用户名: 密码: 验证码:
基于基因芯片对浸矿微生物群落结构及功能的定量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国矿产资源是以低品位多金属复杂原生硫化矿为主,传统选冶技术成本高,环境污染严重已经不能满足经济的需求,而微生物冶金通过利用以矿物为能源的微生物的作用,氧化分解矿物使金属离子进入溶液,进一步分离、提取金属具有成本低、流程短、设备简单、低污染等优势逐渐成为解决资源开发与环境保护矛盾的新途径。
     但生物冶金过程存在浸出速度慢、浸出周期长,对某些重金属缺乏抗性的问题,特别是对于复杂低品位的原生硫化矿而言,需要有高氧化活性的微生物才能破坏其晶格,而如何快速鉴别与筛选高效浸矿微生物成为解决生物冶金浸出速度慢、浸出率低这一难题的关键;另一方面,生物冶金过程的多样性也决定了浸矿体系微生物种群与功能及其影响因素的复杂性,有效的浸矿微生物在浸矿体系中没有高效表达。上述两个难点是制约微生物冶金技术发展的瓶颈,因此,如何强化细菌浸出成为生物冶金发展的重要课题,需要用更新、更有力的生物技术来研究浸矿微生物本身特性。
     嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)是目前研究得最多的浸矿细菌,在矿堆、浸矿系统中普遍存在,好氧嗜酸,可以将Fe2+氧化成Fe3+,将还原态的硫氧化成SO42-,是生物冶金中最常用的菌种,也是完成全基因组序列测定的唯一浸矿细菌,这样我们就可以在全基因组水平上对A. ferrooxidans进行全面系统的研究。本文首先基于TIGR公布的A. ferrooxidans ATCC 23270全部序列信息共选得3217个寡聚核苷酸探针,挑选人类基因和植物基因作为阴性对照或定量对照,并以A.f菌的基因组DNA作为阳性对照,设计了58mer寡核苷酸全基因组芯片,整个芯片包含3270个探针。我们还对此芯片进行了评估,此芯片的杂交最佳温度为45℃;检测灵敏度为5ng, 100ng时已经达到饱和,且信号值与浓度之间具有很强的线性关系(r2=0.992),可以作为定量判定的依据;没有发现与非靶标基因间的非特异性交互杂交现象,表明此寡核苷酸芯片具有良好的特异性。
     利用构建的全基因组芯片对不同浸矿活性的菌株进行了基因层面的分析,在3217个基因中发现有967个基因为不同的菌株所特有,其余的2250个(70%)基因为所有A.f菌共有,可以作为是否是A.f菌的判据;另发现320个高氧化活性菌特征基因,在其中还找到135个与亚铁和硫氧化以及抗性等功能有关的基因,这些基因作为A.f菌冶金性能好坏的判据。据此建立了“嗜酸氧化亚铁硫杆菌及其活性的基因芯片检测方法”国家标准(GB/T20929-2007)。
     为了进一步了解有效的浸矿微生物在浸矿体系中高效表达的途径,本文基于我们已经克隆和测序获得的嗜酸性微生物序列和NCBI已知的相关序列设计了1194个50mer寡聚核苷酸探针,其中包括16S rRNA探针140个、功能基因探针1054个,这些功能基因探针的靶标序列分别涉及到碳固定,氮代谢,硫代谢,铁氧化,金属抗性、电子传递)和外膜蛋白相关的功能基因,人类基因在芯片中用来作为阴性对照和定量对照。此外,基因芯片上所涉及的这些靶标序列几乎包含目前在自然酸性环境和浸出系统中已知的27个属和55种嗜酸性细菌的全部基因序列,能够有效的分辨酸性生态系统中微生物群落结构和功能的差异性。
     本文还使用基于16S rRNA基因的RFLP技术研究了AMD微生物群落的地理分布,以及使用第二代功能基芯片研究了其微生物群落的系统发育和功能多样性、组成和结构;结果表明检测的不同的AMD样地其微生物群落无论在系统发育多样性、功能多样性还是组成和结构上都不同,周围的环境参数可能是造成这种现象主要的原因,尤其是Fe、S、Ca、Mg、Zn和Cu的浓度以及pH值是其最主要的影响因素;这项研究提供了有力的手段去了解酸性矿坑水的地理分布、多样性、组成、结构和功能同时对进一步发展生物冶金技术从废矿石和低品位矿石中回收有价金属离子提供有力的科学支撑。
The mineral resources in China are mainly Low-grade complex and original metal sulfide-based. The traditional mineral separation and smelting technology with high cost and environmental pollution can no longer meet the demands of the economy, however, micro-organisms through the use of mineral-metallurgical energy microorganisms, oxidative decomposition of the metal ions into the mineral solution, and further separation, extraction of metals with low cost, raw materials low demand, the process short, simple equipment, low pollution and other advantages to has become a new way to solve the problem between resource development and environmental protection.
