用户名: 密码: 验证码:
金及金基二元团簇结构与性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代后期,日本的Haruta等发现负载型纳米金拥有奇异的催化性能和新颖的物理特性,如对CO低温氧化具有很好的催化活性,良好的抗水性、稳定性和湿度增强效应等。这一发现改变了长期以来一直认为金没有催化活性的传统观念,从而在世界范围内迅速掀起了纳米金及其合金团簇的研究热潮。金团簇及其合金结构和性能的研究是理解金及其合金纳米材料物理化学性能的基础,开展相关的实验和理论研究具有重要的科学意义和应用价值。
     随着现代实验技术的发展,越来越多的金及其合金纳米簇被成功研制出来,实验上对金及其合金团簇的研究主要集中在离子团簇上,通过测定其迁移速率和光电子能谱获得有关的结构信息。由于实验条件和测量技术的限制,对中性金及其合金团簇的实验研究比较困难,无法从实验上获得这些团簇的几何和电子结构的全面微观信息,人们对其结构和性能的认识主要依赖理论研究。因此理论研究成为获得团簇结构信息最有效的途径,尤其是基于密度泛函理论的计算,对中小尺寸的体系可以得到较为精确的计算结果。目前,团簇的理论研究,一方面是针对小的团簇开展基础性的研究,探索随着团簇尺寸的增大,团簇如何从结构和特性上向体材结构演化;另一方面,是对团簇材料的研究,目的在于发现和预测特殊材料的特殊性质,从而对功能材料进行理论设计,推动纳米团簇材料的发展。
     基于以上两点,本文利用密度泛函理论方法,从理论上设计和预测了若干中、小尺寸金及其合金团簇的几何和电子结构,寻找了这些团簇的基本结构单元、成键规则和生长机制,研究了合金化对金团簇结构和性能的影响,并探讨了这些团簇与氧、甲醇等分子的相互作用,从原子、分子水平上弄清了有关的微观作用机理,所得结果可以为相关的实验研究提供一定的理论指导。
     本文主要内容如下:
     一.概括论述了团簇的一些基本情况和论文理论计算方法基础。团簇的尺寸处于原子和宏观体系之间,本身有许多原子和宏观体系所不具有的特性,是实验和理论研究的一个重要对象。首先,我们简单介绍了团簇的研究现状,然后介绍了团簇的制备和性质,从实验和理论两个方面,介绍了团簇研究的基本方法。简述了从头算法和密度泛函理论方法的基本原理,并介绍了本文的研究意义。
     二.用密度泛函方法在B3LYP/LANL2DZ水平上,研究了中性金团簇的结构和性质,计算结果表明Au_n(n=2-10)团簇最稳定的结构均为平面二维构型,其结构单元为Au_3为基础的平面三角形。
     本文第二章计算了一系列Au团簇的可能构型,研究了这些构型的相对稳定性、几何结构和电子性质,所有构型优化后都无虚频,并保持高对称性结构。计算表明,随着团簇尺寸的增加,团簇平均键长逐渐增大,Au_8由于原子配位数较少平均键长缩短,在Au_(10)之后团簇的平均键长趋于稳定。计算的解离能D_e和二阶差分结合能△~2E_b表明,随着尺寸的增加,D_e和△~2E_b表现出奇偶性振荡行为,偶数团簇的值更大,表明偶数团簇要比其相邻的奇数团簇更稳定。计算了每一个稳定结构的最高占据轨道(HOMO)和最低空轨道(LUMO)间的能隙,发现当n>4时,能隙表现出明显的奇偶性振荡行为,偶数团簇的能隙明显大于相邻奇数团簇的能隙,说明偶数团簇的化学稳定性较高。对于Au_(10)团簇,找到了新的最稳定结构,此前未见报道。计算表明Au_n(n=2-10)团簇倾向于形成平面二维结构,团簇的稳定性呈现奇偶振荡行为,偶数团簇的稳定性较高。
     三.系统研究了Au_n(n=2-10)团簇与甲醇分子的相互作用,分别计算了羟基氧和甲基氢与金团簇两种相互作用模式,研究表明Au原子的配位数和局域电荷环境是影响甲醇吸附的主要因素,羟基氧和甲基氢更倾向于吸附到配位数为2和3的Au原子上,且Au与羟基氧的相互作用明显强于甲基氢。
     羟基氧吸附到Au原子上时,Au-O距离和C-O键长与吸附位点Au原子的活性相关,活性高的Au原子与羟基氧形成配合物中Au-O距离较短而C-O较长,吸附能较大;甲基氢吸附到Au原子上的情况与羟基氧相似,活性高的Au原子与甲基氢形成的配合物中Au-H的距离较短而C-H键较长。当配位数CN<4时,配位数是决定吸附点活性的主要因素;而当配位数CN≥5时,吸附点所带电荷是决定吸附活性的主要因素。在配位数相同的情况下,Au原子局域电荷决定吸附能的高低。金团簇吸附甲醇表现出明显的奇偶性,偶数团簇的吸附能高于相邻的奇数团簇,Au_4与甲醇相互作用最强,吸附能最大,与甲醇形成的配合物最稳定。配位数为2和3的金原子位于团簇的边缘,具有较高的吸附活性,有利于甲醇的吸附。
     四.用密度泛函理论在B3LYP/LANL2DZ水平上研究了Au_nPt(n=1-8)合金团簇的稳定结构与性质,发现Au/Pt合金结合能大于纯Au团簇,Pt掺杂到Au团簇中有利于团簇的稳定。Au_8Pt团簇的最稳定的构型为三维立体结构,表明当尺寸为9时,Au/Pt合金从平面向立体过渡。Pt在平面结构中更倾向位于团簇的中心位置,而在立体构型中团簇的电子结构发生变化,Pt倾向于采用低配位构型。
     通过对比纯Au团簇和Au_nPt(n=1-8)合金团簇的平均键长,发现在稳定构型相同时,由于Au-Pt键长短,键能大,合金团簇更稳定。在平面结构中,由于Au较高的电负性,Pt将电荷转移到Au原子上使自身带正电,随着尺寸的增加,Pt的配位数增加,向Au转移的电荷增多;通过研究Au_8Pt最稳定构型,发现在立体结构中,Au/Pt合金的电子结构发生变化,Pt倾向于低配位且位于构型边缘。通过对比纯Au和Au/Pt合金团簇的结合能,发现Au/Pt合金团簇的结合能一致高于纯Au团簇,表明Au/Pt合金团簇更稳定,当团簇尺寸为7和8时,Au_6Pt结合能相对较高但Au_7较小,而Au_6Pt结合能相对较小但Au_8较大,较高的对称性可以使团簇更加稳定,原子间的相互作用更容易平衡,故结合能更高。通过研究二阶差分结合能△~2E_b,除Au_5Pt外,发现Au/Pt合金团簇表现出与纯Au团簇相反的奇偶性震荡,Pt的掺入改变了Au团簇的奇偶性,Pt与Au的d-d轨道相互作用,Pt的电子转移到Au原子上,加强了团簇中原子间的相互作用,影响团簇的奇偶性变化。Pt与Au的相互作用使团簇的稳定性提高,使奇偶性波动振幅减小。Au_6Pt的△~2E_b值明显高于其他合金团簇,说明其稳定性更高,主要原因是Au_6Pt具有较高的对称性,Pt位于团簇的中心且与每一个Au原子成键,Pt几乎转移一个电子到Au原子,带较多正电荷,使Au-Pt键能增大,有利于团簇的稳定。通过研究分裂能D_(Pt)和D_(Au)发现,发现团簇中Pt原子解离能明显高于纯Au和Au/Pt合金团簇中Au原子解离能,D_(Pt)的解离能表现出一定的奇偶性震荡,偶数尺寸的解离能高于奇数尺寸。通过比较二维平面结构和三维立体结构的结合能,发现随着尺寸的增加平面构型的结合能在Au_6Pt后趋于稳定,而立体构型在随着尺寸的增加,稳定性逐渐增加,Au_8Pt的稳定性最高。
     五.深入探讨了Au_nPt(n=1-8)合金团簇对甲醇分子的吸附行为,根据吸附的可能性分为四种,羟基氧和甲基氢分别吸附到Pt和Au原子上,发现羟基氧与合金团簇形成的配合物更稳定,能量更低,表明甲醇倾向以羟基氧吸附到合金团簇上,Pt的吸附活性高于Au,有利于羟基氧和甲基氢的吸附,但当Pt的配位数CN=6时,甲醇倾向于吸附到Au上。Au_4Pt的吸附能最大,Pt的吸附活性最高,而Au_3Pt中的Au吸附活性最大,羟基氧和甲基氢吸附到Au上的吸附能最大。
     研究表明,Pt(Au)-H的距离和C-H键长随尺寸的变化与Pt(Au)的吸附活性相关,吸附到活性高的原子上时,Pt(Au)-H的距离近而C-H键被拉长的幅度大,羟基氧吸附到Au/Pt合金团簇的结果与甲基氢相同,吸附到活性高的原子上时,Pt(Au)-O的距离近而C-O键被拉长的幅度大。Au/Pt合金团簇中Pt的吸附活性高于Au,Pt吸附甲基氢呈现明显的奇偶振荡行为,奇数团簇的吸附能高于相邻的偶数团簇,与纯Au吸附甲基氢相反。Au/Pt合金团簇吸附羟基氧情况相对复杂,Pt在配位数小于6时吸附活性高于Au原子,当Pt配位数CN=6时,吸附活性低于配位数低的Au,羟基氧倾向于吸附到Au上。Au/Pt合金团簇在尺寸小于5时,吸附活性明显高于纯Au团簇,当尺寸大于5时,吸附活性降低,与纯Au团簇相差较小,Au_4Pt的吸附能最大,高于纯Au团簇的最大吸附能。Pt的掺入增加了Au团簇的吸附活性,更有利于甲醇的吸附。
     六.用PW91泛函方法研究了Au基双金属团簇对O_2的吸附,研究表明第一主族的碱金属与Au的合金有利于O_2的吸附,其中Au与Li的合金可以明显的提高吸附活性,比目前文献报道的吸附能高,为实验研究提供了一定的理论依据。
     计算表明Au与Li、Na、Cs和Pt的合金会提高Au对O_2的吸附能力,AuM_2(M=Li,Na,Cs,Pt)的吸附能最大,且AuLi_2>AuNa_2>AuPt_2>AuCs_2。二聚体中,碱金属与Au的合金吸附能比纯Au团簇大,但比纯碱金属小,不过AuPt的吸附性能高于Au_2和Pt_2。三聚体中,Li_3和Na_3与O_2由于强的电子相互作用,形成稳定的碱金属氧化物。Cs和Pt分别掺入到Au中其团簇对氧的吸附能力从强到弱的次序为AuM_2>M_3>Au_2M(M=Cs,Pt),与文献报道一致。
     七.通过DFT的计算,详细的研究了4-CP通过与·OH的反应降解生成中间体4-CC和HQ不同的反应路径,确定反应机理的细节。结果表明·OH抽提4-CP中羟基上的氢原子是生成4-CC最有利的反应路径而·OH加成到苯环则是生成HQ最有利的路径。4-CP·自由基是能量最稳定的自由基中间体,在4-CP的降解过程中扮演重要角色。目前的结果与实验结果一致,对一定程度上理解4-CP降解反应机理提供了理论上的支持。
In the later period of the 1980s,Haruta found that supported nano-gold clusters had unusual catalytic properties and novel physical properties,such as the excellent catalytic activity to CO oxidation at a low temperature,the good water resistance and stability,the good humidity enhancing effect etc.This discovery changes the traditional concept that gold does not have the catalytic activity,so a research fever is raised all over the world on the nano-gold and its alloy clusters.The studies on their structures and properties are the foundation on which the studies on the chemical and physical properties of gold and its alloy clusters are based and have very significant scientific meanings and application values for conducting related experimental and theoretical studies.
     With the development of modern experiment technologies,more and more gold and its alloy clusters are developed successfully.Experimentally,the studies on the gold and its alloy clusters are focused on ion clusters,getting related structural data by measuring the ion mobility and photoelectron spectra of the ion clusters.Due to the restrictions on the experimental conditions and measurement technologies,it is relatively difficult to conduct experimental studies on the neutral gold and its alloy clusters and it is difficult to obtain comprehensive microcosmic information of the geometric and electronic structures of these clusters.The understandings of the structures and performances of the neutral gold and its alloy clusters are mainly gained by theoretical studies;therefore,conducting the theoretical studies becomes the most efficient approach to obtaining the structural information of the clusters, especially the calculation based on DFT can get the calculation results of the middle and small sized systems with a high accuracy.At present,on one hand,the theoretical studies on the clusters are the basic studies on small gold clusters,which explore how the clusters evolve to the building blocks in terms of their structures and characteristics as the sizes of the clusters are increasing;on the other hand,the aim of the theoretical studies on the clusters is to find and predict special properties of special materials so as to conduct a theoretical design on functional materials and to promote the development of the nanometer cluster materials.
     Based on the above two points,this thesis theoretically designs and predicts the geometric and electronic structures of the gold and its alloy clusters and finds out the basic structural units,bonding rules and growth mechanisms of these clusters by performing the DFT method.This thesis researches the adsorption properties of the gold and platinum-doped gold clusters on methanol as the sizes are increasing, explores relevant microcosmic interaction mechanisms,gains the key factors of controlling adsorptions and provides a certain theoretical guidance to the experimental studies.At the same time,this thesis also does theoretical studies on the adsorption properties of lithium、sodium、cesium and platinum-doped gold clusters on oxygen, compares different kinds of binary-alloys and proportioning adsorption properties and obtains good adsorption conditions.
     The major innovative results in this thesis are as follows:
     1.The structures and properties of the neutral gold clusters are researched by performing the DFT method and the calculation results show that the most stable structure of Au_n(n=2-10) clusters is a two-dimensional planar and the clusters are basically small triangle since Au_5.
     The second chapter designs all possible configurations of the Au clusters and researches the relative stability and geometric and electronic properties of these structures,all of which do not have any imaginary frequency after being optimized and maintain high symmetry structures.The calculation shows that the average bond lengths of the clusters are gradually increasing as the sizes of the clusters are increasing and that because the Coordinate Number(CN) of Au_8 is smaller and the average bond lengths are shortened,the average bond lengths of the clusters are inclined to be stable since AU_(10).The calculated fragmentation energy D_e and the second difference of binding energyΔ~2E_b show that an odd-even oscillation happens to the D_e andΔ~2E_b as the sizes are increasing and that even-numbered clusters are more stable than their adjacent odd-numbered clusters if they have higher values.The HOMO-LUMO gaps of all stable structures are calculated.When the size is more than 4,an obvious odd-even oscillation happens to the HOMO-LUMO gaps and the chemical stability of even-numbered clusters is better than that of the adjacent odd-numbered clusters if the HOMO-LUMO gaps of the even-numbered clusters are bigger than that of the adjacent odd-numbered clusters.The calculation of the stable configuration of Au_(10) finds out a new stable structure,which has not been reported before.The calculation shows that Au_n(n=2-10) clusters are preferred to be the two-dimensional planar and that the clusters have the obvious oscillation and the stability of the even-numbered clusters is obviously stronger than that of the odd-numbered clusters.
     2.This thesis deeply explores the adsorption of the Au_n(n=2-10) clusters on methanol and separately researches the hydroxyl oxygen and hydrogen on methyl which can be possibly adsorbed to the Au.It is showed that Au atoms coordinate number and electric charge are the major factors of affecting the methanol adsorption, that the hydroxyl oxygen and hydrogen on methyl are more preferred to be adsorbed to the Au atoms with the CN being equal to 2 or 3 and that the adsorption energy of the Au to adsorb the oxygen is obviously higher than that of hydrogen on methyl.
     When the hydrogen on methyl is adsorbed to the Au,the Au-O distance and C-O bond length are related to the adsorption site activities.The distance of the complex Au-O formed by the Au with the high adsorption activity and the hydrogen on methyl is short and the C-O bond length is longer than C-O bond length in isolated methanol, so the adsorption energy is strong.Oxygen shares the similar case with the hydrogen adsorbed to the Au atoms,that is,the distance of Au-H in complex formed by the Au with the high adsorption activity and the hydrogen is short and the elongated amplitude of the C-H bond is bigger.When CN is less than 4,the CN of Au is the major factor of determining the activities of the adsorption sites;however,when the CN is more than and equal to 5,the charge of the adsorption sites is the major factor of determining the activities of the adsorption sites.In the state of having the same CN,the charge on Au decides the height of the adsorption energy.The obvious odd-even oscillation happens to the Au clusters adsorbing the methanol;the adsorption energy of the even-numbered clusters is higher than that of the adjacent odd-numbered clusters;the adsorption activity of Au_4 is the strongest and the adsorption energy is the biggest;the complex with methanol is the most stable.When the CN is equal to 2 or 3,Au possesses a higher adsorption activity and is all located at the edge of the clusters,which is helpful to the adsorption of the methanol.
