature. 1997,390(6658):382-384
    [30] Kim J S,Boeri L,Kremer R K, et al. Effect of pressure on superconducting Ca-intercalated graphite CaC6[J]. Physical Review B. 2006,74(21):214513
    [31] Tissen V G,Nefedova M V,Kolesnikov N N, et al. Effect of pressure on the superconducting Tc of MgB2[J]. Physica C. 2001,363(3):194-197
    [32] He D,Zhao Y,Daemen L, et al. Boron suboxide: as hard as cubic boron nitride[J]. Applied Physics Letters. 2002,81(4):643-643
    [33] Solozhenko V,Kurakevych O,Andrault D, et al. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5[J]. Physical Review Letters. 2009,102(1):1-4
    [34] Solozhenko V L,Andrault D,Fiquet G, et al. Synthesis of superhard cubic BC2N[J]. Applied Physics Letters. 2001,78(10):1385-1385
    [35] Chen K W,Jian S R,Wei P J, et al. A study of the relationship between semi-circular shear bands and pop-ins induced by indentation in bulk metallic glasses[J]. Intermetallics. 2010,18(8):1572-1578
    [36] Faupel F,Frank W,Macht M P, et al. Diffusion in metallic glasses and supercooled melts[J]. Reviews of Modern Physics. 2003,75(1):237-280
    [37] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia. 2000,48(1):279-306
    [38] Wang Y M,Wang Q,Zhao J J, et al. Ni-Ta binary bulk metallic glasses[J]. Scripta Materialia. 2010,63(2):178-180
    [39] Durandurdu M. Pressure-induced amorphous-to-amorphous phase transition in GaAs[J]. Physical Review B. 2004,70(8)
    [40] Degtyareva V F,Bdikin I K,Khasanov S S. Crystalline and amorphous states in Zn-Sb and Cd-Sb alloys at high pressure[J]. Physics of the Solid State. 1997,39(9):1341-1344
    [41] Vaccari M,Garbarino G,Aquilanti G, et al. Structural changes in amorphous GeS2 at high pressure[J]. Physical Review B. 2010,81(1)
    [42] Perottoni C A,da Jornada J A H. Pressure-induced amorphization and negative thermal expansion in ZrW2O8[J]. Science. 1998,280(5365):886-889
    [43] Secco R A,Liu H,Imanaka N, et al. Pressure-induced amorphization in negative thermal expansion Sc2(WO4)3[J]. Journal of Materials Science Letters. 2001,20(14):1339-1340
    [44] Wang W H,Wang R J,Dai D Y, et al. Pressure-induced amorphization of ZrTiCuNiBe bulk glass-forming alloy[J]. Applied Physics Letters. 2001,79(8):1106-1108
    [45] Yao B,Ding B,Wang A, et al. Preparation of a bulk A1-Fe(Mo, Si, B) nanostructured alloy under high pressure[J]. Physica B. 1995,215
    [46] Jiang J Z,Gerward L,Olsen J S. Structural stability of binary CdCa quasicrystal under high pressure[J]. Applied Physics Letters. 2001,79(16):2538-2538
    [47] Jiang J Z,Saksl K,Rasmussen H, et al. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals[J]. Applied Physics Letters. 2001,79(8):1112-1114
    [48] Joulaud J,Capitán M,Haüsermann D, et al. Structural study of approximant phases of Al-Cu-Fe quasicrystals under high pressure[J]. Physical Review B. 1999,59(5):3521-3526
    [49] Liu G,Jian W,Jin H, et al. A high dielectric constant in nano-TiO2 ceramic prepared by a rapid and high-pressure sintering process [J]. Scripta Materialia. 2011,65(7):588-591
    [50] Buchner S,Lepienski C,Soares P, et al. Effect of high pressure on the mechanical properties of lithium disilicate glass ceramic[J]. Materials Science and Engineering A. 2011,528(10-11):3921-3924
    [51] Wang N,Wen F,Li L, et al. Structural and magnetic characterization of rhombohedral Ga1.2Fe0.8O3 ceramics prepared by high-pressure synthesis [J]. Solid State Communications. 2011,151(1):33-36