     However, the bioleaching metallurgical process is slow, leaching cycle is long, lacks resistance to some heavy issues. Especially for the native complex of low-grade sulfide ore, the biological oxidation requires more energy, which requires a higher oxidation activity of the microorganisms to destroy its crystal lattice, but how to quickly identify and screen high leaching microorganisms become key factors to the problem of the slow bioleaching and the low leaching rate; on the other hand, the biological diversity of metallurgical process also determines the leaching system and function of microbial populations and the complexity of factors, effective microorganisms in the leaching system are not highly expressed. The two difficulties restrict the development of microbial metallurgy, therefore, how to strengthen the development of bacterial leaching becomes important issue in biometallurgy, It is necessary to use newer, more powerful techniques to study the bio-leaching characteristics of the microorganism itself.
     A. ferrooxidans is the most studied bioleaching bacteria. It could oxidize Fe2+ to Fe3+, reduced sulfur in the oxidized SO42-, are prevalent at low and middle temperatures and in the FeS2 environment (mine heap leaching system), and is a very important for industrial production and environmental protection of the chemoautotrophic bacteria, is the most commonly used bio-metallurgical strain. It is the completion of genome sequencing the only bioleaching bacteria, so that we can comprehensive study on the whole genome of A. ferrooxidans.
     Based on the published TIGR A. ferrooxidans ATCC 23270 sequence information,3217 oligonucleotide probes were selected. And specific human genes and plant genes were selected as negative controls and quantitative controls. With A.f bacterial genome to DNA as a positive control,58mer oligonucleotide whole genome chip were designed, which contains 3270 probe. To verify the practicality and find the best hybridization conditions, we evaluated this chip. The results show:The best temperature for the hybridization is 45℃; the signal at a concentration of 100ng value has already reached saturation and test sensitivity is 5 ng, moreover, the signal value Concentration has a strong linear relationship (r2=0.992), probe found no non-target genes with non-specific interaction between the hybrid phenomenon indicating that the oligonucleotide microarray has a good specificity.
     We also use the whole genome micro array constructed leaching activity of different strains of gene-level analysis. Through this experimental analysis,3217 genes were found to have 967 genes specific for different strains. The remaining 2250 (70%) were shared by total A.f bacterial gene, which can be used as the criterion of whether it is A.f; Among the other 320 genes with high oxidation activity characteristics of bacteria,135 related with resistance to ferrous iron and sulfur oxidation and other functions related genes. The bacterial genes could be used as criteria to judge the metallurgical properties of A.f bacteria. Thus a " The methods of testing Acidithiobacillus ferrooxodans and its activity by microarray technology " National Standards (GB/T20929-2007) was established.
     For to understand how effective microorganisms in the leaching system are highly expressed, we have cloned and sequenced the obtained sequences and NCBI acidophilic micro-organisms related known sequences of the 1194 oligonucleotide probes, including 140 16S rRNA probes, functional gene probe 1054. The functional gene probe target sequences were related to carbon sequestration, nitrogen metabolism, sulfur metabolism, iron oxide, metal resistance, electron transfer and outer membrane protein-related genes. In this chip human gene were used as negative controls and quantitative controls. In addition, gene chip containing target sequences involved nearly all the present leaching systems in the natural acidic environment, the 27 known genera and 55 species of acidophilic bacteria of all gene sequences, which can effectively distinguish acidic microbial community structure of ecosystems and functional differences.
     This work used 16S rRNA gene-based RFLP technology to study the geographical distribution of microbial communities in AMD, and used functional genome arrays of the second generation to study its microbial community diversity in the system development and function, composition and structure; The results show that in detection of the different AMD plots, the microbial community in terms of phylogenetic diversity, functional diversity or composition and structure are different, the surrounding environmental parameters may be the main reason for this phenomenon, especially Fe, S, Ca, Mg, Zn and Cu concentrations and the pH value is the most important factor; This study provides a powerful means to understand the geographical distribution of acid mine water, diversity, composition, structure and function, meanwhile, provide a strong scientific support to the further development of bio-metallurgy technology from the waste rock and ore in the recovery of the low taste of metal ions.
引文
1.龚文琪,魏鹏.微生物技术及21世纪矿产资源开发.中国非金属矿工业导刊,2000,5:25-28.
    2.张晓云.微生物在矿物与金属工业中的应用.矿业快报,2002(4):57.