     3.The stable structures and properties of the Au_nPt(n=1-8) alloy clusters are researched by performing the DFT method at B3LYP/LANL2DZ level with the findings that Au/Pt alloy binding energy is more than that of pure Au clusters and that Pt -doped Au clusters are more stable.The most stable configuration of the Au_8Pt is a 3D structure which shows that a 2D-3D structural transition of Au_nPt alloy occurs when the size is equal to 9.Pt is more preferred to be located at the center of the alloy clusters in the plane structure,while the electronic structure of the clusters changes in the 3D configuration with Pt preferring to a low CN.
     By comparing the average bond lengths of the pure Au and Au_nPt(n=1-8) alloy clusters,it is found that when the stable configurations are the same,the average bond length of the Au/Pt alloy is much shorter and the Au-Pt bond length is much shorter. In the plane structure,due to the higher electronegative Au,Pt transfers charge to Au to make itself carrying positive charge and as the increase of the size the CN of Pt is increasing and the charge transferred to Au is increasing.By researching the most stable configuration of Au_8Pt,it is found that in the 3D structure,the electronic structure of Au/Pt alloy is changing and Pt is more preferred to the low CN site and is located at the edge of the configuration.By comparing the binding energies of the pure Au and Au/Pt alloy clusters,it is found that the binding energy of the Au/Pt alloy clusters is more than that of pure Au clusters,which shows that Au/Pt alloy clusters are more stable;when the sizes of the clusters are 7 and 8,the binding energy of Au_6Pt is relatively higher but the binding energy of Au_7 is relatively lower and the binding energy of Au_6Pt is relatively lower but the binding energy of Au_8 is relatively higher;the higher symmetry can make the clusters more stable and the interactions between atoms are easier to balance,so the binding energy is higher.By studying the second difference of binding energy△~2E_b except Au_5Pt,it is found that Au/Pt alloy clusters show an opposite parity vibration to pure Au clusters;Pt being mixed into changes the odd-even oscillation of the Au clusters;Pt interacts with Au's d-d orbit; the electrons of Pt are transferred to the Au,which strengthens the interactions between atoms in the clusters and affects the odd-even oscillation changes of the clusters.The interactions between Pt and Au enhance the stability of the clusters and reduce the fluctuation amplitude of the odd-even oscillation.The△~2E_b value of the Au6Pt is obviously higher than that of other alloy clusters,which refers to a higher stability mainly because Au_6Pt has a high level of symmetry;Pt is located at the center and bonded with the Au;as Pt transfers an electron to the Au,the positive charge becomes more to make the Au-Pt bonding energy big,which is favorable to the stability of the clusters.By studying fragment energies of D_(Pt) and D_(Au).it is found that the energy needed to break away Pt is obviously bigger than the energy needed to dissociate Au out of the pure Au and Au/Pt alloy clusters and that the D_(Pt) has a certain odd-even oscillation which means that the fragment energy with even size is higher than that of odd size.By comparing the binding energies of the 2D and 3D structures, it is found that as the sizes are increasing,the binding energy in the plane configuration prefers to be stable after Au_6Pt,while the stability of the stereo configuration is gradually increasing and that the stability of Au_8Pt exceeds that of the plane configuration and the binding energies are maintained at the peak.
     4.This thesis deeply discusses Au_nPt(n=1-8) alloy clusters adsorbing methanol. According to the possibilities of the adsorption,four kinds are determined.The hydroxyl oxygen and hydrogen on methyl are separately adsorbed to the Pt and Au to discover that the complex formed by oxygen adsorbed with alloy clusters is more stable with a lower energy,which shows that methanol is more preferred to the oxygen being adsorbed to the alloy clusters;the adsorption activity of Pt is higher than that of Au which is favorable to the adsorption of the hydroxyl oxygen and hydrogen;but when the CN of Pt is equal to 6,the methanol is inclined to be adsorbed to the Au.When the adsorption energy of Au_4Pt is the maximum,the adsorption activity of Pt is the most active;while when the Au adsorption activity in Au3Pt is the most active,the adsorption energy is the maximum.
     The research shows that the distance of Pt(Au)-H and the C-H bond distance are related to the adsorption activity of Pt(Au) as the sizes are changing.When being adsorbed to the atoms with a high activity,the distance of Pt(Au)-H is short and the amplitude of extending the C-H bond is large.The result of the oxygen being adsorbed to the Au/Pt alloy clusters is the same as that of hydrogen on methyl;when being adsorbed to the atoms with the high activity,the distance of Pt(Au)-O is short and the amplitude of extending the C-O bond is large.The adsorption activity of Pt in the Au/Pt alloy clusters is higher than that of Au;Pt adsorbing the hydrogen on methyl has an obvious odd-even oscillation,which means the adsorption energy of odd-numbered clusters is higher than that of the adjacent even-numbered clusters, which is opposite to the pure Au adsorbing hydrogen on methyl.Au/Pt alloy clusters adsorbing oxygen has more complicated situations:when the CN is less than 6,the adsorption activity of Pt is higher than that of Au;when the CN of Pt is equal to 6,the adsorption activity is lower than that of Au with the low CN;and the oxygen is inclined to be adsorbed to the Au.When the sizes of the Au/Pt alloy clusters are smaller than 5,the adsorption activity of Pt is obviously higher than that of Au clusters;when the sizes are larger than 5,the adsorption activity decreases to have a smaller difference with the pure Au clusters;the adsorption energy of Au_4Pt is the ultimate,which is more than the maximum adsorption energy of the pure Au clusters. Pt being mixed adds the adsorption activity of the Au clusters,which is more favorable to the methanol adsorption.
     5.Binary clusters of Au adsorption of O_2 are studied by performing the DFT method.The research shows that the alloy of alkali-metal doped Au is helpful to the adsorption of O_2,wherein the alloy of Au and Li can obviously enhance the adsorption activity which is higher than the adsorption activity recorded in previous reports and documents and provides the theoretical basis to the experimental studies.
     It is calculated that the alloy of Au with Li、Na、Cs and Pt can enhance the adsorption ability of Au of O_2;the adsorption energy of AuM_2(M=Li,Na,Cs,Pt) is the ultimate and AuLi_2>AuNa_2>AuPt_2>AuCs_2.The adsorption energies of pure and doped Au clusters dimer and alkali-metal doped Au are larger than the adsorption energy of pure Au clusters,but smaller than the adsorption energy of pure alkali-metal and the adsorption property of AuPt is higher than the adsorption properties of Au_2 and Pt_2.In trimer,because of the too high activities,the interactions between the Li_3 and Na_3 with O_2 are no longer the adsorption interaction.The adsorption order of the Cs and Pt being mixed into the Au is AuM_2>M_3>Au_2M(M=Cs,Pt) which is the same as the one reported in the former document.
     6.we have reexamined the reaction of 4-CP with·OH radical to ascertain the mechanism details for forming intermediates 4-CC and HQ at the initial stage of the degradation of 4-CP initiated by·OH by performing DFT calculations.The calculated results show that abstracting hydrogen atom in the hydroxyl of 4-chlorophenol by the·OH is the most plausible process for forming 4-chlorocaechol intermediate,while adding·OH to the aromatic ring is the dominant pathway for forming the hydroquinone.The 4-CP·radical is found to be a energetically most stable species among the radical intermediates involved in the reaction and thus is expected to play a crucial role for the hydroxyl-initiated 4-CP degradation.The present results are in good agreement with the experimental finding and provide aids to some extent for improving our understanding for the 4-CP degradation initiated by·OH radical.
引文
[1]王广厚,团簇物理的新进展,物理学进展,14.121.(1994).
    [2]解士杰,韩圣浩,凝聚态物理,山东教育出版社.济南.(2001).
    [3]阎守胜,固休物理基础,北京.大学出版社.北京.(2000)。
    [4]王广厚,团簇的结构和奇异性质,物理学进展,13.(1-2):266.(1993).
    [5]G.D.Stein,Phys.Teach.,17.503.(1979).
    [6]E.W.Becker,Z.Phys.,146.333.(1956).
    [7]J.P.Pimukes,L.Ekstrom,R.J.Paff,J..Chem.68,3021.(1964).
    [8]W.D.Knight,K.Clemenger,W.A.de Heer,W.A.Saunders,M.Y.Chou,M.L.Cohen,"Electronic Shell Structure and Abundances of Sodium Clusters".Phys.Rev.Lett.52.2141.1984.
    [9]H.W.Kroto,J.R.Heath,S.C.O'Brien,R.F.Curl,R.E.Smalley,C_(60)Buckminsterfullerene.Nature,318.162.1985.
    [10]R.L.Seliger,J.W.Ward,V.Wang,R.L.Kubena,"A high-intensity scanning ion probe with submicrometer spot size".Appl.Phys.Lett.34.310.(1979).
    [11]F.M.Devienne,R.Combarien,M.Teisseire,"Action of different gases,specially nitrogen,on the formation of uranium clusters - comparison with niobium and tantalum clusters".Surf.Sci.106.204.(1981).
    [12]E.A.Rohlfing,D.M.Cox,A.Kaldor,"Photoionization of isolated nickel atom clusters".J.Phys.Chem.88.4497.(1984).
    [13]R.M.Wilenzick,D.C.Russell,R.H.Morriss,S.W."Marshall,Uniform Microcrystals of Platinum and Gold".J.Chem.Phys.47.533.(1967).
    [14]I.A.Harris,R.S.Kidwell,J.A.Northby,"Structure of Charged Argon Clusters Formed in a Free Jet Expansion".Phys.Rev.Lett.53.2390.(1984).
    [15]T.P.Martin,Phys.Reports.45.167.(1983).
    [16]L.E.Brus,Ann.Rev.Phys Chem.41,477(1990).
    [17]J.G.Louderback,A.J.Cox,L.J.Lising,D.C.Douglass,L.A.Bloomfield,Z.Phys.O.26.301.(1993).
    [18]J.P.Bucher,D.C.Douglass,L.A.Bloomfield,"Magnetic properties of free cobalt clusters".Phys.Rev.Lett.66.3052.(1991).
    [19]I.M.L.Billas,J.A.Becker,A.Ch(?)telain,W.A.de Heer,"Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature".Phys.Rev.Lett.71.4067.(1993).
    [20]F.Liu,S.N.Khanna,P.Jena,"Magnetism in small vanadium clusters".Phys.Rev.B.43.8179.(1991).
    [21]K.Lee,J.Callaway,"Electronic structure and magnetism of small V and Cr clusters".Phys.Rev.B.48.15358.(1993).
    [22]H.Cheng,L.S.Wang,Dimer Growth,"Structural Transition,and Antiferromagnetic Ordering of Small Chromium Clusters".Phys.Rev.Lett.77.51.(1996).
    [23]A.J.Cox,J.G.Louderback,L.A.Bloomfield,"Experimental observation of magnetism in rhodium clusters".Phys.Rev.Lett.71.923.(1993).
    [24] J. H. Schon, Ch. Kloc, B. Batlogg, "Superconductivity at 52 K in hole-doped C_(60)". Nature. 408. 549. (2003).
    [25] M. Brack, "Multipole vibrations of small alkali-metal spheres in a semiclassical description". Phys. Rev. B. 39. 3533. (1989).
    
