用户名: 密码: 验证码:
液态置氢对锆基块体非晶合金形成能力和力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体非晶合金具有一系列的优异性能,如屈服强度高、弹性应变极限大以及良好的耐腐蚀性能和优异的软硬磁学性能,成为当今材料界的研究热点之一。本文采用液态置氢的方法将氢加入到锆基块体非晶合金中,所谓液态置氢,指的是在氢/氩混合气氛下熔炼合金,使氢扩散到合金熔体中的一种新的置氢方法。研究了液态置氢对非晶合金熔体的净化作用,对非晶合金玻璃形成能力和力学性能的影响规律以及作用机制。
     首先研究了液态置氢对去除Zr_(55)Cu_(30)Ni_5Al_(10)合金中杂质元素氧的作用,发现液态置氢对非晶合金具有明显的脱氧作用。随着氢氩混合气氛中氢含量和熔炼时间的增加,合金中的氧含量逐渐降低。当氢氩混合气氛中氢含量为15%,熔炼时间为400s时,具有最佳的脱氧作用,随后凝固得到的合金呈完全的非晶态结构。根据吉布斯自由能的变化情况,可知在高温区时,氢与氧反应的吉布斯自由能较锆与氧反应的吉布斯自由能更低,因此氢与氧更容易发生反应,从而避免了锆与氧反应形成的氧化锆或者锆/氧团簇作为异质形核核心对非晶合金形成能力的有害作用。
     对Zr_(55)Cu_(30)Ni_5Al_(10)合金进行液态置氢,发现随着氢氩混合气氛中氢含量的增加,钮扣锭中含有的晶体相CuZr_3和AlZr_2的数量逐渐减少,当氢含量达到10%时,钮扣锭中的晶体相会完全消失,结构呈现出完全的非晶态特征。采用楔形试样对比研究了液态置氢前后Zr_(55)Cu_(30)Ni_5Al_(10)合金的玻璃形成能力,发现随着氢氩混合气氛中氢含量的增加,Zr_(55)Cu_(30)Ni_5Al_(10)合金的临界尺寸逐渐增加,当氢含量增加到10%时,其临界尺寸达到最大值。
     对液态置氢后的Zr_(55)Cu_(30)Ni_5Al_(10)非晶合金的脆性参数和临界冷却速度的研究表明,置氢的Zr_(55)Cu_(30)Ni_5Al_(10)非晶合金相对于其未置氢时具有更小的脆性参数和临界冷却速度。此外,还对比了置氢前后Zr_(55)Cu_(30)Ni_5Al_(10)非晶合金的吉布斯自由能差的变化,发现置氢后Zr_(55)Cu_(30)Ni_5Al_(10)非晶合金具有更低的吉布斯自由能差,从动力学与热力学的角度解释了液态置氢后Zr_(55)Cu_(30)Ni_5Al_(10)非晶合金具有更大玻璃形成能力的原因。
     根据正电子湮没寿命(PALS)研究结果,并结合硬球无规密堆模型中的Bernal孔洞结构,研究了液态置氢后Zr_(55)Cu_(30)Ni_5Al_(10)非晶合金的结构变化。研究表明Zr_(55)Cu_(30)Ni_5Al_(10)非晶合金中存在三种湮没寿命成分,说明合金中存在三种不同尺寸的结构缺陷,对应的非晶结构分别为密堆垛结构中的间隙位置、流动缺陷位置与亚纳米孔洞。密堆垛结构中间隙缺陷浓度的增加,说明置氢后扩大了非晶合金中有效的堆垛区域,从而形成更加有效的致密堆垛,从结构的角度解释了Zr_(55)Cu_(30)Ni_5Al_(10)合金的玻璃形成能力提高的原因。
     研究了液态置氢后Zr_(55)Cu_(30)Ni_5Al_(10)与Zr_(57)Al_(10)Cu_(15.4)Ni_(12.6)Nb_5两种块体非晶合金的室温力学性能,发现室温压缩塑性不但没有降低,反而有很大程度的提高。氢致塑性的增加归因于氢在非晶合金中形成了一些应力集中区,这些区域导致了剪切带的增殖与稳定化,从而起到弱化高度局域化的剪切变形,使非晶合金具有更大的塑性应变。
Bulk metallic glasses (BMGs) have a series of superior mechanical properties,e.g., high yield strengths, large elastic strain limits, good corrosion resistance, andgood soft magnetism and hard magnetism, which is a popular research for currentmaterial world. In this dissertation, hydrogen is added to Zr-based bulk metallicglasses (BMGs) by melt hydrogenation. Melt hydrogenation is a new hydrogenationmethod. In this method, the alloys are melted in the gaseous mixture of hydrogenand argon, and the hydrogen diffuses into alloy melt. The effects of melthydrogenation on the melt purification, glass-forming ability (GFA), mechanicalproperties and mechanisms are studied.
     The removal effect of melt hydrogenation on the impurities of oxygen inZr_(55)Cu_(30)Ni_5Al_(10)alloy is studied first, and it is found that this method has significantdeoxidation effect in the process of melt hydrogenation. When the hydrogenpercentage in gaseous mixture and melting time are increased, oxygen content ofthe alloys gradually decreases. A hydrogen percentage of15%and melting durationof400s are effective in deoxidizing of these alloys and gaining the completelyamorphous alloy structure. Based on the change of Gibbs free energy, the Gibbsfree energy of reaction hydrogen with oxygen is lower than oxygen with zirconium.Therefore, hydrogen and oxygen is more prone to react. It will avoid the formationof zirconium oxide or zirconium/oxygen clusters which can deteriorate the GFA ofBMGs due to heterogeneous nucleation.
