用户名: 密码: 验证码:
一维纳米杂化材料的光电传感性质及在环境检测中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单壁碳纳米管(SWCNTs)自其被发现以来,就以其独特的结构和性质吸引人们广泛的关注。在其众多性质中,首要的应该是它们的电学性质,它们通常是作为电学材料来使用。高的电荷淌度和优良的弹道输运特性将使它们能在未来的电器设备中成为替代硅的最佳材料。此外,单壁碳纳米管(SWCNTs)融合到传统的场效应晶体管(FET)的结构中,还能充分发挥场效应管的特性。就其应用而言,由于其特有的准一维电子结构和超高的比表面积,使得用它们为材料制成的传感器有着传统传感器无法比拟的优越性。
     另外,具有独特光学性质的一维金纳米颗粒(Gold Nanorods)也是人们关注的热点,它们在有机-无机化合物,光电子学,生物材料和生物医药等方面都有着潜在的应用。金纳米颗粒有一个重要的性质,那就是当经过一定频率的入射光照射后,其表面的电子会产生相应的振荡,这种现象称为表面等离子共振(SPR)。而表面等离子共振(SPR)的强度和波长对周围环境反应非常敏感,通过表面增强Raman (SERS)的测量,可以利用这一特性进行传感性研究。
     无论是单壁碳纳米管(SWCNTs)还是金纳米颗粒(Gold Nanorods)都是很好的传感材料,它们将会在未来的传感器研究和发展中起到十分重要的作用。本论文主要采用合成的一些敏感材料对碳纳米管(SWCNTs)和金纳米棒(Gold Nanorods)进行了化学修饰,并研究了它们的传感性。主要内容如下:
     一、首次合成了两个含六氟异丙醇基团(HFIP)的化合物,对六氟异丙醇苯胺(HFIPA)和N-4-六氟异丙醇苯基-1-芘丁酰胺(HFIPP),并分别用它们修饰单壁碳纳米管(SWCNTs),得到两个碳管杂化材料SWCNT-HFIPP及SWCNT-HFIPPH。考虑到六氟异丙醇基团(HFIP)与神经毒剂沙林之间能形成强烈的氢键作用,所合成的两个复合材料分别被制作成化学微传感器并对沙林的模拟物甲基磷酸二甲酯(DMMP)进行了检测,测试结果表明它们对DMMP的响应表现出很高的灵敏性和选择性,可以预测这两种材料在未来爆炸物及其它化学战剂的检测中能发挥潜在的作用。
     二、首次合成了一个环糊精衍生物:单-6-脱氧-6-对氨基苯氨基-β-环糊精(PCD),并通过重氮化反应将PCD修饰到单壁碳纳米管(SWCNTs)上,得到一个新的单壁碳纳米管杂化材料(SWCNT-PCD)。基于环糊精有很好的分子识别性,该杂化材料被制成了化学电阻型传感器,并用它对自然界中的持久有机污染物(POPs)进行了检测,结果展现出优良的灵敏性和选择性。研究还表明传感器电导的变化率随PCD和不同POPs分子之间的结合常数的增大而增大,可以预测该传感器在环境检测中有着潜在的应用。
     三、合成了不同长径比的一维金纳米棒(Gold Nanorods),并用单-6-巯基-p-环糊精对它们进行化学修饰,得到金纳米棒的复合材料,其特殊的结构提高了对农残分子的捕捉力,第一次使用这种材料的表面增强Raman效应(SERS)对农残甲基对硫膦进行了检测。研究表明长径比为二的金纳米棒能表现出更好的SERS效应。由于环糊精的空腔能与甲基对硫膦形成有效地结合体,通过SERS光谱中的指纹峰强度的识别,农残能被检测到皮摩尔级。相对于其它传统的农残检测方法,这种使用无Raman标签的杂化一维金纳米棒材料为SERS基底,在农残检测中能表现出优良的灵敏性和选择性。
As new carbon materials, Single-Walled Carbon Nanotubes (SWCNTs) have attracted great interests recently due to their unique chemical and physical properties. Particularly, applications of SWCNTs based on electrical properties are being widely investigated, which lead to their considerations as replacements for Si in future generation devices. Considered that SWCNTs can be well compatible with conventional field-effect transistor (FET) architectures, SWCNT-FET with quasi-one-dimensional electronic structures and very high surface-to-volume ratios can be expected as excellent electronic nanodevices compared to tranditional sensors.
     On the other hand, the unique optical properties of gold nanostructures also attract a great deal of attention due to their potential applications in organic-inorganic composites, photonics, biomaterials, and biomedicine. It should be noted that intensity and wavelength of surface plasmon resonance (SPR) of one-dimesional gold nanoparticles (Gold Nanorods), viz., coherent oscillations of the metal electrons in resonance with light of a certain frequency, are highly sensitive to the surrounding environment, which can be utilized for surface enhanced Raman scattering (SERS) sensing purposes. Strong enhancement of the electromagnetic field owing to the excitation of the surface plasmons at the surface of particles have been extensively studied for sensing applications.
     In summary, sensing hybridized materials of SWCNTs and Gold Nanorods (GNRs) can be expected as excellent candidates to manufacture future generations of chemical sensors. In this dissertation, hybridized SWCNTs or GNRs have been prepared and employed to fabricate sensing devices, which display excellent sensitivity and selectivity. The main conclusions are summarized as follows:
     (1) Two novel compounds, N-4-Hexafluoroisopropanolphenyl-l-pyrenebutyramide (HFIPP) and p-hexafluoroisopropanol aniline (HFIPA) have been prepared for the first time. After functionalized with SWCNTs, two new hybridized materials SWCNT-HFIPP and SWCNT-HFIPPH have been obtained. Considered that strong hydrogen-bonding can be formed between hexafluoroisopropanol groups and dimethyl methylphosphonate (DMMP) (simulant of nerve agent sarin), two hybridized material sensing devices have been fabricated and utilized to detect DMMP. Excellent sensitivity and selectivity of the hybridized devices suggest that they have great capability of detecting explosives and chemical warfare agents.