    [26] K. Selby, M. Vollmer, J. Masui, V. Krsin, W. A. de Heer, W. D. Knight, "Surface plasma resonances in free metal clusters". Phys. Rev. B. 40. 5417. (1989).
    [27] X. Chen, J. Zhao, G. Wang, "Conductance resonance of metal-insulator-metal junction with embedded metal cluster". Appl. Phys. Lett. 65. 2419. (1994).
    [28] J. X. Ma, M. Han, H. Q. Zhang, Y. C. Gong, G. H. Wang, "Dense random packing formation of gold cluster-based film characterized by scanning tunneling microscope". Appl. Phys. Lett. 65.1513. (1994).
    [29] Z. Vager, E. P. Kanter et al.,Phys. Rev. Lett. 57. 2793. (1986).
    [30] G. Binnig, H. Rohrer et al., Appl. Phys. Lett. 40. 178. (1981).
    [31] G. Binnig, H. Rohrer et al, Phys. Rev. Lett. 50. 120. (1983).
    [32] D. R. Hartree, Proc. Camb. Phil. Soc. 1928,24: 111.
    [33] V. Fock, "Naherungsmethoden zur Losung des Quantenmechanischen Mehrkorperproblems". Zeit. Phys. 61. 126. (1930).
    [34] C. C. J. Roothaan, "New developments in Molecular Orbital Theory", Rev. Mod. Phys. 23.69.(1951).
    [35] J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, "Toward a systematic molecular orbital theory for excited states". J. Phys. Chem. 96. 135. (1992).
    