    3. Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev,1995, 59(1):143-169.
    4. Bintrim S.B., Donohue T.J., Handelsman J., et al. Molecular phylogeny of Archaea from soil. Proceedings of the National Academy of Sciences of the United States of America,1997,94(1):277-282.
    5. Bodrossy L., Kovacs K.L., McDonald I.R., et al. A novel thermophilic methane-oxidising y-Proteobacterium. FEMS Microbiology Letters,1999, 170(2):335-341.
    6. Boston P., Spilde M., Northup D., et al. Cave biosignature suites:microbes, minerals, and Mars. Astrobiology,2001, 1(1):25-55.
    7. Bowman J.P.McCuaig R.D. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Applied and Environmental Microbiology,2003,69(5):2463-2483.
    8. Brosius J., Dull T.J., Sleeter D.D., et al. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Journal of Molecular Biology,1981, 148(2):107-127.
    9. Cudrigh S., Die Wasserwegigkeit des Gasteiner Thermalwassers.2002, University of Salzburg:Salzburg.
    10. Dedysh S.N., Ricke P.Liesack W. NifH and NifD phylogenies:an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology,2004,150(5):1301.
    11. Weidler G.W., Dornmayr-Pfaffenhuemer M., Gerbl F.W., et al. Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Applied and Environmental Microbiology,2007,73(1):259.
    12.王中海,周源,钟洪鸣等.微生物浸矿技术发展现状.金属矿山,2007(8):4-6.
    13. Hiltunen P., Vuorinen A., Rehtij rvi P., et al. Bacterial pyrite oxidation:release of iron and scanning electron microscopic observations. Hydrometallurgy,1981, 7(1-2):147-157.
    14. Jerez C.A., Arredondo R.A. Sensitive immunological method to enumerate Leptospirillum ferrooxidans in the presence of Thiobacillus ferrooxidans. FEMS Microbiology Letters,1991,78(1):99-102.
    15. Murr L.Berry V. Direct observations of selective attachment of bacteria on low-grade sulfide ores and other mineral surfaces. Hydrometallurgy,1976,2(1):11-24.
    16. Brierley J.A. Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Applied and Environmental Microbiology,1978,36(3):523.
    17. Torma A.E. Leaching of metals. Special Microbial Processes,1988:367.
    18. McDonald G.W., Udovic T.J., Dumesic J.A., et al. Equilibria associated with cupric chloride leaching of chalcopyrite concentrate. Hydrometallurgy,1984, 13(2):125-135.
    19. Hutchins S., Davidson M., Brierley J., et al. Microorganisms in reclamation of metals. Annual Reviews in Microbiology,1986,40(1):311-336.
    20.尹升华,吴爱祥,苏永定.低品位矿石微生物浸出作用机理研究.矿冶,2006,15(2):23-27.
    21. Baker B.J.Banfield J.F. Microbial communities in acid mine drainage. FEMS Microbiology Ecology,2003,44(2):139-152.
    22. Francis C.A., Roberts K.J., Beman J.M., et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(41):14683-14688.
    23. Fowler T.Crundwell F. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Applied and Environmental Microbiology,1999,65(12):5285-5292.
    24.邱冠周,柳建设,王淀佐等.氧化亚铁硫杆菌生长过程铁的行为.中南工业大学学报,1998,29(3):226-228.
    25.何正国,李雅芹,周培瑾.氧化亚硫杆菌的铁和硫氧化系硫及其分子遗传学.微生物学报,2000,40(5):563-566.
    26. Spencer P.A. Influence of bacterial culture selection on the operation of a plant treating refractory gold ore. International Journal of Mineral Processing,2001, 62(1-4):217-229.
    27. Crundwell F.K. The kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans. Bioelectrochemistry and Bioenergetics,1997, 43(1):115-122.
    28. Rawlings D.E.Silver S. Mining with microbes. Nature Biotechnology,1995, 13(8):773-778.
    29.廖梦霞,邓天龙.硫化矿生物湿法冶金技术现状与展望.四川有色金属,2003(3):33-35.
    30. Bos P.Kuenen J.G. Microbial treatment of coal. Microbial mineral recovery, 1990:343-377.
    31. Jensen A.B.Webb C. Treatment of H2S-containing gases:a review of microbiological alternatives. Enzyme and Microbial Technology,1995,17(1):2-10.
    32. Cairns-Smith A.G., Hall A.J.Russell M.J. Chapter 9 Mineral theories of the origin of life and an iron sulfide example. Origins of Life and Evolution of Biospheres,1992, 22(1):161-180.