    [52] Jayakaman A,Klement J R,Newton R C, et al. Fusion curves and polymorphic transitions of the group iii elements-aluminum, gallium, indium and thallium-at high pressures[J]. Journal of Physics and Chemistry of Solids. 1963,24:7-18
    [53] Han Y S,Kim D H,Lee H I, et al. Effect of applied pressure during solidification on the microstructure refinement in an Al-Cu alloy[J]. Scripta Metallurgica Et Materialia. 1994,31(12):1623-1628
    [54] Brosh E,Makov G,Shneck R Z. Application of CALPHAD to high pressures[J]. Calphad-computer Coupling Of Phase Diagrams and Thermochemistry. 2007,31(2):173-185
    [55] Soderlind P,Moriarty J A,Wills J M. First-principles theory of iron up to earth-core pressures: Structural, vibrational, and elastic properties[J]. Physical Review B. 1996,53(21):14063-14072
    [56]李冬剑.高压下亚稳相相变机制[D].沈阳:中国科学院金属研究所,1983:34-80
    [57] Turnbull D. On the relation between crystallization rate and liquid structure[J]. Journal of Chemical Physics. 1962,66:609-613
    [58]王振玲. Al-Mg合金高压凝固组织与相演变研究[D].哈尔滨:哈尔滨工业大学,2007:29-44
    [59]魏尊杰,王振玲,王宏伟,等.高压凝固对Al-Mg合金枝晶形态的影响[J].特种铸造及有色合金. 2006,26(11):685-688
    [60] Wang Z L,Wei Z J,Wang H W, et al. Effects of high pressure on microstructure and phase of Al-Mg-Zn alloy [J]. International Journal of Cast Metals Research. 2006,19(5):269-273
    [61]于溪凤,张国志,肖汉杰.高压凝固亚共晶Al-Si合金的组织变异及生长机制[J].材料研究学报. 2000,14:141-144
    [62] Yu X F,Zhang G Z,Wang X Y, et al. Non-equilibrium microstructure of hyper-eutectic Al-Si alloy solidified under superhigh pressure[J]. Journal of Materials Science. 1999,34(17):4149-4152
    [63]张国志,于溪凤,王向阳,等.超高压凝固Al-Si合金的非平衡组织[J].金属学报. 1999,35(3):285-288
    [64]赵海丽,徐瑞,李杰,等.高压下Al-Ge合金的凝固组织[J].金属热处理. 2005,30(1):28-31
    [65] Xu R. The effect of high pressure on solidification microstructure of Al-Ni-Y alloy[J]. Materials Letters. 2005,59(22):2818-2820
    [66] Wang H,Zhu D,Zou C, et al. Evolution of the microstructure and nanohardnessof Ti-48at.%Al alloy solidified under high pressure[J]. Materials & Design. 2012,34:488-493
    [67]王海燕,刘日平,马明臻,等. FeSi2合金在高压下的凝固[J].物理学报. 2004,53:2378-2383
    [68]李荣德,曹修生,曲迎东,等.超高压力对ZA27合金晶体结构及微观组织的影响[J].中国有色金属学报. 2009,19(9):1570-1574
    [69] Bae D H,Ghosh A K. Cavity formation and early growth in a superplastic Al-Mg alloy[J]. Acta Materialia. 2002,50(3):511-523
    [70] Liu X Y,Ohotnicky P P,Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys[J]. Surface Science. 1997,373(2-3):357-370
    [71] Liu Y L,Kang S B. Solidification and segregation of Al-Mg alloys and influence of alloy composition and cooling rate[J]. Materials Science and Technology. 1997,13(4):331-336
    [72] Lu G M,Qiu Z X. Measurement of thermodynamic properties of liquid Al-Mg alloys[J]. Transactions of Nonferrous Metals Society of China. 1998,8(1):109-113
    [73] Maire E,Grenier J C,Daniel D, et al. Quantitative 3D characterization of intermetallic phases in an Al-Mg industrial alloy by X-ray microtomography[J]. Scripta Materialia. 2006,55(2):123-126
    [74] Okada H,Kanno M. Hot ductility of Al-Mg and Al-Mg-Y alloys impaired by trace sodium[J]. Scripta Materialia. 1997,37(6):781-786
    [75] Park Y S,Chung K H,Kim N J, et al. Microstructural investigation of nanocrystalline bulk Al-Mg alloy fabricated by cryomilling and extrusion[J]. Materials Science and Engineering A. 2004,374(1-2):211-216
    [76] Patlan V,Vinogradov A,Higashi K, et al. Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing[J]. Materials Science and Engineering A. 2001,300(1-2):171-182