     (2) Novel SWCNT-PCD hybrids have been successfully synthesized through in situ diazonium reaction between mono-6-deoxy-6-(p-aminophenylamino)-β-cyclodextrin (PCD) and SWCNTs for the first time. The cyclodextrin (CD) groups bind to the SWCNT surfaces through covalent interactions. Based on the sensing materials, fabricated chemical sensors of SWCNT-PCD hybrids have been utilized to detect Persistent Organic Pollutants (POPs), which exhibit excellent sensitivity and selectivity due to the concept of molecular recognition. The equilibrium constant values for the complexation of the PCD with the different POPs correlate with the magnitudes of the conductance change ratios of the SWCNT-PCD devices after binding of these POPs molecules, which can be suggested as potential applications in environmental monitor.
     (3) The as-prepared GNRs with different aspect ratios have been decorated with mono-6-thio-β-cyclodextrin so as to efficiently capture and detect methyl parathion insecticide via surface enhanced Raman scattering (SERS) technique for the first time. Detailed comparison among different aspect ratios of the GNRs suggests that the GNRs with aspect ratio 2 can be provided as excellent SERS active substrate for detecting the insecticide in the present study. Due to efficient formation of host-guest between hybridized cavity and methyl parathion, identification of the insecticide can be observed at picomolar level according to the fingerprint Raman peaks. Excellent sensitivity and selectivity for detection of the insecticide using the hybridized GNRs without Raman label indicate that it is a simple and ultrasensitive approach for detecting insecticides in contrast with some other traditional detection approaches.
引文
[1]P. Avouris. Molecular electronics with carbon nanotubes [J]. Acc. Chem. Res., 2002,35(12):1026-1034.
    [2]M. Ouyang, J. L. Huang, C. M. Lieber. Fundamental electronic properties and applications of single-walled carbon nanotubes [J]. Acc. Chem. Res.,2002, 35(12):1018-2025.
    [3]V. N. Popov. Carbon nanotubes:properties and application [J]. Mater. Sci. Eng. R, 2004,43(3):61-102.
    [4]J. C. Charlier, X. Blase, S. Roche. Electronic and transport properties of nanotubes [J]. Rev. Mod. Phys.,2007,79(2):677-732.
    [5]T. Yamamoto, K. Watanabe, E. R. Hernandez. Mechanical properties, thermal stability and heat transport in carbon nanotubes. Carbon Nanotubes,2008,111, 165-194.
    [6]H. J. Dai. Carbon nanotubes:Synthesis, integration, and properties [J]. Ace. Chem. Res.,2002,35(12):1035-1044.
    [7]X. J. Zhou, J. Y. Park, S. M. Huang, et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors [J]. Phys. Rev. Lett.,2005,95(14):146805.
    [8]C. T. White, T. N. Todorov. Carbon nanotubes as long ballistic conductors [J]. Nature 1998,393(6682):240-242.
    [9]B. M. Quinn, S. G. Lemay. Single-walled carbon nanotubes as templates and interconnects for nanoelectrodes [J]. Adv. Mater.,2006,18(7):855-859.
    [10]A. Naeemi, J. D. Meindl. Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems [J]. IEEE Trans. Electron. Devices,2007,54(1):26-37.
    [11]H. Cho, K. H. Koo, P. Kapur, K. C. Saraswat. Performance comparisons between Cu/Low-kappa, carbon-nanotube, and optics for future on-chip interconnects [J]. IEEE Electron Device Lett.,2008,29(1):122-124.
    [12]Z. Yao, C. L. Kane, C. Dekker. High-field electrical transport in single-wall carbon nanotubes [J]. Phys. Rev. Lett.,2000,84(13):2941-2944.
    [13]E. Pop, D. Mann, Q. Wang, K. et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature [J]. Nano Lett.,2006,6(1): 96-100.
    [14]M. F. Yu, O. Lourie, M. J. Dyer, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science 2000,287(5453): 637-640.
    [15]Z. W. Pan, S. S. Xie, L. Lu, et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes [J]. Appl. Phys. Lett.,1999,74(21):3152-3154.
    [16]P. Poncharal, Z. L. Wang, D. Ugarte, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes [J]. Science,1999,283(5407): 1513-1516.
    [17]J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, et al. Elastic and shear moduli of single-walled carbon nanotube ropes [J]. Phys. Rev. Lett.,1999,82(5):944-947.
    [18]E. W. Wong, P. E. Sheehan, C.M. Lieber. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science,1997,277(5334): 1971-1975.
    [19]M. M. J. Treacy, T. W. Ebbesen, et al. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381(6584):678-680.
    [20]D. Y. Khang, J. L. Xiao, C. Kocabas, et al. Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates [J]. Nano Lett.,2008,8(1):124-130.
    [21]M. F. Yu, B. S. Files, S. Arepalli, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties [J]. Phys. Rev. Lett.,2000, 84(24):5552-5555.
    [22]D. A. Walters, L. M. Ericson, M. J. Casavant, et al. Elastic strain of freely suspended single-wall carbon nanotube ropes [J]. Appl. Phys. Lett.,1999,74(25): 3803-3805.
    [23]S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, et.al. Chemistry of single-walled carbon nanotubes [J]. Acc. Chem. Res.,2002,35(12):1105-1113.
    [24]D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato. Chemistry of carbon nanotubes [J]. Chem. Rev.,2006,106(3):1105-1136.
    [25]M. Cinke, J. Li, B. Chen, A. Cassell, et al. Pore structure of raw and purified HiPco single-walled carbon nanotubes [J]:Chem. Phys. Lett.,2002,365(1-2): 69-74.
    [26]H. S. P. Wong. Beyond the conventional transistor [J]. IBM J. Res. Dev.,2002, 46(2-3):133-168.
    [27]S. E. Thompson, S. Parthasarathy. Moore's law:the future of Si microelectronics [J]. Mater. Today,2006,9(6):20-25.