    33. Alfreider A., Vogt C., Babel W. Microbial diversity in an in situ reactor system treating monochlorobenzene-contaminated groundwater as revealed by 16S ribosomal DNA analysis. Sys Appl Microbiol 2002,25:232-240.
    34. Brierley J.Brierley C. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy,2001,59(2-3):233-239.
    35. Bayat B.Sari B. Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor. African Journal of Biotechnology,2010,9(44):7504-7512.
    36. Brierley C.L.Roux N.W.L. Bacterial leaching. Critical Reviews in Microbiology, 1978,6(3):207-262.
    37. Harrison Jr A.P. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annual Reviews in Microbiology,1984,38(1):265-292.
    38. Lundgren D.Silver M. Ore leaching by bacteria. Annual Reviews in Microbiology, 1980,34(1):263-283.
    39. Friedrich C.G., Rother D., Bardischewsky F., et al. Oxidation of reduced inorganic sulfur compounds by bacteria:emergence of a common mechanism?. Applied and Environmental Microbiology,2001,67(7):2873.
    40. Pronk J., Meulenberg R., Hazeu W., et al. Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiology Letters,1990, 75(2-3):293-306.
    41. Suzuki I. Oxidation of inorganic sulfur compounds:chemical and enzymatic reactions. Canadian Journal of Microbiology,1999,45(2):97-105.
    42. Tuovinen O. Biological fundamentals of mineral leaching processes. Microbial mineral recovery,1990:55-77.
    43. Ehrlich H.Brierly C., eds. Microbial mineral recovery.1989.
    44. Bagheri S.A.S.Hassani H. Isolation and preliminary identification of some iron-and sulfur-oxidizing microorganisms from the Sarcheshmeh copper mine. Process Metallurgy,2001,11:393-396.
    45. Rawlings D.E., Pretorius I.Woods D.R. Expression of a Thiobacillus ferrooxidans origin of replication in Escherichia coli. Journal of bacteriology,1984, 158(2):737-740.
    46. Attia Y., Elzeky M. Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. The Chemical Engineering Journal and The Biochemical Engineering Journal,1995,56(2):b115-b124.
    47.姚国成,阮仁满.生物冶金常用浸矿细菌及改良育种的基本方法.金属矿山,2002(11):26-29.
    48.杨洪英,杨立赵玉山等.难处理金矿石中硫化物细菌氧化的活性序列.有色金属,2002,54(2):42-44.
    49.杨显万,沈庆峰郭玉霞,微生物湿法冶金.2003,北京:冶金工业出版社.
    50.徐茗臻.影响细菌浸出率的因素研究.湿法冶金,2000,19(3):32-34.
    51.A.D.贝雷,G.S.汉斯福德.高浓度下硫化矿生物氧化的影响因素综述.国外金属矿选矿,1996,1:28-39.
    52. Tipre D.Dave S. Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density. Hydrometallurgy,2004,75(1-4):37-43.
    53.沈萍,微生物学.2000,北京:高等教育出版社.
    54. Mino T., Van Loosdrecht M.Heijnen J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research,1998, 32(11):3193-3207.
    55. Kumar R.N.Nagendran R. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Chemosphere,2007,66(9):1775-1781.
    56. Pina P., Leao V., Silva C., et al. The effect of ferrous and ferric iron on sphalerite bioleaching with Acidithiobacillus sp. Minerals engineering,2005,18(5):549-551.
    57. Brewis T. Metal extraction by bacterial oxidation. Mining Magazine(UK),1995, 173:197.
    58. Torma A.E., Walden C.Branion R. Microbiological leaching of a zinc sulfide concentrate. Biotechnology and bioengineering,1970,12(4):501-517.
    59. Lindstr m E.B., Gunneriusson E.Tuovinen O.H. Bacterial oxidation of refractory sulfide ores for gold recovery. Critical RevieWS in biotechnology,1992, 12(1-2):133-155.
    60. Stahl D. Molecular approaches for the measurement of density, diversity, and phylogeny. Manual of environmental microbiology,1997:102-114.
    61. McCaig A.E., Glover L.A.Prosser J.I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology,1999,65(4):1721.
    62. Qiu G., Wan M., Qian L., et al. Archaeal diversity in acid mine drainage from Dabaoshan Mine. China. J. Basic Microbiol,2008,48(5):401"C409.
    63. Yin H., Cao L., Qiu G, et al. Molecular diversity of 16S rRNA and gyrB genes in copper mines. Archives of microbiology,2008,189(2):101-110.
    64. Karnachuk O., Gerasimchuk A., Banks D., et al. Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia. Microbiology,2009, 78(4):483-491.