    [77] Picu R C,Xu Z J. Vacancy concentration in Al-Mg solid solutions[J]. Scripta Materialia. 2007,57(1):45-48
    [78] Picu R C,Zhang D. Atomistic study of pipe diffusion in Al-Mg alloys[J]. Acta Materialia. 2004,52(1):161-171
    [79] Tian B H. Ageing effect on serrated flow in Al-Mg alloys[J]. Materials Scienceand Engineering A. 2003,349(1-2):272-278
    [80] Zhong Y,Yang M,Liu Z K. Contribution of first-principles energetics to Al-Mg thermodynamic modeling[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry. 2005,29(4):303-311
    [81] Samson S. The crystal structure of the phaseβ-Mg2Al3[J]. Acta Crystallographica Section B. 1965,19:401-413
    [82] Samson S , Gordon E K. The Crystal Structure ofε-Mg23Al30[J]. Acta Crystallographica Section B. 1968,24:1004-1013
    [83] Luo H L , Chao C C , Duwez P. Metastable solid solutions in aluminum-magnesium alloys[J]. Transactions of the Metallurgical Society of AIME. 1964,230:1488-1490
    [84] Roitsch S,Heggen M,Lipinskachwalek M, et al. Single-crystal plasticity of the complex metallic alloy phaseβ-Al-Mg[J]. Intermetallics. 2007,15(7):833-837
    [85] Hamana D,Bouchear M,Betrouche M, et al. Comparative study of formation and transformation of transition phases in Al-12 wt.% Mg alloy[J]. Journal of Alloys and Compounds. 2001,320(1):93-102
    [86] Totten G E,MacKenzie D S. Handbook of aluminum Vol.1: Physical metallurgy and processes[M]. Marcel Dekker, Inc.,2003
    [87]黄伯云,李成功,石力开,等.中国材料工程大典,第四卷:有色金属材料工程(上)[M].化学工业出版社,2005
    [88] Ungár T. Microstructural parameters from X-ray diffraction peak broadening[J]. Scripta Materialia. 2004,51:777-781
    [89] Crivello J,Nobuki T,Kuji T. Limits of the Mg–Alγ-phase range by ball-milling[J]. Intermetallics. 2007,15(11):1432-1437
    [90] Scudino S , Sperling S , Sakaliyska M, et al. Phase transformations in mechanically milled and annealed single-phaseβ-Al3Mg2[J]. Acta Materialia. 2008,56(5):1136-1143
    [91] Schoenitz M,Dreizin E L. Structure and properties of Al-Mg mechanical alloys[J]. Journal of Materials Research. 2003,18(8):1827-1836
    [92] Gubicza J,Kassem M,Ribárik G, et al. The microstructure of mechanically alloyed Al-Mg determined by X-ray diffraction peak profile analysis[J]. Materials Science and Engineering A. 2004,372:115-122
    [93] Scudino S,Sakaliyska M,Surreddi K B, et al. Mechanical alloying and milling of Al-Mg alloys[J]. Journal of Alloys and Compounds. 2009,483(1-2):2-7
    [94] Minamino Y,T.Yamane,T.MIyake, et al. Effect of high-pressure on diffusion reactions and phase-diagram in Al-Mg system[J]. Materials Science and Technology. 1986,2(8):777-783
    [95] Follstaedt D M , Knapp J A. Icosahedral-phase formation by solid-state interdiffusion[J]. Physical Review Letters. 1986,56(17):1827
    [96] Du Y,Chang Y A,Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation[J]. Materials Science and Engineering A. 2003,363(1-2):140-151
    [97] Hisayuki K,Yamane T,Okubo H, et al. Diffusion of magnesium in commercial Al-Mg alloy under high pressure[J]. Zeitschrift Fur Metallkunde. 1999,90(6):423-426
    [98]胡汉起.金属凝固原理[M].机械工业出版社,2007
    [99] Kurs W , Fisher D J. Fundermentals of solidification[M]. Trans Tech Publications,1990:200
    [100] Li D J,Wang A M,Yao B, et al. Synthesis of bulk nanocrystalline Ti-Cu alloy by pressure-quenching method[J]. Journal of Materials Research. 1996,11(11):2685-2688
    [101] Wei B,Herlach D M,Sommer F. Rapid eutectic growth of undercooled metallic alloys[J]. Journal of Materials Science Letters. 1993,12:1774-1777