    [28]P. Avouris, Z. H. Chen, V. Perebeinos. Carbon-based electronics [J]. Nat. Nanotechnol.2007,2(10):605-615.
    [29]W. B. Choi, D. S. Chung, J. H. Kang, et al. Fully sealed, high-brightness carbon-nanotube field-emission display [J]. Appl. Phys. Lett.,1999,75(20): 3129-3131.
    [30]H. M. Cheng, Q. H. Yang, C. Liu. Hydrogen storage in carbon nanotubes [J]. Carbon,2001,39(10):1447-1454.
    [31]L. Schlapbach, A. Zuttel. Hydrogen-storage materials for mobile applications [J]. Nature,2001,414(6861):353-358.
    [32]A. S. Arico, P. Bruce, B. Scrosati, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nat. Mater.,2005,4(5):366-377.
    [33]Z. Liu, M. Winters, M. Holodniy, H. J. Dai. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters [J]. Angew. Chem. Int. Ed., 2007,46(12):2023-2027.
    [34]M. Prato, K. Kostarelos, A. Bianco. Functionalized carbon nanotubes in drug design and discovery [J]. Ace. Chem. Res.,2008,41(1):60-68.
    [35]M. Freitag, J. C. Tsang, J. Kirtley, A et al. Electrically excited, localized infrared emission from single carbon nanotubes [J]. Nano Lett.,2006,6(7):1425-1433.
    [36]J. Chen, V. Perebeinos, M. Freitag, et al. Bright infrared emission from electrically induced excitons in carbon nanotubes [J]. Science,2005,310(5751): 1171-1174.
    [37]K. Kordas, G. Toth, P. Moilanen, et al. Chip cooling with integrated carbon nanotube microfin architectures [J]. Appl. Phys. Lett.,2007,90(12):123105.
    [38]T. Iwai, Y. Awano. Carbon nanotube bumps for thermal electric conduction in transistor [J]. Fujitsu Sci. Tech. J.,2007,43(4):508-515.
    [39]G. F. Close, S. Yasuda, B. Paul, et al. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors [J]. Nano Lett.,2008,8(2): 706-709.
    [40]S. N. Kim, J. F. Rusling, F. Papadimitrakopoulos. Carbon nanotubes for electronic and electrochemical detection of biomolecules [J]. Adv. Mater.,2007, 19(20):3214-3228.
    [41]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. et al. Spintronics:A spin-based electronics vision for the future [J]. Science,2001,294(5546):1488-1495.
    [42]C. Joachim, J. K. Gimzewski, A. Aviram. Electronics using hybrid-molecular and mono-molecular devices [J]. Nature,2000,408(6812):541-548.
    [43]J. M. Tour. Molecular electronics. Synthesis and testing of components [J]. Ace. Chem. Res.,2000,33(11):791-804.
    [44]J. Huang, M. Momenzadeh, F. Lombardi. An overview of nanoscale devices and circuits [J]. IEEE Des. Test Comput.,2007,24(4):304-311.
    [45]W. Lu, C. M. Lieber. Nanoelectronics from the bottom up [J]. Nat. Mater.,2007, 6(11):841-850.
    [46]A. Javey, H. Kim, M. Brink, et al. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates [J]. Nat. Mater.,2002,1(4):241-246.
    [47]P. J. Burke. AC performance of nanoelectronics:towards a ballistic THz nanotube transistor [J]. Solid-State Electron,2004,48(10-11):1981-1986.
    [48]K. L. Kelly, E. Coronado, L. L. Zhao, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B,2003,107(3):668-677.
    [49]F. Kim, S. Connor, H. Song, et al. Platonic gold nanocrystals [J]. Angew. Chem.
    Int. Ed.,2004,43(28):3673-3677.
    [50]P. S. Kumar, I. Pastoriza-Santos, et al. High-yield synthesis and optical response of gold nanostars [J]. Nanotechnology 2008,19(1):015606.
    [51]A. M. Schwartzberg, J. Z. Zhang. Novel optical properties and emerging applications of metal nanostructures [J]. J. Phys. Chem. C,2008,112(28): 10323-10337.
    [52]C. Jiang, S. Markutsya, V. V. Tsukruk. Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly [J]. Langmuir,2004,20(3):882-890.
    [53]I. Luzinov, S. Minko, V. V. Tsukruk. Responsive brush layers:from tailored gradients to reversibly assembled nanoparticles [J]. Soft Matter,2008,4(4): 714-725.
    [54]S. A. Maier, H. A. Atwater. Plasmonics:Localization and guiding of electromagnetic energy in metal/dielectric structures [J]. J. Appl. Phys.,2005, 98(1):011101.
    [55]S. A. Maier, M. D. Friedman, P. E. Barclay, O. Painter. Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing [J]. Appl. Phys. Lett.,2005,86(1):071103.
    [56]O.H. Kwon, A. Kikuchi, M. Yamato, et al. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes [J]. Biomed. Mater. Res.,2000,50(1):82-89.
    [57]A. Skirtach, P. Karageorgiev, B. G. De Geest, et al. Nanorods as wavelength-selective absorption centers in the visible and near-infrared regions of the electromagnetic spectrum [J].Adv. Mater.,2008,20(3):506-510.
    [58]P. K. Jain, X. Huang, I. H. El-Sayed, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems [J]. Plasmonics,2007,2(3):107-118.
    [59]E. Hutter, J. H. Fendler. Exploitation of localized surface plasmon resonance [J]. Adv. Mater.,2004,16(19):1685-1760.
    [60]M.E. Stewart, C. R. Anderton, L. B. Thompson, et al. Nanostructured plasmonic sensors [J]. Chem. Rev.,2008,108(2):494-521.
    [61]F. Caruso, M. Spasova, V. Salguerino-Maceira, et al. Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates [J]. Adv. Mater.,2001,13(14):1090-1094.