    [36] E. A. Hylleraas, Zeit. Phys. 48. 469. (1928).
    [37] C. Moller and M. S. Plesset, "Note on an Approximation Treatment for Many-Electron Systems". Phys. Rev. 46. 618. (1934).
    [38] M. Head-Gordon, J. A. Pople and M. J. Frisch, "MP2 energy evaluation by direct methods" . Chem. Phys. Lett. 153. 503. (1988).
    [39] (a) M. J. Frisch, M. Head-Gordon and J. A. Pople, "A direct MP2 gradient method". Chem. Phys. Lett. 166. 275. (1990).
    
    (b) M. J. Frisch, M. Head-Gordon and J. A. Pople, "Semi-direct algorithms for the MP2 energy and gradient". Chem. Phys. Lett. 166.281. (1990).
    [40] M. Head-Gordon and T. Head-Gordon, "Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer". Chem. Phys. Lett. 220. 122. (1994).
    [41] S. Saebo and J. Almlof, "Avoiding the integral storage bottleneck in LCAO calculations of electron correlation". Chem. Phys. Lett. 154. 83. (1989).
    [42] H.Thomas, "The Calculation of Atomic Fields" . Pro. Camb. Phil. Soc. 23. 545. (1927).
    [43] R. Fermi, "A Statistical Method for Determining Some Properties of the Atom" . Atti Accad Lincei, 6. 602. (1927).
    