     The melt hydrogenation is applied to Zr_(55)Cu_(30)Ni_5Al_(10)master alloys, and it isfound that the volume fraction of crystalline phases CuZr3and AlZr_2graduallydecreases with the increase of hydrogen percentage in the gaseous mixture ofhydrogen and argon, and the crystalline phases completely disappear when thehydrogen percentage increases up to10%, indicating the structure of the sample ismostly amorphous. The GFA of Zr_(55)Cu_(30)Ni_5Al_(10)alloys before and after melthydrogenation is comparatively investigated using wedge shaped samples. Criticalsection size of Zr_(55)Cu_(30)Ni_5Al_(10)alloys gradually increases with the increase ofhydrogen percentage in the gaseous mixture of hydrogen and argon. When thehydrogen percentage increased up to10%, critical section size reaches maximumvalue.
     After melt hydrogenation, the fragility parameter and critical cooling rate arestudied. In contrast to non-hydrogenated Zr_(55)Cu_(30)Ni_5Al_(10)alloy, hydrogenated alloypossesses smaller fragility parameter and critical cooling rate. In addition, the change of Gibbs free energy difference of Zr_(55)Cu_(30)Ni_5Al_(10)alloy before and aftermelt hydrogenation is compared. It is found that the Gibbs free energy difference ofhydrogenated Zr_(55)Cu_(30)Ni_5Al_(10)alloy is samller than that of non-hydrogenatedZr_(55)Cu_(30)Ni_5Al_(10)alloy. They explain that hydrogenated Zr_(55)Cu_(30)Ni_5Al_(10)alloy has ahigh GFA from thermodynamics and dynamics.
     The structural change of Zr_(55)Cu_(30)Ni_5Al_(10)alloys after melt hydrogenation isinvestigated based on positron annihilation life time spectroscopy (PALS) analysisand Bernal holes in dense random packing of hard spheres model. Three lifetimecomponents are identified, indicating the presence of three distinct size ranges foropen volume defects in the glass. The components are assigned to annihilation inthe interstitial holes in the densely packed, flow defects and sub-nanometer voids.The increase of the concentration of interstitial holes in the densely packed showthat the efficiently packed regions are increased after melt hydrogenation, lead to adenser random packed structure, which explains the increase of GFA in terms ofstructural points of view.
     Room temperature mechanical properties of Zr_(55)Cu_(30)Ni_5Al_(10)andZr_(57)Al_(10)Cu_(15.4)Ni_(12.6)Nb_5are studied, and it is found that room temperaturecompression plasticity does not decrease, but it is greatly improved. Hydrogen-enhance plasticity is attributed to the formation of stress concentration induced byhydrogen which promotes proliferation and stability of shear band. Thus it canweaken the highly localized shear deformation, leading to larger plastic strain ofamorphous alloy.
引文
1W. Klement, R. H. Willens, P. Duwez. Non-crystalline Structure in SolidifiedGold-Silicon Alloys. Nature.1960,187(4740):869-870
    2H. W. Kui, A. L. Greer, D. Turnbull. Formation of Bulk Metallic Glass byFluxing. Applied Physics Letters.1984,45(6):615-617
    3P. Li, S. Li, Z. Tian, et al. Effect of Ni-Al Atomic Ratio on Glass Formation inLa-Al-Cu-Ni Bulk Metallic Glasses. Journal of Alloys and Compounds.2009,478(1-2):193-196
    4G. B. Liu, P. Gao, Z. Xue, et al. Study on the Formation of New Mg-Cu-Ti-YQuaternary Bulk Metallic Glasses with High Mechanical Strength. Journal ofNon-Crystalline Solids.2012,358(23):3084-3088
    5N. Khademian, R. Gholamipour, F. Shahri, et al. Effect of VanadiumSubstitution For Zirconium on the Glass Forming Ability and MechanicalProperties of a Zr65Cu17.5Ni10Al7.5Bulk Metallic Glass. Journal of Alloys andCompounds.2013,546:41-47
    6Y. H. Li, W. Zhang, C. Dong, et al. Enhancement of Glass-forming Abilityand Corrosion Resistance of Zr-based Zr-Ni-Al Bulk Metallic Glasses withMinor Addition of Nb. Journal of Applied Physics.2011,110:235132
    7P. Gong, K. F. Yao, Y. Shao. Effects of Fe Addition on Glass-forming Abilityand Mechanical Properties of Ti-Zr-Be Bulk Metallic Glass. Journal of Alloysand Compounds.2012,536(25):26-29