    [62]A. M. Michaels, M. Nirmal, L. E. Brus. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals [J]. J. Am. Soc. Chem.,1999,121(43):9932-9939.
    [63]C. C. Neacsu, J. Dreyer, N. Behr, et al. Scanning-probe Raman spectroscopy with single-molecule sensitivity [J]. Phys. ReV. B,2006,73(19):193406.
    [64]H. Ko, S. Singamaneni, V. V. Tsukruk. Nanostructured Surfaces and Assemblies as SERS Media [J]. Small,2008,4(10):1576-1599.
    [65]C. Jiang, W. Y. Lio, V. V. Tsukruk. Surface enhanced raman scattering monitoring of chain alignment in freely suspended nanomembranes [J]. Phys. ReV. Lett., 2005,95(11):115503.
    [66]L. Valentini, C. Cantalini, I. Armentano, et al. Investigation of the NO2 sensitivity properties of multiwalled carbon nanotubes prepared by plasma enhanced chemical vapor deposition [J]. J. Vac. Sci. Technol. B,2003,21(5): 1996-2000
    [67]J. Suehiro, G. B. Zhou, M. Hara. Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy [J]. J. Phys. D:Appl. Phys.,2003,36(21):109-114.
    [68]L. Valentini, F. Mercuri, I. Armentano, et al. Role of defects on the gas sensing properties of carbon nanotubes thin films:experiment and theory [J]. Chem. Phys. Lett.,2004,387(4-6):356-361.
    [69]J. K. Abraham, B. Philip, A. Witchurch, et al. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor [J]. Smart Mater. Struct., .2004,13(5)1045-9
    [70]K. S. V. Santhanam, R. Sangoi, L. Fuller. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene) [J]. Sensors Actuators B,2005,106(2):766-71.
    [71]C. Wei, L. Dai, A. Roy, et al. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites [J]. J. Am. Chem. Soc.,2006,128 (5):1412-1413.
    [72]M. Penza, G. Cassano, R. Rossi, et al. Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters [J]. Appl. Phys. Lett.,2007,90 173123.
    [73]M. K. Kumar, S. Ramaprabhu. Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor [J]. J. Phys. Chem. B,2006,110(23): 11291-11298.
    [74]Y. Li, H. Wang, X. Cao, et al. A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor [J]. Nanotechnology,2008, 19(1):015503.
    [75]S. Auvray, V. Derycke, M. Goffman, et al. Chemical Optimization of Self-Assembled Carbon Nanotube Transistors [J]. Nano lett,2005,5(3), 451-455.
    [76]A. Star, E. Tu, J. Niemann, et al. Label-Free Detection of DNA Hybridization Using Carbon Nanotube Network Field-Effect Transistors [J]. Proc. Natl. Acad. Sci. U.S.A.2006,104(4),921-926.
    [77]S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube [J]. Nature 1998,393(6680):49-52.
    [78]R. Martel, T. Schmidt, H. R. Shea, et al. Single- and multi-wall carbon nanotube field-effect transistors [J]. Appl. Phys. Lett.1998,73(17):2447-2449.
    [79]E. S. Snow, F. K. Perkins, E. J. Houser, et al. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor [J]. science,2005,307(5717): 1942-1945.
    [80]E. S. Snow, F. Keith Perkins. Capacitance and Conductance of Single-Walled Carbon Nanotubes in the Presence of Chemical Vapors [J]. Nano lett.,2005, 5(12):2414-2417.
    [81]H. J. Dai. Nanotube growth and characterization. Carbon Nanotubes,2001,80, 29-53.
    [82]Y. P. Sun, K. Fu, Y. Lin, et al. Functionalized carbon nanotubes:Properties and applications [J]. Acc. Chem. Res.,2002,35(12):1096-104.
    [83]J. Kong, N. R. Franklin, C. W. Zhou, et al. Nanotube molecular wires as chemical sensors [J]. Science,2000,287(5453):622-625.
    [84]J. Li, Y. J. Lu, Q. Ye, et al. Carbon nanotube sensors for gas and organic vapor detection [J]. Nano Lett.,2003,3(7):929-33.
    [85]T. Someya, J. Small, P. Kim, et al. Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors [J]. Nano Lett.,2003, 3(7),881-887
    [86]P. G. Collins, K. Bradley, M. Ishigami, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science,2000,287(5459): 1801-1804.
    [87]J. P. Novak, E. S. Snow, E. J. Houser, et al. Nerve agent detection using networks of single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2003,83(19). 4026-4028.
    [88]C. Y. Lee, S. Baik, J. Q. Zhang, et al. Charge transfer from metallic single-walled carbon nanotube sensor arrays [J]. J. Phys. Chem. B,2006,110(23): 11055-11061.
    [89]W. Wongwiriyapan et al. Ultrasensitive ozone detection using single-walled carbon nanotube networks [J]. Japan. J. Appl. Phys.,2006,45(4B) 3669-3671.
    [90]K. Bradley, J. C. P.. Gabriel, M. Briman, et al. Charge transfer from ammonia physisorbed on nanotubes [J]. Phys. Rev. Lett.,2003,91(21):218301-218304.
    [91]P. F. Qi, O. Vermesh, M. Grecu, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection [J]. Nano Lett.,2003,3(3):347-351.
    [92]R. J. Chen, N. R. Franklin, J. Kong, et al. Molecular photodesorption from single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2001,79(14) 2258-2260.
    [93]J. Chen, M. A. Hamon, H. Hu, et al. Solution properties of single-walled carbon nanotubes [J]. Science,1998,282(5386):95-98.
    [94]M. A. Hamon. H. Hu, et al. End-group and defect analysis of soluble single-walled carbon nanotubes [J]. Chem. Phys. Lett.,2001,347(1-3):8-12.
    [95]J. E. Riggs, Z. Guo, D. L. Carroll, et al. Strong luminescence of solubilized carbon nanotubes [J]. J. Am. Chem. Soc.,2000,122(24):5879-5880.
    [96]J. L. Bahr, J. M. Tour. Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J]. Chem. Mater.,2001,13(11):3823-3824.