    [44] P. Hohenberg, W. Kohn, "Inhomogeneous electron gas" . Phys. Rev. 136. B864. (1964).
    [45] W. Kohn, L.J. Sham, "Self-consistent Eguations Including Exchange and Correlation Effects". Phys. Rev. A. 140. 1133. (1965).
    [1] H. Schmidbaur, Gold. Progress in Chemistry, Biochemistry and Technol- ogy, Wiley (1999).
    
    [2] M. Haruta, T. Kobayashi et al, Chem. Lett. 405. (1987).
    [3] P. Schwerdtfeger,Angew. Chem. Int. Ed. 42.1892 (2003).
    [4] M. C. Daniel and D. Astruct, Chem. Rev. 104. 293. (2004).
    [5] H. Schwarz, Angew. Chem. Int. Ed. 42.4442. (2003).
    [6] N. Bartlett, Gold Bull. 31. 22. (1998).
    [7] P. PyykkAo, Relativistic Theory of Atoms and Molecules, Vol. III, Springer (2000).
    
    [8] R. J. Puddephatt, The Chemistry of Gold, Elsevier (1980).
    [9] R. J. Puddephatt Comprehensive Organometallic Chemistry, Vol. 2, Ed.: G. Wilkinson, Pergamon (1982).
    [10] R. J. Puddephatt Comprehensive Coordination Chemistry, Vol. 5, Ed.: G. Wilkinson, Pergamon (1987).
    [11] R. J. Puddephatt and J. J. Vittal, Encyclopedia of Inorganic Chemistry, Vol. 3, Ed.: R. B. King, Wiley (1994).
    [12] H. Schmidbaur, Gmelin Handbuch der Anorganischen Chemie, 8th ed, Ed.: A. Slawisch, Springer, (1980).
    [13] H. Schmidbaur, Encyclopedia of Inorganic Chemistry, Vol. 3, Ed.: R. B. King, Wiley (1994).
    
    [14] A. Grohmann and H. Schmidbaur, Comprehensive Organometallic Chemistry, II, Pergamon (1995).
    
    [15] P. PyykkAo, Angew. Chem. Int. Ed. 43,4412 (2004).
    [16] J. Zhao, J. Yang, and J. G. Hou, Phys. Rev. B. 67. 085404. (2003).
    [17] B. Dai and J. Yang, Chem. Phys. Lett. 379. 512. (2003).
    [18] X. Ding, B. Dai, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 121. 621. (2004).
    [19] D.A.H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, M. Haruta, J. Catal. 177.1.(1998).
    [20] F. Furche,; R. Ahlrichs,; P. Weis,; Jacob, C.; Gilb, S. J. Chem. Phys., 117. 6982. (2002).
    [21] H. Hakkinen; B. Yoon; U. Landman; X. Li; H. J. Zhai; L. S. Wang, J. Phys. Chem. A. 107. 6168. (2003).
    