    8Z. Y. Suo, K. Q. Qiu, Q. F. Li, et al. Effect of Nb on Glass Forming Abilityand Plasticity of (Ti-Cu)-based Bulk Metallic Glasses. Materials Science andEngineering: A.2010,527(10-11):2486-2491
    9L. Liu, X. J. Zhao, C. L. Ma, et al. Kinetics of Crystallization Process for Pd-based Bulk Metallic Glasses. Intermetallics.2009,17(4):241-245
    10G. Kumar, S. Prades-Rodel, A. Blatter, et al. Unusual Brittle Behavior of Pd-based Bulk Metallic Glass. Scripta Materialia.2011,65(7):585-587
    11L. Zhang, D. C. Luo, S. Z. Kou. Influence of Addition of Gd on Glass FormingAbility, Thermal Stability and Compression Performance of Cu-Based BulkMetallic Glass. Rare Metal Materials and Engineering.2012,41(11):1903-1906
    12J. B. Qiang, W. Zhang, A. Inoue. Ni-(Zr/Hf)-(Nb/Ta)-Al Bulk MetallicGlasses with High Thermal Stabilities. Intermetallics.2009,17(4):249-252
    13A. Makino, X. Li, K. Yubuta, et al. The effect of Cu on the Plasticity of Fe-Si-B-P-based Bulk Metallic Glass. Scripta Materialia.2009,60(5):277-280
    14C. Suryanarayana, A. Inoue. Iron-based Bulk Metallic Glasses. InternationalMaterials Reviews.2013,58(3):131-166
    15J. Torrens-Serra, M. Stoica, J. Bednarcik, et al. Elastic and AnelasticProperties Close to the Curie Temperature of Fe-based Bulk Metallic Glass.Applied Physics Letters.2013,102(4):419044
    16M. X. Xia, S. G. Zhang, H. W. Wang, et al. The Effect of Cu on the Propertiesof Nd-based Bulk Metallic Glasses. Materials&Design.2009,30(4):1236-1239
    17L. Hu, F. Ye. Crystallization Kinetics of Ca65Mg15Zn20Bulk Metallic Glass.Journal of Alloys and Compounds.2013,557:160-165
    18J. Q. Wang, J. Y. Qin, X. N. Gu, et al. Bulk Metallic Glasses Based onYtterbium and Calcium. Journal of Non-Crystalline Solids.2011,357(3):1232-1234
    19A. Masuhr, T. A. Waniuk, R. Busch, et al. Time Scales for Viscous Flow,Atomic Transport, and Crystallization in the Liquid and Supercooled LiquidStates of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Physical Review Letters.1999,82(11):2290-2293
    20A. L. Greer. Confusion by Design. Nature.1993,366:303-304
    21A. Inoue. Stabilization of Metallic Supercooled Liquid and Bulk AmorphousAlloys. Acta Materialia.2000,48(1):279-306
    22R. Busch, W. Liu, W. L. Johnson. Thermodynamics and Kinetics of TheMg65Cu25Y10Bulk Metallic Glass Forming Liquid. Journal of Applied Physics.1998,83(8):4134-4141
    23R. Busch, A. Masuhr, W. L. Johnson. Thermodynamics and Kinetics of Zr-Ti-Cu-Ni-Be Bulk Metallic Glass Forming Liquids. Materials Science andEngineering: A.2001,304-306:97-102
    24王一禾,杨膺善.非晶态合金.冶金工业出版社.1989:4-9
    25戴道生,韩汝琪.非晶态物理学.电子工业出版社.1988:672-680
    26D. M. Herlach, B. Feuerbacher. Non-equilibrium Solidification ofUndercooled Metallic Melts. Advances in Space Research.1991,11(7):255-262
    27C. A. Angell. Formation of Glass from Liquid and Biopolymers. Science.1995,267:1924-1935
    28R. Bohmer, K. L. Ngai, C. A. Angell, et al. Nonexponential Relaxations inStrong and Fragile Glass Formers. Journal of Chemical Physics.1993,99(5):4201-4209
    29F. Spaepen. A Microscopic Mechanism for Steady State Inhomogeneous Flowin Metallic Glasses. Acta Metallurgica.1977,25(4):407-415
    30A. S. Argon. Plastic Deformation in Metallic Glasses. Acta Metallurgica.1979,27(1):47-58
    31C. T. Liu, L. Heatherly, D. S. Eaton, et al. Test Environments and MechanicalProperties of Zr-Based Bulk Amorphous Alloys. Materials Transactions JIM.1998, A29:1182-1811
    32W. J. Wright, R. Saha, W. D. Nix. Deformation Mechanisms of TheZr40Ti14Ni10Cu12Be24Bulk Metallic Glass. Materials Transactions JIM.2001,42:2642-2649
    33H. A. Bruck, A. J. Rosakis, W. L. Johnson. The Dynamic CompressiveBehavior of Beryllium Bearing Bulk Metallic Glasses. Journal of MaterialsResearch.1996,11:503-511
    34J. J. Lewandowski, A. L. Greer. Temperature Rise at Shear Bands in MetallicGlasses. Nature Materials.2006,5:15-19
    35格拉齐阿诺夫.精密合金冶金学.冶金研究出版社.1976:94-100
    36K. Mimura, T. Komukai, M. Isshiki. Purification of Chromium by HydrogenPlasma-arc Zone Melting. Materials Science and Engineering: A.2005,403(1-2):11-16