    [102] Goetzinger R,Barth M,Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si,Co-Sb and Ni-Al-Ti alloys[J]. Acta Materialia. 1998,46(5):1647-1655
    [103] Langer J S. Instabilities and pattern formation in crystal growth[J]. Reviews of Modern Physics. 1980,52(1):1-30
    [104] Mullins W W,Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy[J]. Journal of Apllied Physics. 1964,35:444-451
    [105] Brazhkin V V,Larchev V I,Popova S V, et al. The Influence of high pressure on the disordering of the crystal structure of solids rapidly quenched from the melt[J]. Physica Scripta. 1989,39:338-340
    [106] Flemings M C. Solidification processing[M]. McGraw-Hill,1974:278
    [107] Wang W H,Wang Z X,Zhao D Q, et al. High-pressure suppression of crystallization in the metallic supercooled liquid Zr41Ti14Cu12.5Ni10Be22.5: Influence of viscosity[J]. Physical Review B. 2004,70(9):092203
    [108] Langer J S,Müller-Krumbhaar J. Stability effects in dendritic crystal growth[J]. Journal of Crystal Growth. 1977,42:11-14
    [109] Hamana D,Azizi A. Low temperature post-precipitation after precipitation ofβ' andβphases in Al-12 wt.% Mg alloy[J]. Materials Science and Engineering A. 2008,476(1-2):357-365
    [110] Hamana D,Baziz L,Bouchear M. Kinetics and mechanism of formation and transformation of metastableβ'-phase in Al-Mg alloys[J]. Materials Chemistry and Physics. 2004,84(1):112-119
    [111] Bouchear M,Hamana D,Laoui T. GP zones and precipitate morphology in aged Al-Mg alloys[J]. Philosophical Magazine A. 1996,73(6):1733-1740
    [112] Starink M J,Zahra A. Precipitation kinetics of an Al-15%Mg alloy studied by microcalorimetry and TEM[J]. Materials Science Forum 1996,217-222:795-800
    [113] Starink M J,Zahra A M.β' andβprecipitation in an Al-Mg alloy studied by DSC and TEM[J]. Acta Materialia. 1998,46(10):3381-3397
    [114] Mourik P V,Maaswinkel N M,Keijser T H D, et al. Precipitation in liquid-quenched Al-Mg alloys[J]. Journal of Materials Science. 1989,24:3779-3786
    [115] Rooyen M V , Maartensdijk J A S , Mittemeijer E J. Precipitation of Guinier-Preston zones in aluminum-magnesium: a calorimetric analysis of liquid-quenched and solid-quenched alloys[J]. Metallurgical Transactions A. 1988,19A:2433-2443
    [116] Hamana D,Azizi A,Tellouche G, et al. GP zone formation without quenched-in vacancies in Al-12.wt% Mg alloy[J]. Philosophical Magazine Letters. 2004,84(11):697-704
    [117] Nebti S,Hamana D,Cizeron G. Calorimetric study of preprecipitation and precipitation in Al-Mg alloy[J]. Acta Metallurgica Et Materialia. 1995,43(9):3583-3588
    [118] Starink M J,Zahra A M. Precipitation kinetics of an Al-15%Mg alloy studied by microcalorimetry and TEM[J]. Materials Science Forum. 1996,217:795-800
    [119] Starink M J,Zahra A M. The kinetics of isothermalβ' precipitation in Al-Mg alloys[J]. Journal of Materials Science. 1999,34(5):1117-1127
    [120] Bernole M. Precipites apparaissant par revenu apres trempedans un alliage Aluminium-10wt.%Magunesium[D]. Rouen, France:University of Rouen,1974
    [121] Bernole M,Raynal J,Graf R. Structure et orientatition des precipites apparaissant par revenu apres trempedans un alliage Aluminium-Magunesium a 10% de Magunesium[J]. Journal of Microscopie. 1969,8:831-840
    [122] Feuerbacher M,Thomas C,Makongo J P A, et al. The Samson phase,β-Mg2Al3, revisited[J]. Zeitschrift für Kristallographie. 2007,222:259-288