    [22] H. Hakkinen, U. Landman, Phys. Rev. B. 62. R2287. (2000).
    [23] A.V. Walker, J. Chem. Phys. 122. 094310. (2005).
    [24] J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66. 035418. (2002).
    [25] L. Xiao, L. Wang, Chem. Phys. Lett. 392. 452. (2004).
    [26] M. Sankaran, B. Viswanathan, Bull. Catal. Soc. India. 5. 26. (2006).
    [27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresrnan,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,J.A.Pople,Gaussian 03,Revision D.01;Gaussian,Inc.:Wallingford CT,2004.
    [28](a) A.D.Beeke,J.Chem.Phys.,98.5648.(1993).
    (b) C.Lee;W.Yang;R.G.Parr;Phys.Rev.B,37.785.(1988).
    [29]P.J.Hay,W.R.Wadt,J.Chem.Phys.82.270.(1985).
    [30]A.Deka;R.C.Deka;J.Mol.Stru:THEOCHEM.870.83.(2008).
    [31]G.A.Bishea,M.D.Morse,J.Chem.Phys.95.5646.(1991).
    [32]X.Li,H.Wang,X.Yang,Z.Zhu,J.Chem.Phys.126.84505.(2007).
    [33]V.Bonacic-Koutecky,J.Burda,R.Mitric,M.Ge,G.Zampella,P.Fantucci,J.Chem.Phys.117.3120.(2002).
    [34]S.Gilb,P.Weis,F.Furche,R.Ahlrichs,M.M.Kappes,J.Chem.Phys.116.4094.(2002).
    [1]C.K.Dyer,J..Power Sources 106.31.(2002).
    [2]J.R.B.Gomes,J.A.N.F.Gomes,J.Mol.Struct.(Theochem) 503.189.(2000).
    [3]J.S.Huerty,R.J.Madix,Surf.Sci.360.144.(1996).
    [4]A.S.Arico;S.Srinivasan,V.Antonucci;Fuel Cells.1,133.(2001).
    [5]K.Jambunathan;S.Jayaraman;A.C.Hillier;Langmuir.20,1856.(2004).
    [6]M.A.Karolewski,R.G.Cavell,Surf.Sci.344.74.(1995).
    [7]J.P.Camplin,E.M.Mcash,Surf.Sci.360.229.(1996).
    [8]V.Efstathiou,D.P.Woodruff,Surf.Sci.526.19.(2003).
    [9]Y.Wang,W.Wang,K.N.Fan,J.F.Deng,Surf.Sci.487.77.(2001).
    [10]C.J.Zhang,P.Hu,J..Chem.Phys.115.7182.(2001).
    [11]R.B.Barros,A.R.Garcia,L.M.Ilharco,J.Phys.Chem.B.108.4831.(2004).
    [12]H.S.Liu,C.J.Song,L.Zhang,J.J.Zhang,H.J.Wang,D.P.Wilkinson."A review of anode catalysis in the direct methanol fuel cell".Journal of Power Sources,155.95.(2006).
    [13]G.Dietrich.S.Kruckeberg.K.Lutzenkirchen.L.Schweikhard.C.Walther."The interaction of gold clusters with methanol molecules:Infrared photodissociation of mass-selected Au_n~+(CH3OH)_m",J.Chem.Phys.112,752.(2000).
    [14]F.W.Chang,H.Y.Yu,L.S.Roselin,H.C.Yang,T.C.Ou."Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO_2-MOx(M = Fe,Co,Zn) composite oxides".Applied Catalysis A:General 302.157-167.(2006).
    [15]C.F.Yu,F.L.Jia,Z.H.Ai,L.Z.Zhang.,"Direct Oxidation of Methanol on Self-Supported Nanoporous Gold Film Electrodes with High Catalytic Activity and Stability".Chem.Mater 19.6065.(2007).
    [16]F.Boccuzzi,A.Chiorino,M.Manzoli,J.Power Sources.118.304.(2003).
    [17]Z.Borkowska,A.Tymosiak-Zielinska,G.Shul,Electrochim.Acta.49.1209.(2004).
    [18]M.Avramov-Ivic,V.Jovanovic,G.Vlajnic,J.Popic,J.Electroanal.Chem.423.119.(1997).
    [19]M.Avramov-Ivic,S.Strbac,V.Mitrovic,Electrochim.Acta.46.3175.(2001).
    [20]R.Rousseau,D.Marx,"The interaction of gold clusters with methanol molecules:Ab initio molecular dynamics of Au_n~+CH_3OH and Au_nCH_3OH".J.Chem.Phys.112.761.(2000).
    [21]刘书红,陈文凯,曹梅娟,许莹,李俊(竹钱),“甲醇在Au(111)表面吸附的密度泛函研究”,催化学报,27.55.(2006).
    [22]W.K.Chen,S.H.Liu,M.J.Cao,Q.G.Yan,C.H.Lu,"Adsorption and dissociation of methanol on Au(111) surface:A first-principles periodic density functional study".J.Mol.Struct.(Theochem).770.87.(2006).
    [23]Y.C.Li,C.L.Yang,etc,"Density Functional Theory Studies of Au_n~+(CH3OH)_m (n=3,5,m=1-5) Complexes".J.Phys.Chem.A.113.1353.(2009).
    [24]G.A.Somorjai,Introduction to Surface Science and Catalysis;Wiley:New York,(1994).
    [25] D. M. Newns; J. P. Muscat; Prog. Surf. Sci. 9,1. (1978).
    
    [26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford CT, 2004.
    [27] (a) A. D. Becke, J. Chem. Phys., 98. 5648. (1993).
    
    (b) C. Lee; W. Yang; R. G. Parr; Phys. Rev. B, 37. 785. (1988).
    [28] P. J. Hay and W. R. Wadt, J. Chem. Phys. 82. 270. (1985).
    [1] M. Stener, K. Albert, N. Rosch, Inorg. Chim. Acta, 286. 30. (1999).
    
    [2] S. T. Bromley, C. R. A. Catlow, Int. J. Quantum Chem. 91.270. (2003).
    
    [3] S. Link, Z. L. Wang, J. Phys. Chem. B 103.3529. (1999).
    
    [4] H. Zhang, D. E. Zelmon, L. Deng, H.K. Liu, B. K. Teo, J. Am. Chem. Soc. 123. 11300.(2001).
    [5] H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara, H. Kobayashi, J. Phys. Chem. B, 106. 8714. (2002).
    
    [6] K. Koszinowski, D. Schroder, H. Schwarz, ChemPhysChem. 4.1233. (2003).
    [7] X. Li, A. E. Kuznetsov, H.F. Zhang, A. I. Boldyrev, L.S. Wang, Science, 291. 859. (2001).
    
    [8] D.K. Seo, J. D. Corbett, Science, 291. 841. (2001).
    [9] S. Hermans, R. Raja, J. M. Thomas, B. F. G. Johnson, G. Sankar, D. Gleeson, Angew. Chem., Int. Ed, 40. 1211. (2001).
    
    [10] B. C. Gates, O. S. Alexeev, Ind. Eng. Chem. Res. 42. 1571. (2003).
    [11] C. Mihut, C. Descorme, D. Duprez, M. D. Amiridis, J. Catal. 212.125. (2002).
    [12] K. Albert, K. M. Neyman, G. Pacchioni, N. Rosch, Inorg. Chem. 35. 7370. (1996).
    [13] G. Diaz, F. Garin, G. Maire, S. Alerasool, R. D. Gonzalez, Appl. Catal. A, 124. 33. (1995).
    
    [14] P. Hermann, D. Simon, P. Sautet, B. Bigot, J. Catal. 167. 33. (1997).
    [15] A. Fortunelli, A. M. Velasco, J. Mol. Struct. THEOCHEM 528. 1. (2000).
    [16] H. Hakkinen, S. Abbet, A. Sanchez, U. Heiz, and U. Landman, Angew.Chem., Int. Ed. 42.1297 (2003).
    
    [17] P. Pyykko and N. Runeberg, Angew. Chem., Int. Ed. 41. 2174. (2002).
    [18] S. Neukermans, E. Janssens, H. Tanaka, R. E. Silverans, and P. Lievens, Phys. Rev. Lett. 90. 033401.(2003).
    [19] W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L. T. Kuhn, H. Weidele, P. Lievens, and R. E. Silverans, Chem. Phys. Lett. 314. 227. (1999).
    [20] M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I. M. L. Billas, and T. P.Martin, J. Chem. Phys. 110. 9915. (1999).
    
    [21] B. D. Chandler, A. B. Schabel, L. H. Pignolet, J. Catal. 193. 186. (2000).
    [22] B. D. Chandler, L. H. Pignolet, Catal. Today, 65. 39. (2001).
    [23] K. Koszinowski, D. Schroder, H. Schwarz, Organometallics, 23. 1132. (2004).
    [24] K. Koszinowski, D. Schroder, H. Schwarz, J. Am. Chem. Soc. 125. 3676. (2003).
    [25] N. C. Payne, R. Ramachandran, G. Schoettel, J. J. Vittal, R. J. Puddephatt, Inorg. Chem. 30. 4048. (1991).
    [26] Y. Yuan, K. Asakura, H. Wan, K. Tsai, Y. Iwasawa, J. Mol. Catal. A, 122. 147. (1997).
    
    [27] L. M. Liz-Marza'n, A. P. Philipse, J. Phys. Chem. 99. 15120. (1995).
    [28] D. W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122.114310. (2005).
    [29] H. Hakkinen, M. Moseler, U. Landman, Phys. ReV. Lett. 89. 033401. (2002).
    [30] W. Q. Tian, M. Ge, B. R. Sahu, D. X. Wang, T. Yamada, S. Mashiko, J. Phys. Chem.A, 108.3806.(2004).
    