    [97]C. A. Dyke, J. M. Tour. Unbundled and highly functionalized carbon nanotubes from aqueous reactions [J]. Nano Lett.,2003,3(9):1215-1218.
    [98]C. A. Dyke, J. M. Tour. Solvent-free functionalization of carbon nanotubes [J]. J. Am. Chem. Soc.,2003,125(5):1156-1157.
    [99]A. Star, J. F. Stoddart, D. Steuerman, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angew. Chem. Int. Ed., 2001,113(9):1721-1725.
    [100]H. Xia, Q. Wang, G. Qiu. Polymer-Encapsulated Carbon Nanotubes Prepared through Ultrasonically Initiated In Situ Emulsion Polymerization [J]. Chem. Mater.,2003,15(20):3879-3886.
    [101]X. Dong, D. Fu, M. O. Ahmed, et al. Heme-enabled electrical detection of carbon monoxide at room temperature using networked carbon nanotube field-effect transistors [J]. Chem. Mater.,2007,19(25):6059-6061.
    [102]Y. Osada, D. E. Rossi.2000 Polymer Sensors and Actuators (Berlin:Springer)
    [103]J. Janata, M. Josowicz. Conducting polymers in electronic chemical sensors [J]. Nat. Mater.,2003,2(1):19-24.
    [104]A. Star, T. R. Han, V. Joshi, et al. Nanoelectronic carbon dioxide sensors [J]. Adv. Mater.,2004,16(22):2049-2052.
    [105]C. Y. Lee, M. S. Strano. Amine basicity (pK(b)) controls the analyte blinding energy on single walled carbon nanotube electronic sensor Arrays [J]. J. Am. Chem. Soc.,2008,130(5):1766-1773.
    [106]O. Kuzmych, B. L. Allen, A. Star. Carbon nanotube sensors for exhaled breath components [J]. Nanotechnology,2007,18(37):375502.
    [107]K. H. An, S. Y. Jeong, H. R. Hwang, et al. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites [J]. Adv. Mater.2004,16(12) 1005-1009.
    [108]E. Bekyarova, M. Davis, T. Burch, et al. Chemically functionalized single-walled carbon nanotubes as ammonia sensors [J]. J. Phys. Chem. B,2004, 108(51):19717-19720.
    [109]T. Zhang, S. Mubeen, E. Bekyarova, et al. Poly(m-aminobenzene sulfonic acid) functionalized single-walled carbon nanotubes based gas sensor [J]. Nanotechnology,2007,18(16):165504-165509.
    [110]E. Bekyarova, I. Kalinina, M. E. Itkis, et al. Mechanism of Ammonia Detection by Chemically Functionalized Single-Walled Carbon Nanotubes:In Situ Electrical and Optical Study of Gas Analyte Detection [J], J. AM. CHEM. SOC. 2007,129(35):10700-10706.
    [111]B. Zhao, H. Hu, R. C. Haddon. Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer [J]. Adv. Funct. Mater.,2004,14(1):71-76.
    [112]T. Zhang, M. B. Nix, B. Y. Yoo, et al. Electrochemically functionalized single-walled carbon nanotube gas sensor [J]. Electroanalysis,2006,18(12): 1153-1158.
    [113]A. Ruiz, J. Arbiol, A. Cirera, A et al. Surface activation by Pt-nanoclusters on titania for gas sensing applications [J]. Mater. Sci. Eng. C,2002,19(1-2) 105-109.
    [114]J. D. Galipeau, R. S. Falconer, J. F. Vetelino, et al. Theory, design and operation of a surface-acoustic-wave hydrogen-sulfide microsensor [J]. Sensors Actuators B,1995,24(1-3):49-53.
    [115]J. Kong, M. G. Chapline, H. J. Dai. Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv. Mater.,2001,13(18):1384-1386.
    [116]Y. J. Lu, J. Li, J. Han, et al. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors [J]. Chem. Phys. Lett., 2004,391 (4-6):344-348.
    [117]I. Sayago, et al. Novel selective sensors based on carbon nanotube films for hydrogen detection [J]. Sensors Actuators B,2007,122(1):75-80.
    [118]J. S. Oakley, H. T. Wang, B. S. Kang, et al. Carbon nanotube films for room temperature hydrogen sensing [J]. Nanotechnology,2005,16(10):2218-2221.
    [119]P. Young, Y. J. Lu, R. Terrill, J. Li. High-sensitivity NO2 detection with carbon nanotube-gold nanoparticle composite films [J]. J. Nanosci. Nanotechnol.,2005, 5(9):1509-1513.
    [120]S. Mubeen, T. Zhang, B. Yoo, et al. Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor [J]. J. Phys. Chem. C,2007, 111(17):6321-6327.
    [121]A. Star, V. Joshi, S. Skarupo, et al. Gas sensor array based on metal-decorated carbon nanotubes [J]. J. Phys. Chem. B,2006,110(42):21014-21020.
    [122]Y. J. Lu, C. Partridge, M. Meyyappan, J. Li. A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis [J]. J. Electroanal. Chem.2006,593(1-2):105-110.
    [123]K..Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms [J]. J. Am. Chem. Soc.2007,129(6):1524-1525.
    [124]K. Kato, T. Ishimuro, Y. Arima, et al. High-throughput immunophenotyping by surface plasmon resonance imaging [J]. Anal. Chem.,2007,79(22):8616-8623.
    [125]A. J. Haes, L. Chang, W. L. Klein, et al. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor [J]. J. Am. Chem. Soc.,2005,127(7):2264-2271.
    [126]A. G. Brolo, P. Germain, G. Hager. Investigation of the adsorption of L-cysteine on a polycrystalline silver electrode by surface-enhanced Raman scattering (SERS) and surface-enhanced second harmonic generation (SESHG) [J]. J. Phys. Chem. B,2002,106(23):5982-5987.