    37K. Kaneko, N. Sano, Y. Matsushita. Decarburization and Denitrogenization ofIron and Iron-chromium Alloys by Plasma Jet of Hydrogen-argon Gas Mixture.Journal of the Iron and Steel Institute of Japan.1976,62:43-52
    38G. M. Lalev, J. W. Lim, N. R. Munirathnam, et al. Purification of Cu byHydrogen Plasma-arc Zone Melting and Characterization of Trace Impuritiesby Secondary Ion Mass Spectrometry. Materials Characterization.2009,60(1):60-64
    39K. Mimura, S. Lee, M. Isshiki. Removal of Alloying Elements from ZirconiumAlloys by Hydrogen Plasma-Arc Melting. Journal of Alloys and Compounds.1995,221(1-2):267-273
    40J. W. Bae, J. Lim, K. Mimura, et al. Refining Effect of Hydrogen Plasma ArcMelting on Hafnium Metal. Materials Letters.2006,60(21-22):2604-2605
    41D. Elanski, J. W. Lim, K. Mimura, et al. Impurity Removal from Zr, Nb andTa Metals by Hydrogen Plasma Arc Melting and Thermodynamic Estimationof Hydride Formation. Journal of Alloys and Compounds.2006,413(1-2):251-258
    42王亮.钛合金液态气相置氢及其对组织和性能的影响.哈尔滨工业大学博士学位论文.2010:55-65
    43刘鑫旺. γ-TiAl基合金液态置氢及其对组织和力学性能的影响.哈尔滨工业大学博士学位论文.2011:52-65
    44H. Oesterreicher, J. Clinton, H. Bittner. Hydrides of La-Ni Compounds.Materials Research Bulletin.1976,11(10):1241-1247
    45A. M. Van Diepen, K. H. J. Buschow. Hydrogen Absorption in CeFe2andThFe3. Solid State Communications.1977,22(2):113-115
    46S. K. Malik, W. E. Wallace. Hydrogen Absorption and Its Effect on Structureand Magnetic Behavior of GdNi2. Solid State Communications.1977,24(4):283-285
    47I. Jacob, D. Shaltiel. Hydrogen Sorption Properties of Some AB2Laves PhaseCompounds. Journal of the Less Common Metals.1979,65(1):117-128
    48X. L. Yeh, K. Samwer, W. L. Johnson. Formation of An Amorphous MetallicHydride by Reaction of Hydrogen with Crystalline Intermetallic Compounds-A New Method of Synthesizing Metallic Glasses. Applied Physics Letters.1983,42(3):242-243
    49K. Aoki, T. Yamamoto, Y. Satoh, et al. Amorphization of the CeFe2LavesPhase Compound by Hydrogen Absorption. Acta Metallurgica.1987,35(10):2465-2470
    50K. Aoki, T. Yamamoto, T. Masumoto. Hydrogen induced Amorphization inRNi2Laves Phases. Scripta Metallurgica.1987,21(1):27-31
    51K. Chattopadyhay, K. Aoki, T. Masumoto. The Nature of Hydrogen inducedAmorphization of SmNi2Laves Compound. Scripta Metallurgica.1987,21(3):365-369
    52K. Aoki, A. Yanagitani, X. G. Li, et al. Amorphization of RFe2Laves Phasesby Hydrogen Absorption. Materials Science and Engineering.1988,97:35-38
    53K. Aoki, A. Yanagitani, T. Masumoto. Crystalline to AmorphousTransformation in Laves Phase GdFe2induced by Hydrogen Absorption.Applied Physics Letters.1988,52(25):2122-2123
    54K. Aoki, X. Li, T. Masumoto. Differential Thermal Analysis of Hydrogen-induced Amorphization in C15Laves Phase GdFe2. Acta Metallurgica etMaterialia.1992,40(2):221-227
    55K. Aoki, X. Li, T. Masumoto. Factors Controlling Hydrogen-inducedAmorphization of C15Laves Compounds. Acta Metallurgica et Materialia.1992,40(7):1717-1726
    56K. Aoki, X. G. Li, T. Hirata, et al. A Correlation between Stability ofCompounds and Structure of Hydrogen-induced Amorphous Alloys in GdM2(M=Fe, Co, Ni). Acta Metallurgica et Materialia.1993,41(5):1523-1530
    57K. Aoki, K. Mori, H. Onodera, et al. Hydrogen-induced Amorphization of C15Laves TbFe2Compound. Journal of Alloys and Compounds.1997,253-254:106-109
    58K. Mori, H. Onodera, K. Aoki, et al. Magnetic Properties of Crystalline andAmorphous GdFe2HxAlloys Prepared by Hydrogenation. Journal of Alloysand Compounds.1998,270(1-2):35-41
    59K. Aoki. Amorphous Phase Formation by Hydrogen Absorption. MaterialsScience and Engineering: A.2001,304-306:45-53
    60M. Dilixiati, K. Kanda, K. Ishikawa, et al. Hydrogen-induced Amorphizationin C15Laves Phases RFe2. Journal of Alloys and Compounds.2002,337(1-2):128-135
    61K. Itoh, K. Kanda, K. Aoki, et al. X-Ray and Neutron Diffraction Studies ofAtomic Scale Structures of Crystalline and Amorphous TbFe2Dx. Journal ofAlloys and Compounds.2003,348(1-2):167-172
    62K. Ishikaway, N. Ogasawara, K. Aoki. Hydrogen-induced Amorphization inThe C14Laves Compound NdMn2. Philosophical Magazine Letters.2004,84:207-214