    65. Roane T.Pepper I.L. Microbial responses to environmentally toxic cadmium. Microbial ecology,1999,38(4):358-364.
    66. Marsh T.L., Saxman P., Cole J., et al. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Applied and Environmental Microbiology,2000,66(8):3616.
    67. Bruneel O., Duran R., Casiot C., et al. Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoules, France. Applied and Environmental Microbiology,2006,72(1):551.
    68. Rowe O.F., S"(?)nchez(?)\Espa a J., Hallberg K.B., et al. Microbial communities and geochemical dynamics in an extremely acidic, meta(?)\rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental microbiology,2007,9(7):1761-1771.
    69. He Z., Xiao S., Xie X., et al. Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine. Extremophiles,2007, 11(2):305-314.
    70. Tamaki H., Sekiguchi Y., Hanada S., et al. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Applied and Environmental Microbiology,2005, 71(4):2162.
    71. Webster G., Newberry C.J., Fry J.C., et al. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques:a cautionary tale. Journal of Microbiological Methods,2003,55(1):155-164.
    72. Kim J., Koo S.Y., Kim J.Y., et al. Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea. Environmental geology,2009,58(7):1567-1574.
    73. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Current opinion in Microbiology,1999,2(3):317-322.
    74. Yang Y.Zeyer J. Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology,2003,69(5):2879.
    75. Mahmoud K.K., Leduc L.Ferroni G. Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). Journal of Microbiological Methods,2005,61(1):33-45.
    76. Schippers A., Nagy A.A., Kock D., et al. The use of FISH and real-time PCR to monitor the biooxidation and cyanidation for gold and silver recovery from a mine tailings concentrate (Ticapampa, Peru). Hydrometallurgy,2008,94(1-4):77-81.
    77. Tiedje J.M., Asuming-Brempong S., N1sslein K., et al. Opening the black box of soil microbial diversity. Applied Soil Ecology,1999,13(2):109-122.
    78. Clerc A., Manceau C.Nesme X. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies Ⅲ of Pseudomonas syringae. Applied and Environmental Microbiology,1998,64(4):1180.
    79. Kirk J.L., Beaudette L.A., Hart M., et al. Methods of studying soil microbial diversity. Journal of Microbiological Methods,2004,58(2):169-188.
    80. Hu J.Van Eldik L.J. Glial-derived proteins activate cultured astrocytes and enhance beta amyloid-induced glial activation. Brain research,1999,842(1):46-54.
    81. Iijima K., Ando K., Takeda S., et al. Neuron(?)\Specific Phosphorylation of Alzheimer's |A(?)\Amyloid Precursor Protein by Cyclin(?)\Dependent Kinase 5. Journal of neurochemistry,2000,75(3):1085-1091.
    82. Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology,1975,98(3):503-517.
    83. Singh-Gasson S., Green R.D., Yue Y, et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature Biotechnology, 1999,17(10):974-978.
    84. Kirmizis A., Bartley S.M., Kuzmichev A., et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes & development, 2004,18(13):1592.
    85. Schena M., Shalon D., Davis R.W., et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270(5235):467.
    86. Schena M., Shalon D., Heller R., et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proceedings of the National Academy of Sciences of the United States of America,1996,93(20):10614.
    87. DeRisi J., Penland L., Brown P.O., et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature genetics,1996,14(4):457-460.
    88. Wodicka L., Dong H., Mittmann M., et al. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnology,1997,15(13):1359-1367.
    89.安海谦,卢圣栋.DNA芯片技术及其应用.生物工程进展,1998,18(2):37-40.
    90. Wang J., Hu L., Hamilton S., et al. Research Report RNA Amplification Strategies for cDNA Microarray Experiments. Biotechniques,2003,34(2):394-400.
    91. Schmidt B.F., Chao J., Zhu Z., et al. Signal amplification in the detection of single-copy DNA and RNA by enzyme-catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29-tyramide. Journal of Histochemistry & Cytochemistry,1997,45(3):365.
    92. Xiang C.C., Chen M., Ma L., et al. A new strategy to amplify degraded RNA from small tissue samples for microarray studies. Nucleic Acids Research,2003, 31(9):e53.
    93. Zhou J., He Z., Van Nostrand J.D., et al. Applying GeoChip Analysis to Disparate Microbial Communities Print E-mail.
    94.张于光,,李迪强,肖启明等.基因芯片及其在环境微生物研究中的应用.微生物学报,2004,44(3):406-410.
    95. Wu L., Thompson D.K., Li G, et al. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology,2001,67(12):5780.
    96.李明,,曾任森,骆世明.基因芯片技术研究日本曲霉(Aspergillus japonicus)化感物质SAF抑制植物生长的分子机理.生态学报,2008,28(008):3891-3897.