    [31] W. Q. Tian, M. Ge, F. Gu, Y. Aoki, J. Phys. Chem. A, 109. 9860. (2005).
    [32] W. Q. Tian, M. F. Ge, J. Phys. Chem. 4 110. 6285. (2006).
    [33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford CT, 2004.
    [34] (a) A. D. Becke, J. Chem. Phys., 98. 5648. (1993).
    
    (b) C. Lee ; W. Yang; R. G. Parr; Phys. Rev. B, 37. 785. (1988).
    [35] P. J. Hay, W. R. Wadt, J. Chem. Phys. 82. 270. (1985).
    [36] D.G. Dai, K. Balasubramanian, J. Chem. Phys. 100. 4401. (1994).
    [37] H. Hakkinen, U. Landman, Phys. Rev. B, 62. R2287. (2000).
    [38] J. Zhao, J. Yang, J.G. Hou, Phys. Rev. B, 67. 085404. (2003).
    [1] A. O'Cinneide, F. G. Gault, J. Catal. 37,311. (1974).
    [2] J. R. H. Van Shaik, R. P. Dessing, V. Ponec, J. Catal. 38. 273. (1975).
    [3] A. F. Kane, J. K. A. Clarke, J. Chem. Soc, Faraday Trans. 76.1640. (1980).
    [4] J. W. A. Sachtler, G. A. Somorjai, J. Catal. 89. 35. (1984).
    [5] J. J. Steggerda, Comments Inorg. Chem. 11.113. (1990).
    [6] M. A. Aubart, L. H. Pignolet, J. Am. Chem. Soc. 114. 7901. (1992).
    [7] T. G. M. M. Kappen et al, Inorg. Chem. 32.1074. (1993).
    [8] C. Mihut, C. Descorme, D. Duprez, M. D. Amiridis, J. Catal. 212.125. (2002).
    [9] S. Chilukuri et al, Stud. Surf. Sci. Catal. 146. 573. (2003).
    [10] B. D. Chandler, A. B. Schabel, L. H. Pignolet, J. Catal. 193. 186. (2000).
    [11] B. D. Chandler, A. B. Schabel, C. F. Blanford, L. H. Pignolet, J. Catal. 187. 367. (1999).
    
    [12] J. Luo et al, Catal. Today, 99. 291. (2005).
    [13] Y. B. Lou, M. M. Maye, L. Han, J. Luo, C. Zhong, J. Chem. Commun. 473. (2001).
    
    [14] K. Deshpende, A. Mukasyan, A. Varma, "High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells", J. Power Sources, 158. 60. (2006).
    [15] H. J. Kim, D. Y. Kim, H. S. Han, Y. G. Shul, "PtRu/C-Au/TiO2 electrocatalyst for a direct methanol fuel cell", J. Power Sources ,159. 484. (2006).
    [16] S. Jayaraman, T. F. Jaramillo, S. H. Baeck, E. W. McFarland, Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells, J. Phys. Chem. B, 109.22958. (2005).
    
    [17] K. Nishimura, K. Kunimatsu, M. Enyo, J. Electroanal. Chem. 260. 167. (1989).
    [18] M. Morita, Y. Iwanaga, Y. Matsuda, Electrochim. Acta, 36. 947. (1991).
    [19] A. B. Anderson, E. Grantscharova, S. Seong, J. Electrochem. Soc. 143. 2075. (1996).
    [20] L. D. Burke, J. A. Collins, M. A. Horgan, L. M. Hurley, A. P. O'Mullane, Electrochim. Acta, 45. 4127. (2000).
    
    [21] E.K. Park et al, Journal of Physics and Chemistry of Solids 69. 1284. (2008).
    [22] J. H. Zeng, J. Yang, J. Y. Lee, W. J. Zhou, J. Phys. Chem. B, 110. 24606. (2006).
    [23] X. B. Ge, R. Y. Wang, P. P. Liu, Y. Ding, Chem. Mater. 19. 5827. (2007).
    [24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,J.A.Pople,Gaussian 03,Revision D.01;Gaussian,Inc.:Wallingford CT,2004.
    [25](a) A.D.Becke,J.Chem.Phys.,98.5648.(1993).
    (b) C.Lee;W.Yang;R.G.Parr;Phys.Rev.B,37.785.(1988).
    [26]P.J.Hay,W.R.Wadt,J.Chem.Phys.82.270.(1985).
    [1]J.Guzman,S.Carrettin,A.Corma,J.Am.Chem.Soc.127.3286.(2005).
    [2]M.Haruta,N.Yamada,T.Kobayashi,S.Iijima,J.Catal.115.301.(1989).
    [3]M.Haruta,S.Tsubota,T.Kobayashi,H.Kangeyama,M.J.Genet,B.Delmon,J.Catal.144.175.(1993).
    [4]M.Haruta,Catal.Today 36.153.(1997).
    [5]M.Haruta,M.Date',Appl.Catal.,A,222.427.(2001).
    [6]J.Guzrnan,S.Carrettin,J.C.Fierro-Gonzalez,Y.Hao,B.C.Gates,A.Corma,Angew.Chem.,Int.Ed.,44.4778.(2005).
    [7]F.W.Chang,H.Y.Yu,L.S.Roselin,H.C.Yang,T.C.Ou,"Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO_2-MOx[M = Fe,Co,Zn]composite oxides".Applied Catalysis A:General 302.157.(2006).
    [8]C.F.Yu,F.L.Jia,Z.H.Ai,L.Z.Zhang.,"Direct Oxidation of Methanol on Self-Supported Nanoporous Gold Film Electrodes with High Catalytic Activity and Stability".Chem.Mater.1.6065.(2007).
    [9]D.Thompson,Gold Bull.32.12.(1999).
    [10]A.Ueda,M.Haruta,Gold Bull.32.3.(1999).
    [11]T.Hayashi,K.Tanaka,M.Haruta,J.Catal.178.566.(1998).
    [12]T.A.Nijhuis,B.J.Huizinga,M.Makkee,J.A.Moulijn,Ind.Eng.Chem.Res.38.884.(1999).
    [13]E.E.Stangland,K.B.Stavens,R.P.Andres,W.N.Delgass,J.Catal.191.332.(2000).
    [14]G.Mul,A.Zwijnenburg,B.van der Linden,M.Makkee,J.A.Moulijn,J.Catal.201.128.(2001).
    [15]A.K.Sinha,S.Seelan,T.Akita,S.Tsubota,M.Haruta,Appl.Catal.,A,240.243.(2003).
    [16]J.Chou,E.W.McFarland,Chem.Commun.1648.(2004).
    [17]L.Cumaranatunge,W.N.Delgass,J.Catal.232.38.(2005).
    [18]T.A.Nijhuis,T.Visser,B.M.Weckhuysen,Angew.Chem.,Int.Ed.44.1115.(2005).
    [19]E.E.Stangland,B.Taylor,R.P.Andres,W.N.Delgass,J.Phys.Chem.B,109.2321.(2005).
    [20]B.Taylor,J.Lauterbach,W.N.Delgass,Appl.Catal.,A,291.188.(2005).
    [21]B.Chowdhury,J.J.Bravo-Sua'rez,M.Date',S.Tsubota,M.Haruta,Angew.Chem.,Int.Ed.45.412.(2006).
    [22]B.Taylor,J.Lauterbach,G.E.Blau,W.N.Delgass,J.Catal.242.142.(2006).
    [23]Q.Fu,H.Saltsburg,M.Flytzani-Stephanopoulos,Science.301,935.(2003).
    [24]H.Sakurai,T.Akita,S.Tsubota,M.Kiuchi,M.Haruta,Appl.Catal.A.,291.179.(2005).
    [25]M.Valden,X.Lai,D.W.Goodman,Science,281.1647.(1998).
    [26]M.Mavrikakis,P.Stoltze,J.K.Nφrskov,Catal.Lett.64.101.(2000).
    [27]D.M.Cox,R.Brickman,K.Creegan,A.Kaldor,Z.Phys.D:At.,Mol.Clusters 19.353.(1991).
    