    63U. K ster, D. Zander, Triwikantoro, et al. Environmental Properties of Zr-based Metallic Glasses and Nanocrystalline Alloys. Scripta Materialia.2001,44(8-9):1649-1654
    64U. K ster, D. Zander, Triwikantoro. Hydrogenation and Oxidation of Zr-basedMetallic Glasses. Materials Science Forum.2000,343-346:203-212
    65彭德林.氢诱导Zr基非晶合金中纳米晶向非晶转变.稀有金属材料与工程.2007(11):1983-1986
    66A. Peker, W. L. Johnson. A Highly Processable Metallic Glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters.1993,63(17):2342-2344
    67D. Suh, R. H. Dauskardt. Hydrogen Effects on The Mechanical and FractureBehavior of a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass. Scripta Materialia.2000,42(3):233-240
    68D. Suh, P. Asoka-Kumar, R. H. Dauskardt. The Effects of Hydrogen onViscoelastic Relaxation in Zr-Ti-Ni-Cu-Be Bulk Metallic Glasses:Implications for Hydrogen Embrittlement. Acta Materialia.2002,50(3):537-551
    69D. Suh, R. H. Dauskardt. Effects of Pre-Charged Hydrogen on Mechanical andThermal Behavior of Zr-Ti-Ni-Cu-Be Bulk Metallic Glass Alloys. MaterialsTransactions.2001,42(4):638-641
    70单广斌,王勇围,李金许,等.氢对锆基块体非晶的影响.机械强度.2004,26(S):46-48
    71单广斌,王勇围,李金许,等. Zr基块体非晶的氢损伤与氢致滞后断裂.金属学报.2005,41(1):99-102
    72单广斌,魏炳忱,李金许,等.氢对锆基块体非晶合金形变和开裂的影响.金属学报.2006,42(7):689-693
    73任学冲,单广斌,褚武扬,等.氢鼓泡的形核、长大和开裂.科学通报.2005,50(16):15-18
    74J. P. Hirth, L. Kubin. Dislocation in Solids. Elsevier B. V..2009:269-276
    75Y. W. Wang, W. Y. Chu, J. X. Li, et al. In situ Observation of Hydrogen-enhanced Localized Plastic Flow in Zr-based Bulk Metallic Glass. MaterialsLetters.2004,58(19):2393-2396
    76G. B. Shan, J. X. Li, Y. Z. Yang, et al. Hydrogen-enhanced PlasticDeformation During Indentation for Bulk Metallic Glass of Zr65Al7.5Ni10Cu17.5.Materials Letters.2007,61(8-9):1625-1628
    77Q. J. Zhou, J. Y. He, X. P. Hao, et al. The Effect of Hydrogen on PlasticDeformation of Electroless Nickel Phosphorous Amorphous Coating.Materials Science and Engineering: A.2006,437(2):356-359
    78B. S. Berry, W. C. Pritchet, C. C. Tsuei. Discovery of an Internal-FrictionPeak in the Metallic Glass Nb3Ge. Physical Review Letters.1978,41(6):410-413
    79H. Sinning. Local Structure of Metallic Glasses as Seen by MechanicalHydrogen Relaxation. Journal of Alloys and Compounds.2000,310(1-2):224-228
    80H. Mizubayashi, S. Murayama, H. Tanimoto. Feasibility Study of High-strength and High-damping Materials by Means of Hydrogen Internal Frictionin Amorphous Alloys. Journal of Alloys and Compounds.2002,330-332:389-392
    81H. Mizubayashi, Y. Ishikawa, H. Tanimoto. Study of HydrogenatedAmorphous Alloys as High-strength and High-damping Materials. Journal ofAlloys and Compounds.2003,355(1-2):31-36
    82H. Mizubayashi, Y. Ishikawa, H. Tanimoto. Feasibility Study of HydrogenatedAmorphous Alloys as High-damping Materials. Materials Science andEngineering: A.2004,370(1-2):546-549
    83M. Hasegawa, M. Takeuchi, H. Kato, et al. Stability and Hydrogen-inducedInternal Friction of Ti-rich Multicomponent Glassy Alloys. Journal of Alloysand Compounds.2004,372(1-2):116-120
    84S. Takeuchi, T. Yagi, T. Imai, et al. Internal Friction of Hydrogen-dopedMetallic Glasses. Materials Science and Engineering: A.2004,375-377:455-459
    85T. Yagi, T. Imai, R. Tamura, et al. Internal Friction of Hydrogen-dopedMetallic Glasses of High Glass Forming Ability. Materials Science andEngineering: A.2004,370(1-2):264-267
    86M. Hasegawa, M. Takeuchi, H. Kato, et al. Effects of a Small Amount of Si orGe Addition on Stability and Hydrogen-induced Internal Friction ofTi34Zr11Cu47Ni8Glassy Alloys. Acta Materialia.2004,52(7):1799-1806
    87M. Hasegawa, M. Takeuchi, A. Inoue. Effect of Pd Additions on PhaseStability and Hydrogen-induced Internal Friction of Ti34Zr11Cu47Ni8GlassyAlloys. Acta Materialia.2005,53(20):5297-5304
    88M. Hasegawa. Hydrogen-induced High Damping of Bulk Metallic Glasses.Materials Science and Engineering: A.2009,521-522:354-358
    89M. Hasegawa, S. Yamaura, H. Kato, et al. Damping Properties of Hydrogen-absorbed Rod Metallic Glasses. Journal of Alloys and Compounds.2003,355(1-2):37-41