    [123] Starink M J,Zahra A M. An analysis method for nucleation and growth controlled reactions at constant heating rate[J]. Thermochimica Acta. 1997,292(1-2):159-168
    [124] Timm J,Warlimont H. A diffusionless phase transformation of Al3Mg2[J]. Zeitschrift Fur Metallkunde. 1980,71(7):434-437
    [125] He B B. Two-dimensional X-ray diffraction[M]. John Wiley & Sons, Inc.,2009:376-380
    [126] Calka A,Kaczmarek W,Williams J S. Extended solid solubility in ball-milled AI-Mg alloys[J]. Journal of Materials Science. 1993,28:15-18
    [127] Picu R C,Zhang D. Atomistic study of pipe diffusion in Al–Mg alloys[J]. Acta Materialia. 2004,52(1):161-171
    [128] Olmsted D,Hectorjr L,Curtin W. Molecular dynamics study of solute strengthening in Al/Mg alloys[J]. Journal of the Mechanics and Physics of Solids. 2006,54(8):1763-1788
    [129] Ryen O,Nijs O,Sjolander E, et al. Strengthening mechanisms in solid solution aluminum alloys[J]. Metallurgical and Materials Transactions A. 2006,37A(6):1999-2006
    [130] Caydas U,Hascalik A. Effect of Mg on mechanical properties of Al-Mg alloys[J]. Praktische Metallographie-practical Metallography. 2010,47(3):124-134
    [131] Huskins E L,Cao B,Ramesh K T. Strengthening mechanisms in an Al-Mg alloy[J]. Materials Science and Engineering A. 2010,527(6):1292-1298
    [132] Leyson G P M,Curtin W A,Hector L G, et al. Quantitative prediction of solute strengthening in aluminium alloys[J]. Nature Materials. 2010,9(9):750-755
    [133] Mazilkin A A,Straumal B B,Rabkin E, et al. Softening of nanostructured Al-Zn and Al-Mg alloys after severe plastic deformation[J]. Acta Materialia. 2006,54:3933-3939
    [134] hang M,Huang H,Spencer K, et al. Nanomechanics of Mg-Al intermetallic compounds[J]. Surface & Coatings Technology. 2010,204(14):2118-2122
    [135] Oliver W C,Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research. 1992,7(6):1564-1583
    [136] Mondolfo L F. Aluminum alloys: Structure and properties[M]. Butterworths,1976:971
    [137] Mukai T,Higashi K,Tanimura S. Influence of the magnesium concentration on the relationship between fracture mechanism and strain rate in high purity Al-Mg alloys[J]. Materials Science and Engineering A. 1994,176(1-2):181-189
    [138] Hall E O. The deformation and aging of mild steel: iii. discussion of results.[J]. Proceedings of the Physical Society of London B. 1951,64:747-753
    [139] Petch N J. The cleavage strength of polycrystals[J]. Journal Iron Steel Institute. 1953,174:25-28
    [140] Chen X,Yan J,Karlsson A. On the determination of residual stress and mechanical properties by indentation[J]. Materials Science and Engineering A. 2006,416(1-2):139-149
    [141] Deng D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J]. Materials & Design. 2009,30(2):359-366
    [142] Lados D A,Apelian D,Wang L. Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching : Mechanisms and effects on static and dynamic properties[J]. Materials Science and Engineering A. 2010,527:3159-3165
    [143] Wang T G,Zhao S S,Hua W G, et al. Estimation of residual stress and its effects on the mechanical properties of detonation gun sprayed WC-Co coatings[J]. Materials Science and Engineering A. 2010,527(3):454-461
    [144] Sato T,Kojima Y. Modulated structures and GP zones in AI-Mg alloys[J]. Metallurgical Transactions A. 1982,13A:1374-1379
    [145] Mulford R A,Kocks U F. New observations on the mechanisms of dynamic strain aging and of jerky flow[J]. Acta Materialia. 1979,27:1125-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700