    [28] T. H. Lee, K. M. Ervin, J. Phys. Chem. 98.10023. (1994).
    [29] B. E. Salisbury, W. T. Wallace, R. L. Whetten, Chem. Phys. 262.131. (2000).
    [30] D. Stolcic, M. Fischer, G. Gantefo¨r, Y. D. Kim, Q. Sun, P. Jena, J. Am. Chem. Soc. 125. 2848. (2003).
    [31] J. A. Rodriguez, J. Hrbek, M. Kuhn, T. K. Sham, J. Phys. Chem. 97. 4737. (1993).
    [32] X. L. Ding, Z. Y. Li, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. 120. 9594. (2004).
    [33] X. L. Ding, B. Dai, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. 121, 621. (2004).
    [34] M. Okumura, Y. Kitagawa, M. Haruta, K. Yamaguchi, Chem. Phys. Lett. 346. 163. (2001).
    
    [35] J. Greeley, J. K. N0rskov, Surf. Sci. 592,104. (2005).
    [36] A. M. Joshi, K. T. Thomson, et al, J. Phys. Chem. B. 110. 23373. (2006).
    [37] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford CT, 2004.
    [38] (a) J. P. Perdew, Berlin: Akademie Verlag. (1991).
    
    (b) J. P. Perdew, K. Burke, in Density Functionals: Theory and Applications edited by D. Joubert, Berlin: Springer. (1998).
    [39] P. J. Hay, W. R. Wadt, J. Chem. Phys. 82. 270. (1985).
    [40] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules; Van Nostrand: New York, (1979).
    [41] B. A. Hess, U. Kaldor, J. Chem. Phys. 112. 1809. (2000).
    [42] M. A. Cheeseman, J. R. Eyler, J. Phys. Chem. 96. 1082. (1992).
    [43] J. L. Martins, J. Buttet, R. Car, Phys. ReV. Lett. 53. 655. (1984).
    [44] J. L. Martins, J. Buttet, R. Car, Surf. Sci. 156, 649. (1985).
    [45] Q. Cui, D. G. Musaev, K. Morokuma,./ Chem. Phys. 108. 8418. (1998).
    [46] J. A. Howard, R. Sutcliffe, B. Mile, Surf. Sci. 156. 214. (1985).
    [47] X. Lin, N. J. Ramer, A. M. Rappe, K. C. Hass, W. F. Schneider, B. L. Trout, J. Phys. Chem. B 105. 7739. (2001).
    
    [48] J. Kua, W. A. Goddard, J. Phys. Chem. B, 102. 9481. (1998).
    [49] H. Gronbeck, W. Andreoni, Chem. Phys. 262. 1. (2000).
    [1] O. Gimeno, M. Carbajo, F.J. Beltran, F.J. Rivas, J. Hazard. Mater. 119. 99. (2005).
    
    [2] Y. Pi, L. Zhang, J. Wang, J. Hazard. Mater. 141. 707. (2007).
    [3] M. Kilic,, N. San, Z. Cinar, J. Adv. Oxid. Technol. 10. 60. (2007).
    [4] A. Mills, S.L. Hunte, J. Photochem. Photobiol. A: Chem. 108. 1. (1997).
    [5] D. Bahnemann, J. Cunningham, M.A. Fox, E. Pelizzetti, P. Pichat, N. Serpone, in: GR. Helz, R.G. Zepp, D.G. Crosby (Eds.), Aquatic and Surface Photochemistry, Lewis, Baco Raton, FL, 261. (1994).
    [6] G. Ertl, H. Knozinger and J. Weitkamp In: Handbook of Heterogenous Catalysis vol. 4, Wiley-Vch, Weinheim 2111. (1997).
    
    [7] C.Walling, Fenton's reagent revisited, Acc. Chem. Res. 8.125. (1975).
    [8] A. Goi, M. Trapido, Hydrogen peroxide photolysis, Chemosphere 46. 913. (2002).
    
    [9] Y. Sun, J.J. Pignatello, Environ. Sci. Technol. 27. 304. (1993).
    [10] B. Utset, J. Garcia, J. Casado, X. Domenech, J. Peral, Chemosphere 41 (2000) 1187.
    
    [11] J.C. D'Oliveira, G. Al-Sayyed, P. Pichat, Environ. Sci. Technol. 24. 990. (1990).
    [12] T. Pandiyan, O. Martines Rivas, J. Orozco Martines, G. Burillo Amezcua, M.A. Martinez-Carrillo, J. Photochem. Photobiol. A: Chem. 146. 149. (2002).
    [13] K.H. Wang, Y.H. Hsieh, M.Y. Chou, C.Y. Chang, Appl. Catal. B: Environ. 21. 1. (1999).
    [14] A.M. Peiro, J.A. Ayllon, J. Peral, X. Domenech, Appl. Catal. B: Environ. 30. 359. (2001).
    
    [15] Y. Du, M. Zhou, L. Lei, J. Hazard. Mater. B 139. 108. (2007).
    [16] U. Stafford, K. A. Gray, P. Kamat, J. Catal. 167. 25. (1997).
    [17] U. Stafford, K. A. Gray, P.V. Kamat, J. Phys. Chem. 98. 6343. (1994).
    [18] A. Mills, J. Wang, J. Photochem. Photobiol. A: Chem. 118. 53. (1998).
    [19] X. Li, J. W. Cubbage, T.A. Tetzlaff, W.S. Jenks, J. Org. Chem. 64. 8509. (1999).
    [20] X. Li, J.W. Cubbage, W.S. Jenks, J. Org. Chem. 64. 8525. (1999).
    [21] M. Kilic, Z. Cinar, J. Mol. Struct. (THEOCHEM) 851. 263. (2008).
    [22] O. Legrini, E. Oliveros, A. M. Braun, Chem. Rev. 93. 671. (1993).
    [23] G. V. Buxton, C. L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data. 17.513.(1988).
    
    [24] P. Lukes, B. R. Locke, Ind. Eng. Chem. Res. 44. 2921. (2005).
    [25] H. Al-Ekabi, N. Serpone, J. Phys. Chem. 92. 5726. (1988).
    [26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford CT, 2004.
    [27] Y. Zhao, D. G. Truhlar, J. Phys. Chem. 108. 6908. (2004).
    [28] Y.Zhao, D. G. Truhlar, J. Chem. Theor. Comput. 1.415. (2005).
    [29] C. Adamo, V. Barone, J. Chem. Phys. 108. 664. (1998).
    [30] A. D. Becke, J. Chem. Phys. 104.1040. (1996).
    
    [31] Y. Zhao, N. Gonzalez-Garcia, D. G. Truhlar, J. Phys. Chem. A 109.2012. (2005).
    [32] K. Fukui, Acc. Chem. Res. 14. 363. (1981).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700