    90N. Ismail, M. Uhlemann, A. Gebert, et al. Hydrogenation and Its Effect on TheCrystallisation Behaviour of Zr55Cu30Al10Ni5Metallic Glass. Journal of Alloysand Compounds.2000,298(1-2):146-152
    91N. Ismail, A. Gebert, M. Uhlemann, et al. Effect of Hydrogen onZr65Cu17.5Al7.5Ni10Metallic Glass. Journal of Alloys and Compounds.2001,314(1-2):170-176
    92D. L. Peng, M. Yan, J. F. Sun, et al. Enhanced Thermal Stability by Pre-charged Hydrogen of a Zr-based Bulk Metallic Glass. Journal of Alloys andCompounds.2005,400(1-2):197-201
    93T. D. Shen, R. B. Schwarz. Bulk Ferromagnetic Glasses in The Fe-Ni-P-BSystem. Acta Materialia.2001,49(5):837-847
    94Y. Zhang, M. X. Pan, D. Q. Zhao, et al. Formation of Zr-based Bulk MetallicGlasses from Low Purity of Materials by Yttrium Addtion. MaterialsTransactions JIM.2000,41(11):1410-1414
    95F. Jiang, Z. J. Wang, Z. B. Zhang, et al. Formation of Zr-based Bulk MetallicGlasses from Low Purity Materials by Scandium Addition. Scripta Materialia.2005,53(5):487-491
    96M. Yan, J. Zou, J. Shen. Effect of Over-doped Yttrium on The Microstructure,Mechanical Properties and Thermal Properties of A Zr-based Metallic Glass.Acta Materialia.2006,54(13):3627-3635
    97W. H. Wang. Roles of Minor Additions in Formation and Properties of BulkMetallic Glasses. Progress in Materials Science.2007,52(4):540-596
    98S. Bossuyt, S. V. Madge, G. Z. Chen, et al. Electrochemical Removal ofOxygen for Processing Glass-forming Alloys. Materials Science andEngineering: A.2004,375-377:240-243
    99A. Castellero, S. Bossuyt, M. Stoica, et al. Improvement of The Glass-formingAbility of Zr55Cu30Al10Ni5and Cu47Ti34Zr11Ni8alloys by Electro-deoxidationof The Melts. Scripta Materialia.2006,55(1):87-90
    100J. Eckert, N. Mattern, M. Zinkevitch, et al. Crystallization Behavior and PhaseFormation in Zr-Al-Cu-Ni Metallic Glass Containing Oxygen. MaterialsTransactions JIM.1998,39(6):623-632
    101B. S. Murty, D. H. Ping, K. Hono, et al. Influence of Oxygen on TheCrystallization Behavior of Zr65Cu27.5Al7.5and Zr66.7Cu33.3Metallic Glasses.Acta Materialia.2000,48(15):3985-3996
    102Z. P. Lu, H. Bei, Y. Wu, et al. Oxygen Effects on Plastic Deformation of a Zr-based Bulk Metallic Glass. Applied Physics Letters.2008,92(1):11915
    103C. T. Liu, M. F. Chisholm, M. K. Miller. Oxygen Impurity and MicroalloyingEffect in a Zr-based Bulk Metallic Glass Alloy. Intermetallics.2002,10(11-12):1105-1112
    104X. H. Lin, W. L. Johnson, W. K. Rhim. Effect of Oxygen Impurity onCrystallization of an Undercooled Bulk Glass Forming Zr-Ti-Cu-Ni-Al Alloy.Materials Transactions JIM.1997,38(5):473-477
    105Z. Altounian, E. Batalla, J. O. Strom-Olsen, et al. The Influence of Oxygenand Other Impurities on The Crystallization of NiZr2and Related MetallicGlasses. Journal of Applied Physics.1987,61(1):149-155
    106U. K ster, J. Meinhardt, S. Roos, et al. Formation of Quasicrystals in BulkGlass Forming Zr-Cu-Ni-Al Alloys. Applied Physics Letters.1996,69(2):179-181
    107A. Gebert, J. Eckert, L. Schultz. Effect of Oxygen on Phase Formation andThermal Stability of Slowly Cooled Zr65Al7.5Cu17.5Ni10Metallic Glass. ActaMaterialia.1998,46(15):5475-5482
    108R. D. Conner, R. E. Maire, W. L. Johnson. Effect of Oxygen Concentrationupon The Ductility of Amorphous Zr57Nb5Al10Cu15.4Ni12.6. Materials Scienceand Engineering: A.2006,419(1-2):148-152
    109V. Keryvin, C. Bernard, J. C. Sangleb uf, et al. Toughness of Zr55Cu30Al10Ni5Bulk Metallic Glass for Two Oxygen Levels. Journal of Non-CrystallineSolids.2006,352(26-27):2863-2868
    110梁英教,车荫昌.无机物热力学数据手册.东北大学出版社.1993:449-485
    111C. T. Liu, C. L. White, J. A. Horton. Effect of Boron on Grain-boundaries inNi3Al. Acta Metallurgica.1985,33(2):213-229
    112Z. P. Lu, C. T. Liu. Role of Minor Alloying Additions in Formation of BulkMetallic Glasses: A Review. Journal of Materials Science.2004,39(12):3965-3974
    113W. H. Wang. Roles of Minor Additions in Formation and Properties of BulkMetallic Glasses. Progress in Materials Science.2007,52(4):540-596