    97. Kawasaki S., Borchert C., Deyholos M., et al. Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell Online,2001,13(4):889.
    98.杨传平,,王玉成,刘桂丰等.应用SSH技术研究NaHCO3胁迫下柽柳基因的表达.遗传学报,2004,31(9):926-933.
    99. Tao H., Bausch C., Richmond C., et al. Functional genomics:expression analysis of Escherichia coli growing on minimal and rich media. Journal of bacteriology,1999, 181(20):6425.
    100. DeRisi J.L., Iyer V.R.Brown P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science,1997,278(5338):680.
    101.de Saizieu A., Certa U., Warrington J., et al. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nature Biotechnology,1998, 16(1):45-48.
    102. Gupta R.S. The phylogeny of proteobacteria:relationships to other eubacterial phyla and eukaryotes. FEMS Microbiology Reviews,2000,24(4):367-402.
    103. Anthony R., Brown T., French G. Rapid diagnosis of bacteremia by universal amplification of 23 S ribosomal DNA followed by hybridization to an oligonucleotide array. Journal of clinical microbiology,2000,38(2):781.
    104. Call D.R., Brockman F.J.Chandler D.P. Detecting and genotyping Escherichia coli 0157:H7 using multiplexed PCR and nucleic acid microarrays. International journal of food microbiology,2001,67(1-2):71-80.
    105.高兴,王景林.基因芯片技术在病原细菌检测中的应用.中国生物工程杂志,2010,30(02):100-104.
    106. Cho J.C.Tiedje J.M. Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Applied and Environmental Microbiology,2001,67(8):3677.
    107.周吉奎,钮因健.硫化矿生物冶金研究进展.金属矿山,2005,346(4):24-30.
    108. Xu D., Li G., Wu L., et al. PRIMEGENS:robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics,2002,18(11):1432.
    109. Srivastava G.P., Guo J., Shi H., et al. PRIMEGENS-v2:genome-wide primer design for analyzing DNA methylation patterns of CpG islands. Bioinformatics,2008, 24(17):1837.
    110. Altschul S.F., Madden T.L., Sch ffer A.A., et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research,1997, 25(17):3389.
    111. Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol,2000,132(3):365-386.
    112. Verdnik D., Handran S.Pickett S. Key considerations for accurate microarray scanning and image analysis. DNA Array Image Analysis:Nuts & Bolts:83-98.
    113. Franke-Whittle I.H., Klammer S.H.Insam H. Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. Journal of Microbiological Methods,2005,62(1):37-56.
    114. Loy A., Lehner A., Lee N., et al. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and Environmental Microbiology,2002,68(10):5064-5081.
    115.万民熙,,杨宇,邱冠周等.含铜多金属复杂矿区的一株浸矿细菌的分离与鉴定.生态环境,2008,17(1):122-127.
    116. Lockhart D.J., Dong H., Byrne M.C., et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology,1996, 14(13):1675-1680.
    117. Wu L., Thompson D.K., Liu X., et al. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environmental science & technology,2004,38(24):6775-6782.
    118.Thompson J.D., Gibson T.J., Plewniak F., et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research,1997,25(24):4876.
    119. Zhou J. Microarrays for bacterial detection and microbial community analysis. Current opinion in Microbiology,2003,6(3):288-294.
    120.Zhou J.Thompson D.K. Challenges in applying microarrays to environmental studies. Current Opinion in Biotechnology,2002,13(3):204-207.
    121.Relo'gio A., Schwager C., Richter A., et al. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Research,2002,30(11):e51.
    122.Tiquia S.M., Wu L., Chong S.C., et al. Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Biotechniques,2004, 36(4):664-675.
    123. Hacia J.G. Resequencing and mutational analysis using oligonucleotide microarrays. Nature genetics,1999,21(1):42-47.
    124. Perou C.M., S rlie T., Eisen M.B., et al. Molecular portraits of human breast tumours. Nature,2000,406(6797):747-752.
    125.Rawlings D.E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories,2005,4(1):13-28.
    126. Groudev S.Groudeva V. Microbial communities in four industrial copper dump leaching operations in Bulgaria. FEMS Microbiology Reviews,1993, 11(1-3):261-267.
    127. Kishimoto N., Kosako Y.Tano T. Acidobacterium capsulatum gen. nov., sp. nov.:an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Current microbiology,1991,22(1):1-7.
    128. Johnson D. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy,2001,59(2-3):147-157.
    129. Wu L., Thompson D.K., Li G, et al. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology,2001,67(12):5780-5790.
    130. Dennis P., Edwards E.A., Liss S.N., et al. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Applied and Environmental Microbiology,2003,69(2):769-778.