    [127]M. Moskovits. Surface-enhanced Raman spectroscopy:a brief retrospective [J]. J. Raman Spectrosc.,2005,36(6-7):485-496.
    [128]A. J. Bonham, G. Braun, I. Pavel, et al. Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering [J]:J. Am. Chem. Soc.2007,129(47):14572-14573..
    [129]M. G. Albrecht, J. A. Creighton. Anomalously intense raman-spectra of pyridine at silver electrode [J]. J. Am. Chem. Soc.,1977,99(15):5215-5217.
    [130]M. F. Mrozek, M. J. Weaver. Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy [J]. Anal. Chem. 2002,74(16):4069-4075.
    [131]K. E. Shafer-Peltier, C. L. Haynes, et al. Toward a glucose biosensor based on surface-enhanced Raman scattering [J]. J. Am. Chem. Soc.2003,125(2): 588-593.
    [132]D. L. Jeanmaire, R. P. Vanduyne. Surface raman spectroelectroelectrochemistry. 1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode [J]. J. Electroanal. Chem.,1977,84(1),1-20.
    [133]M. Moskovits. Sureace-roughness and enhanced intensity of Raman-scattering by molecules adsorbed on metals [J]. J. Chem. Phys.,1978,69(9):4159-4161.
    [134]L. Brus. Raman spectra of single R6G molecules on Ag nanocrystal aggregates. Abstr. Papers Am. Chem. Soc.,2001,221,112.
    [135]J. Jiang, K. Bosnick, M. Maillard, L. Brus. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals [J]. J. Phys. Chem. B, 2003,107(37):9964-9972.
    [136]S. G. Schultz, M. Janik-Czachor, R. P. Van Duyne. Surface Enhanced Raman-spectroscopy-a refxamination of the role of surface-roughness and electrochemical anodization [J]. Surf. Sci.1981,104(2-3):419-434.
    [137]S. M. Nie, S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science,1997,275(5303):1102-1106.
    [138]J. T. Krug, G. D. Wang, S. R. Emory, S. M. Nie. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals [J]. J. Am. Chem. Soc.,1999,121(39):9208-9214.
    [139]G. C. Schatz. Theoetical-studies of surface enhanced Raman-scattering [J]. Acc Chem. Res.1984,17(10):370-376.
    [140]J. I. Gersten. The effect of surface-roughness on surface enhanced Raman-scattering [J]. J. Chem. Phys.,1980,72(10):5779-5780.
    [141]A. Tao, F. Kim, C. Hess, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy [J]. Nano Lett.2003,3(9):1229-1323.
    [142]D. H. Jeong, Y. X. Zhang, M. Moskovits. Polarized surface enhanced Raman scattering from aligned silver nanowire rafts [J]. J. Phys. Chem. B,2004,108(34): 12724-12728.
    [143]B. Nikoobakht, M. A. El-Sayed. Surface-enhanced Raman scattering studies on aggregated gold nanorods [J]. J. Phys. Chem. A,2003,107(18):3372-3378.
    [144]B. Nikoobakht, J. Wang, M. A. El-Sayed. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods:off-surface plasmon resonance condition [J]. Chem. Phys. Lett.2002,366(1-2):17-23.
    [145]C. J. Orendorff, A. Gole, T. K. Sau, et al. Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers:Sandwich Architecture and Nanoparticle Shape Dependence [J]. Anal. Chem.,2005,77(10):3261-3266.
    [146]C. J. Orendorff, L. Gearheart, N. R. Janaz, et al. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates [J]. Phys. Chem. Chem. Phys.2006,8,165-170.
    [147]J. C. S. Costa, R. A. Ando, A. C. Sant' Ana, et al. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides [J]. Phys. Chem. Chem. Phys.,2009,11,7491-7498.
    [148]S. S. R. Dasary, A. K. Singh, D. Senapati, H. Yu, et al. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene [J]. J. Am. Chem. Soc.,2009,131(38):13806-13812.
    [1]D. Du, M. Wang, J. Cai, et al. Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing [J]. Analyst,2008,133(12):1790-1795.
    [2]S. V. Patel, T. E. Mlsna, B. Fruhberger, et al. Chemicapacitive microsensors for volatile organic compound detection [J]. Sens. Actuators B,2003,96(3): 541-553.
    [3]J. Yan, H. J. Zhou, P. Yu, L. Su and L. Q. Mao, Rational Functionalization of Carbon Nanotubes Leading to Electrochemical Devices with Striking Applications [J]. Adv. Mater.,2008,20(15):2899-2906.
    [4]G. Jimenez-Cadena, J. Riu, F. X. Rius. Gas sensors based on nanostructured materials [J]. Analyst,2007,132(11):1083-1099.
    [5]Y. Wang, Z. Zhou, Z. Yang, et al. Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection [J]. Nanotechnology,2009, 20(34):345502-345509.
    [6]D. R. Kauffman, A. Star, Carbon Nanotube Gas and Vapor Sensors [J]. Angew. Chem. Int. Ed.,2008,47(35),6550-6570.
    [7]C. Zuniga, M. Rinaldi, S. M. Khamis, et al. Nanoenabled microelectromechanical sensor for volatile organic chemical detection [J]. Appl. Phys. Lett.,2009,94(22): 223122-223124.
    [8]E. S. Snow, F. K. Perkins, J. A. Robinson. Chemical vapor detection using single-walled carbon nanotubes [J]. Chem. Soc. Rev.,2006,35(9):790-798.
    [9]D. R. Kauffmanab, A. Star. Electronically monitoring biological interactions with carbon nanotube field-effect transistors [J]. Chem. Soc. Rev.,2008,37(6): 1197-1206.
    [10]P. Vichchulada, Q. Zhang. M. D. Lay. Recent progress in chemical detection with single-walled carbon nanotube networks [J]. Analyst,2007,132(8):719-723.
    [11]D. M. Guldi, G. M. A. Rahman, F. Zerbetto,et al. Carbon Nanotubes in Electron Donor-Acceptor Nanocomposites [J]. Acc. Chem. Res.,2005,38(11):871-878.