    114H. X. Li, J. E. Gao, Z. B. Jiao, et al. Glass-forming Ability Enhanced byProper Additions of Oxygen in a Fe-based Bulk Metallic Glass. AppliedPhysics Letters.2009,95(16):161905
    115Z. Liu, R. Li, H. Wang, et al. Nitrogen-doping Effect on Glass Formation andPrimary Phase Selection in Cu-Zr-Al Alloys. Journal of Alloys andCompounds.2011,509(16):5033-5037
    116Y. X. Wang, H. Yang, G. Lin, et al. Glass Formation Enhanced by Oxygen inBinary Zr-Cu System. Scripta Materialia.2010,62:682-685
    117闫志杰,李金富,王鸿华,等.反复重熔母合金铸锭对Zr-Al-Ni-Cu-Ag金属玻璃中析出二十面体相稳定性影响.中国科学E辑:技术科学.2003,33(9):769-773
    118Y. Yokoyama, K. Fukaura, A. Inoue. Cast Structure and Mechanical Propertiesof Zr-Cu-Ni-Al Bulk Glassy Alloys. Intermetallics.2002,10(11-12):1113-1124
    119Z. P. Lu, J. Shen, D. W. Xing, et al. Binary Eutectic Clusters and GlassFormation in Ideal Glass-forming Liquids. Applied Physics Letters.2006,89:71910
    120Y. J. Sun, D. D. Qu, Y. J. Huang, et al. Zr-Cu-Ni-Al Bulk Metallic Glasseswith Superhigh Glass-forming Ability. Acta Materialia.2009,57(4):1290-1299
    121A. Takeuchi, A. Inoue. Classification of Bulk Metallic Glasses by Atomic SizeDifference, Heat of mixing and Period of Constituent Elements and itsApplication to Characterization of The Main Alloying Element. MaterialsTransactions.2005,46(12):2718-2829
    122F. Q. Guo, S. J. Poon, G. J. Shiflet. Enhanced Bulk Metallic Glass Formabilityby Combining Chemical Compatibility and Atomic Size Effects. Journal ofApplied Physics.2004,97:13512
    123A. Inoue, A. Takeuchi. Recent Development and Application Products of BulkGlassy Alloys. Acta Materialia.2011,59(6):2243-2267
    124邢大伟. ZrCuNiAlTi块体非晶合金的形成与晶化动力学.哈尔滨工业大学博士学位论文.2003:54-55
    125E. S. Park, D. H. Kim. Formation of Ca-Mg-Zn Bulk Glassy Alloy by Castinginto Cone-shaped Copper Mold. Journal of Materials Research.2004,19(3):685-688
    126O. N. Senkov, J. M. Scott. Glass fForming Ability and Thermal Stability ofTernary Ca-Mg-Zn Bulk Metallic Glasses. Journal of Non-Crystalline Solids.2005,351(37-39):3087-3094
    127K. J. Laws, B. Gun, M. Ferry. Influence of Casting Parameters on the CriticalCasting Size of Bulk Metallic Glass. Metallurgical and Materials TransactionsA.2009,40A(10):2377-2387
    128G. Ghosh. First-Principles Calculations of Structural Energetics of Cu-TM(TM=Ti, Zr, Hf) Intermetallics. Acta Materialia.2007,55(10):3347-3374
    129G. Ghosh, M. Asta. First-Principles Calculation of Structural Energetics ofAl–TM (TM=Ti, Zr, Hf) Intermetallics. Acta Materialia.2005,53(11):3225-3252
    130T. Nagase, K. Takizawa, Y. Umakoshi. Electron-Irradiation-Induced Solid-State Amorphization in Supersaturated Ni–Zr Solid Solutions. Intermetallics.2011,19(4):511-517
    131T. B. Massalshi, H. Okamoto, P. R. Subramanian, et al. Binary Alloy PhaseDiagrams. ASM International.1990:1373-1377
    132耿浩然,孙春静,杨中喜,等.金属熔体黏度与结构相关性的分子动力学模拟.物理学报.2006(3):1320-1324
    133D. Turnbull. Under What Conditions Can A Glass be Formed. ContemporaryPhysics.1969,10(5):173-488
    134C. A. Angell. Spectroscopy Simulation and Scattering, and The MediumRange Order Problem in Glass. Journal of Non-Crystalline Solids.1985,73(1-3):1-17
    135R. Brüning, K. Samwer. Glass Transition on Long Time Scales. PhysicalReview B.1992,46(18):11318-11322
    136J. M. Berrogo, A. Conde, S. Roth, et al. Glass-forming Ability and SoftMagnetic Properties of FeCoSiAlGaPCB Amorphous Alloys. Journal ofApplied Physics.2002,92(4):2073-2078
    137J. M. Barandiarán, J. Colmenero. Continuous Cooling Approximation for TheFormation of A Glass. Journal of Non-Crystalline Solids.1981,46(3):277-287
    138F. Guo, S. J. Poon, G. J. Shiflet. Metallic Glass Ingots Based on Yttrium.Applied Physics Letters.2003,83(13):2575-2577
    139J. D. Bernal. A Geometrical Approach to The Structure of Liquids. Nature.1959,183:141-147
    140J. D. Berna. Geometry of The Structure of Monatomic Liquids. Nature.1960,185:68-70
    141J. Sietsma, B. J. Thijsse. Characterization of Free Volume in Atomic Modelsof Metallic Glasses. Physical Review B.1995,52(5):3248-3255