    131. Bae J.W., Rhee S.K., Park J.R., et al. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Applied and Environmental Microbiology,2005,71(12):8825-8835.
    132. Neufeld J.D., Mohn W.W.De Lorenzo V. Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat‐specific microarray. Environmental microbiology,2006,8(1):126-140.
    133. Rhee S.K., Liu X., Wu L., et al. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology,2004,70(7):4303-4317.
    134. Wu L., Thompson D.K., Liu X., et al. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ. Sci. Technol,2004, 38(24):6775-6782.
    135.罗晓玲.国内外铜矿资源分析.世界有色金属,2000(4):4-10.
    136. Li X., He Z.Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Research,2005,33(19):6114.
    137. He Z., Schadt C., Gentry T., et al. Development and Evaluation of a Comprehensive Functional Gene array for Environmental Studies.
    138. Yin H., Cao L., Qiu G., et al. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. Journal of Microbiological Methods,2007,70(1):165-178.
    139.尹华群,在铜矿矿坑水微生物群落结构与功能研究中基因芯片技术的发展和应用.2007,中南大学博士论文:长沙.
    140.张于光,李迪强,肖启明,et al.基因芯片及其在环境微生物研究中的应用.微生物学报,2004,44(3):406-410.
    141. Feng S.Tillier E.R.M. A fast and flexible approach to oligonucleotide probe design for genomes and gene families. Bioinformatics,2007,23(10):1195.
    142. Dsa J.V., Johnson K.S., Lopez D., et al. Residual toxicity of acid mine drainage-contaminated sediment to stream macroinvertebrates:relative contribution of acidity vs. metals. Water, Air,& Soil Pollution,2008,194(1):185-197.
    143. Gerhardt A., Janssens de Bisthoven L., Guhr K., et al. Phytoassessment of acid mine drainage:Lemna gibba bioassay and diatom community structure. Ecotoxicology, 2008,17(1):47-58.
    144. Lear G., Niyogi D., Harding J., et al. Biofilm bacterial community structure in streams affected by acid mine drainage. Applied and Environmental Microbiology, 2009,75(11):3455.
    145. Levings C., Barry K., Grout J., et al. Effects of acid mine drainage on the estuarine food web, Britannia Beach, Howe Sound, British Columbia, Canada. Hydrobiologia, 2004,525(1):185-202.
    146. Nordstrom D.K.Alpers C.N. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3455.
    147.Tiwary R. Environmental impact of coal mining on water regime and its management. Water, Air,& Soil Pollution,2001,132(1):185-199.
    148.Tremaine S.C.Mills A.L. Impact of water column acidification on protozoan bacterivory at the lake sediment-water interface. Applied and Environmental Microbiology,1991,57(3):775.
    149. Gadd G.M.White C. Microbial treatment of metal pollution--a working biotechnology? Trends in biotechnology,1993,11(8):353-359.
    150. Rohwerder T., Gehrke T., Kinzler K., et al. Bioleaching review part A. Applied Microbiology and Biotechnology,2003,63(3):239-248.
    151. Brierley C. Microbial mining. Scientific American,1982,247(2):44-54.
    152.Espejo R.T.Romero J. Bacterial community in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant. Applied and Environmental Microbiology,1997,63(4):1344-1348.
    153. Lawson E. The composition of mixed populations of leaching bacteria active in gold and nickel recovery from sulphide ores. IBS BIOMINE,1997,97.
    154. Okibe N., Gericke M., Hallberg K.B., et al. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Applied and Environmental Microbiology.2003,69(4):1936-1943.
    155.Dopson M.Lindstr m E. Analysis of Community Composition during Moderately Thermophilic Bioleaching of Pyrite, Arsenical Pyrite, and Chalcopyrite. Microbial ecology,2004,48(1):19-28.
    156. Coram-Uliana N.J., van Hille R.P., Kohr W.J., et al. Development of a method to assay the microbial population in heap bioleaching operations. Hydrometallurgy, 2006,83(1-4):237-244.
    157. Bond P.L., Druschel GK.Banfield J.F. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology,2000,66(11):4962.
    158.Brodie E.L., DeSantis T.Z., Joyner D.C., et al. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied and Environmental Microbiology,2006, 72(9):6288.
    159. He Z., Deng Y, Van Nostrand J.D., et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. The ISME Journal,2010.
    160. He Z., Gentry T.J., Schadt C.W., et al. GeoChip:a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal,2007, 1(1):67-77.
    161.Rhee S.K., Liu X., Wu L.; et al. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology,2004,70(7):4303.