    [12]D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato, Chemistry of Carbon Nanotubes [J]. Chem. Rev.,2006,106(3):1105-1136.
    [13]A. Goldoni, R. Larciprete, L. Petaccia, et al. Single-Wall Carbon Nanotube Interaction with Gases:Sample Contaminants and Environmental Monitoring [J]. J. Am. Chem. Soc.,2003,125(37):11329-11333.
    [14]J. Li, Y. Lu, Q. Ye, et al. Meyyappan, Carbon Nanotube Sensors for Gas and Organic Vapor Detection [J]. Nano Lett.,2003,3(7):929-933.
    [15]M. O'Connor, S. N. Kim, A. J. Killard, et al. Mediated amperometric immunosensing using single walled carbon nanotube forests [J]. Analyst,2004, 129(12):1176-1180..
    [16]D. A. Heller, S. Baik, T. E. Eurell. et al. Single-Walled Carbon Nanotube Spectroscopy in Live Cells:Towards Long-Term Labels and Optical Sensors [J]. Adv. Mater.,2005,17(23):2793-2799.
    [17]Q. Cao, J. A. Rogers. Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors:A Review of Fundamental and Applied Aspects [J]. Adv. Mater.,2009,21(1):29-53.
    [18]C. Zuniga, M. Rinaldi, S. M. Khamis, et al. Nanoenabled microelectromechanical sensor for volatile organic chemical detection [J]. Appl. Phys. Lett.,2009,94(22): 223122-223124.
    [19]T. Zhang, S. Mubeen, B. Yoo, et al. A gas nanosensor unaffected by humidity Nanotechnology,2009,20(25):255501-255505.
    [20]M. T. Martinez, Y.-C. Tseng, N. Ormategui, et al. Label-Free DNA Biosensors Based on Functionalized Carbon Nanotube Field Effect Transistors [J]. Nano Lett.,2009,9(2):530-536.
    [21]P. F. Qi,O. Vermesh, M. Grecu,et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection [J]. Nano Lett.,2003,3(3):347-351.
    [22]B. L. Allen, P. D. Kichambare, A. Star. Carbon nanotube field-effect-transistor-based biosensors [J]. Adv.Mater.,2007,19(11):1439-1451.
    [23]S. N. Kim, J. F. Rusling, F. Papadimitrakopoulos. Carbon nanotubes for electronic and electrochemical detection of biomolecules [J]. Adv. Mater.,2007, 19(20):3214-3228.
    [24]D. R. Kauffman and A. Star. Single-walled carbon-nanotube spectroscopic and electronic field-effect transistor measurements:A combined approach [J].Small, 2007,3(8):1324-1329.
    [25]S. Brahim, S. Colbern, R. Gump, et al. Carbon nanotube-based ethanol sensors [J]. Nanotechnology,2009,20(23),235502-235508.
    [26]H. J. Song, Y. Lee, T. Jiang, et al. Self-clusterized glycines on single-walled carbon nanotubes for alcohol sensing [J]. J. Phys. Chem. C,2008,112(2): 629-634.
    [27]D. Fu, H. Lim, Y. Shi, et al. Differentiation of gas molecules using flexible and all-carbon nanotube devices [J]. J. Phys. Chem. C,2008,112(3):650-653.
    [28]K. A. Joshi, M. Prouza, M. Kum, et al. V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode [J]. Anal. Chem.,2006, 78(1):331-336.
    [29]O. V. Shulga, C. Palmer. Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte [J]. Anal. Bioanal. Chem.,2006,385(6):1116-1123.
    [30]K. I. Ozoemena, J. Pillay, T. Nyokong. Preferential electrosorption of cobalt (II) tetra-aminophthalocyanine at single-wall carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode [J]. Electrochem. Commun.,2006,8(8): 1391-1396.
    [31]J. Pillay, K. I. Ozoemena. Electrochemical properties of surface-confined films of single-walled carbon nanotubes functionalised with cobalt(II)tetra-aminophthalocyanine:Electrocatalysis of sulfhydryl degradation products of V-type nerve agents [J]. Electrochim. Acta,2007,52(11),3630-3640.
    [32]J. Pillay, K.I. Ozoemena. Efficient electron transport across nickel powder modified basal plane pyrolytic graphite electrode:Sensitive detection of sulfhydryl degradation products of the V-type nerve agents [J]. Electrochem. Commun.,2007,9(7):1816-1823.
    [33]A. S. Adekunle, J. Pillay, K. I. Ozoemena. Electrocatalysis of 2-Diethylaminoethanethiol at Nickel Nanoparticle-Electrodecorated Single-Walled Carbon Nanotube Platform:An Adsorption-Controlled Electrode Process [J]. Electroanalysis,2008,20(23):2587-2591.
    [34]I. Sasaki, N. Minami, A. Karthigeyan et al. Optimization and evaluation of networked single-wall carbon nanotubes as a NO2 gas sensing material [J]. Analyst,2009,134(2),325-330.
    [35]H. Q. Nguyen, J. S. Huh. Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation [J]. Sens. Actuators B,2006,117(2):426-430.
    [36]J. Kong, M. G. Chapline, H. J. Dai. Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv. Mater.,2001,13(18):1384-1386.
    [37]K. H. An, S. Y. Jeong, H. R. Hwang,et al. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites [J]. Adv. Mater.,2004,16(12):1005-1009.
    [38]E. Bekyarova, M. Davis, T. Burch, et al. Chemically functionalized single-walled carbon nanotubes as ammonia sensors [J]. J. Phys. Chem. B,2004,108(51): 19717-19720.
    [39]J. H. Zou, S. I. Khondaker, et al. A General Strategy to Disperse and Functionalize Carbon Nanotubes Using Conjugated Block Copolymers [J]. Adv. Funct. Mater.,2009,19(3):479-483.