    142C. Nagel, K. R tzke, E. Schmidtke, et al. Positron-annihilation Studies ofFree-Volume Changes in The Bulk Metallic Glass Zr65Al7.5Ni10Cu17.5duringStructural Relaxation and at The Glass Transition. Physical Review B.1999,60(13):9212-9215
    143P. Asoka-Kumar, J. Hartley, R. Howel, et al. Chemical Ordering around Open-volume Regions in Bulk Metallic Glass Zr52.5Ti5Al10Cu17.9Ni14.6. AppliedPhysics Letters.2000,77(13):1973-1975
    144K. M. Flores, D. Suh, R. H. Dauskardt, et al. Characterization of Free Volumein a Bulk Metallic Glass using Positron Annihilation Spectroscopy. Journal ofMaterials Research.2002,17(1153):1153-1160
    145H. Nakanishi, Y. C. Jean. Positron and Positronium Chemistry. ElsevierScience.1988:159-180
    146K. M. Flores, E. Sherer, A. Bharathula, et al. Sub-nanometer Open VolumeRegions in A Bulk metallic glass investigated by positron annihilation. ActaMaterialia.2007,55(10):3403-3411
    147Y. Lu, Y. Huang, W. Zheng, et al. Free Volume and Viscosity of Fe-Co-Cr-Mo-C-B-Y Bulk Metallic Glasses and Their Correlation with Glass-formingAbility. Journal of Non-Crystalline Solids.2012,358(10):1274-1277
    148J. M. Campillo, F. Plazaola, M. J. Puska. Positron Lifetime Calculations ofHexagonal Metals with The True Geometry. Physica Status Solidi B.1998,206(2):509-518
    149N. Eliaz, D. Eliezer, D. L. Olson. Hydrogen-Assisted Processing of Materials.Materials Science and Engineering: A.2000,289(1-2):41-53
    150B. Chen, S. Pang, P. Han, et al. Improvement in Mechanical Properties of aZr-based Bulk Metallic Glass by Laser Surface Treatment. Journal of Alloysand Compounds.2010,504S:S45-S47
    151H. Choi-Yim, R. Busch, U. K ster, et al. Synthesis and Characterization ofParticulate Reinforced Zr57Nb5Al10Cu15.4Ni12.6Bulk Metallic GlassComposites. Acta Materialia.1999,47(8):2455-2462
    152G. Wang, K. C. Chan, L. Xia, et al. Self-organized Intermittent Plastic Flow inBulk Metallic Glasses. Acta Materialia.2009,57(20):6146-6155
    153张哲峰,伍复发,范吉堂,等.非晶合金材料的变形与断裂.中国科学(G辑:物理学力学天文学).2008(4):349-372
    154Z. F. Zhang, G. He, H. Zhang, et al. Rotation Mechanism of Shear FractureInduced by High Plasticity in Ti-based Nano-Structured CompositesContaining Ductile Dendrites. Scripta Materialia.2005,52(9):945-949
    155B. A. Sun, H. B. Yu, W. Jiao, et al. Plasticity of Ductile Metallic Glasses: ASelf-organized Critical State. Physical Review Letters.2010,105(3):35501
    156Z. F. Zhang, J. Eckert, L. Schultz. Difference in Compressive and TensileFracture Mechanisms of Zr59Cu20Al10Ni8Ti3Bulk Metallic Glass. ActaMaterialia.2003,51(4):1167-1179
    157Y. J. Huang, J. Shen, J. F. Sun. Bulk Metallic Glasses: Smaller is Softer.Applied physics letters.2007,90:81919
    158R. D. Conner, W. L. Johnson, N. E. Paton, et al. Shear Bands and Cracking ofMetallic Glass Plates in Bending. Journal of Applied Physics.2003,94(2):904-911
    159R. D. Conner, Y. Li, W. D. Nix, et al. Shear Band Spacing under Bending ofZr-based Metallic Glass Plates. Acta Materialia.2004,52(8):2429-2434
    160B. Chen, Y. Li, M. Yi, et al. Optimization of Mechanical Properties of BulkMetallic Glasses by Residual Stress Adjustment Using Laser Surface Melting.Scripta Materialia.2012,66(12):1057-1060
    161Y. Zhang, W. H. Wang, A. L. Greer. Making Metallic Glasses Plastic byControl of Residual Stress. Nature Materials.2006,5(11):857-860
    162R. T. Qu, J. X. Zhao, M. Stoica, et al. Macroscopic Tensile Plasticity of BulkMetallic Glass through Designed Artificial Defects. Materials Science andEngineering: A.2012,534:365-373
    163R. T. Qu, Q. S. Zhang, Z. F. Zhang. Achieving Macroscopic Tensile Plasticityof Monolithic Bulk Metallic Glass by Surface Treatment. Scripta Materialia.2013,68(11):845-848
    164T. Wada, A. Inoue. Formation of Porous Pd-based Bulk Glassy Alloys by aHigh Hydrogen Pressure Melting-water Quenching Method and TheirMechanical Properties. Materials Transactions.2004,45(8):2761-2765
    165T. Wada, A. Inoue, A. L. Greer. Enhancement of Room-temperature Plasticityin a Bulk Metallic Glass by Finely Dispersed Porosity. Applied Physics Letters.2005,86:251907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700