    162. Zhou J., Bruns M.A.Tiedje J.M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology,1996,62(2):316-322.
    163. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer research,1967,27(2 Part 1):209-220.
    164.郭逍宇,张金屯,宫辉力等.安太堡矿区植被恢复过程主要种生态位梯度变化研究.2004(12):2329-2334.
    165.Eisen M.B., Spellman P.T., Brown P.O., et al. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America,1998,95(25):14863-14868.
    166. Valdes J., Veloso F., Jedlicki E., et al. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC genomics,2003,4(1):51-66.
    167.Dopson M., Baker-Austin C., Koppineedi P.R., et al. Growth in sulfidic mineral environments:metal resistance mechanisms in acidophilic micro-organisms. Microbiology,2003,149(8):1959-1970.
    168.Navarro C.A., Orellana L.H., Mauriaca C., et al. Transcriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copper. Applied and Environmental Microbiology,2009,75(19):6102-6109.
    169. Appia-Ayme C., Guiliani N., Ratouchniak J., et al. Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Applied and Environmental Microbiology, 1999,65(11):4781-4787.
    170. Valdes J., Pedroso I., Quatrini R., et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC genomics,2008, 9(1):597-610.
    171. Rawlings D.E. HEAVY METAL MINING USING MICROBES 1. Annual Reviews in Microbiology,2002,56(1):65-91.
    172. Van der Gucht K., Cottenie K., Muylaert K., et al. The power of species sorting:local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences,2007,104(51):20404-20409.
    173. Purcell D., Sompong U., Yim L.C., et al. The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiology Ecology,2007,60(3):456-466.
    174. Yin H., Qiu G, Wu L., et al. Microbial community diversity and changes associated with a mine drainage gradient at the Dexing copper mine, China. Aquatic microbial ecology,2008,51(1):67-76.
    175.Beisner B.E., Peres-Neto P.R., Lindstr m E.S., et al. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology, 2006,87(12):2985-2991.
    176. Johnson D.B.Hallberg K.B. The microbiology of acidic mine waters. Research in Microbiology,2003,154(7):466-473.
    177. O'Halloran T.Finney L. Transition metal speciation in the cell:insights from the chemistry of metal ion receptors. Science,2003,300:931-936.
    178.Morin D., Pinches T., Huisman J., et al. Progress after three years of BioMinE--Research and Technological Development project for a global assessment of biohydrometallurgical processes applied to European non-ferrous metal resources. Hydrometallurgy,2008,94(1-4):58-68.
    179.Rawlings D., Tributsch H.Hansford G Reasons why'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology,1999,145(1):5-13.
    180. Rawlings D.E., Dew D.du Plessis C. Biomineralization of metal-containing ores and concentrates. Trends in biotechnology,2003,21(1):38-44.
    181. Cardenas E., Wu W.M., Leigh M.B., et al. Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Applied and Environmental Microbiology,2008,74(12):3718-3729.
    182. Olson G, Brierley J.Brierley C. Bioleaching review part B. Applied Microbiology and Biotechnology,2003,63(3):249-257.
    183.Gonzalez-Toril E., Llobet-Brossa E., Casamayor E., et al. Microbial ecology of an extreme acidic environment, the Tinto River. Applied and Environmental Microbiology,2003,69(8):4853-4865.
    184. Hallberg K.B.Barrie Johnson D. Biodiversity of acidophilic prokaryotes. Advances in applied microbiology,2001,49:37-84.
    185. Johnson D.B. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology Ecology,1998,27(4):307-317.
    186. Edwards K.J., Gihring T.M.Banfield J.F. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Applied and Environmental Microbiology,1999,65(8):3627-3632.
    187. Edwards K.J., Goebel B.M., Rodgers T.M., et al. Geomicrobiology of pyrite (FeS2) dissolution:case study at Iron Mountain. California. Geomicrobiology Journal,1999, 16(2):155-179.
    188. Hallberg K.B.Johnson D.B. Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy,2003,71(1-2):139-148.
    189. Tyson G.W., Lo I., Baker B.J., et al. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Applied and Environmental Microbiology,2005,71(10):6319-6324.
    190.Dreisinger D. Copper leaching from primary sulfides:Options for biological and chemical extraction of copper. Hydrometallurgy,2006,83(1-4):10-20.
    191. Clark M., Batty J., van Buuren C., et al. Biotechnology in minerals processing: Technological breakthroughs creating value. Hydrometallurgy,2006,83(1-4):3-9.
    192. Brierley J.A. A perspective on developments in biohydrometallurgy. Hydrometallurgy,2008,94(1-4):2-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700