    [40]J. X. Geng, B.-S. Kong, S. B. Yang, et al. Effect of SWNT Defects on the Electron Transfer Properties in P3HT/SWNT Hybrid Materials [J]. Adv. Funct. Mater.,2008,18(18):2659-2665.
    [41]C. W. Doe, S.-M. Choi, S. R. Kline, et al. Charged Rod-Like Nanoparticles Assisting Single-Walled Carbon Nanotube Dispersion in Water [J]. Adv. Funct. Mater.,2008,18(18):2685-2691.
    [42]W.-Q. Han, A. Zettl. Coating single-walled carbon nanotubes with tin oxide [J]. Nano Lett,2003,3(5):681-683.
    [43]E. S. Forzani, X. L. Li, P. M. Zhang, et al. Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions [J]. small,2006,2(11): 1283-1291.
    [44]J. W. Grate, S. J. Patrash, S. N. Kaganove. Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays [J]. Anal. Chem.,1999,71(5): 1033-1040.
    [45]J. P. Amara, T. M. Swager. Synthesis and properties of poly (phenylene ethynylene)s with pendant hexafluoro-2-propanol groups [J]. Macromolecules, 2005,38(22):9091-9094.
    [46]C. Lai, H. Cao, J. E. Hearst, et al. Quantitative Analysis of DNA Interstrand Cross-Links and Monoadducts Formed in Human Cells Induced by Psoralens and UVA Irradiation [J]. Anal. Chem.,2008,80(22),8790-8798.
    [47]J. F. Cheng, M. Chen, D. Wallace, et al. Synthesis and structure-activity relationship of small-molecule malonyl coenzyme A decarboxylase inhibitors [J]. J. Med. Chem.,2006,49(5):1517-1525.
    [48]E. S. Snow, F. K. Perkins, E. J. Houser, et al. Chemical detection with a single-walled carbon nanotube capacitor [J]. Science,2005,307(5717): 1942-1945.
    [49]R. A. McGill, T. E. Mlsna, R. Chung, et al. The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds [-J]. Sens. Actuators B,2000,65(1-3):5-9.
    [50]Y. Chang, J. Noriyan, D. R. Lloyd, et al. Polymer sorbents for phosphorus ester. 1.selection of polymer by analog calorimetry [J]. Polym. Eng. Sci.1987,27(10): 693-702.
    [51]J. W. Barlow, P. E. Cassidy, D. R. Lloyd, ey al. Polymer sorbents for phosphorus ester.2. hydrogen-bond driven sorption in fluoro-carbinol substituted polystyrene [J]. Polym. Eng. Sci.1987,27(10):703-715.
    [52]J. W. Grate. Radionuclide sensors for environmental monitoring:From flow injection solid-phase absorptiometry to equilibration-based preconcentrating minicolumn sensors with radiometric detection [J]. Chem. Rev.,2008,108(2): 726-745.
    [53]R. J. Chen, Y. G. Zhang, D. W. Wang, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].J.Am. Chem. Soc.,2001,123(16):3838-3839.
    [54]H. Lim, H. S. Shin, H.-J. Shin, et al. Lithium ions intercalated into pyrene-functionalized carbon nanotubes and their mass transport:A chemical route to carbon nanotube Schottky diode [J]. J. Am. Chem. Soc.,2008,130(7), 2160-2161.
    [55]L. B. Hu, Y.-L. Zhao, K. M. Ryu, et al. Light-induced charge transfer in Pyrene/CdSe-SWNT hybrids [J]. Adv. Mater.,2008,20(5):939-946.
    [56]C. Ehli, D. M. Guldi, M. A. Herranz, et al. Pyrene-tetrathiafulvalene supramolecular assembly with different types of carbon nanotubes [J]. J. Mater. Chem.,2008,18(13):1498-1503.
    [57]M. Iurlo, D. Paolucci, M. Marcaccio, et al. Electron transfer in pristine and functionalised single-walled carbon nanotubes [J]. Chem. Commun.,2008,40: 4867-4874.
    [58]A. Star, J.-C. P. Gabriel, K. Bradley, et al. Electronic detection of specific protein binding using nanotube FET devices [J]. Nano Lett.,2003,3(4):459-463.
    [59]R. J. Chen, H. C. Choi, S. Bangsaruntip, et al. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices [J]. J. Am. Chem. Soc.,2004,126(5):1563-1568.
    [60]J. Kong, N. R. Franklin, C. Zhou, et al. Nanotube molecular wires as chemical sensors Science,2000,287(5453):622-625.
    [61]J. L Bahr, J. M. Tour. Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J]. Chem. Mater.,2001,13(11):3823-3824.
    [62]C. A. Dyke, J. M. Tour. Unbundled and highly functionalized carbon nanotubes from aqueous reactions [J]. Nano Lett.,2003,3(9):1215-1218.
    [63]C. A. Dyke, J. M. Tour. Solvent-free functionalization of carbon nanotubes [J]. J. Am. Chem. Soc.,2003,125(5):1156-1157.
    [64]J. L. Hudson, M. J. Casavant, J. M. Tour. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes [J]. J. Am. Chem. Soc.,2004,126(36): 11158-11159.
    [65]C. A. Dyke, M. P. Stewart, J. M. Tour. Separation of single-walled carbon nanotubes on silica gel. materials morphology and raman excitation wavelength affect data interpretation [J]. J. Am. Chem. Soc.,2005,127(12):4497-509.
    [66]A. K. Flatt, B. Chen, J. M. Tour. Fabrication of carbon nanotube-molecule-silicon junctions [J]. J. Am. Chem. Soc.,2005,127(25):8918-8919.
    [67]K. Sadowska, K. P. Roberts, R. Wiser, et al. Synthesis, characterization, and electrochemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone [J]. Carbon,2009,47(6):1501-1510.
    [68]J. J. Stephenson, J. L. Hudson, S. Azad, et al. Individualized single walled carbon nanotubes from bulk material using 96% sulfuric acid as solvent [J]. Chem. Mater.2006,18(2):374-377.
    [69]M. D. Ellison, P. J. Gasda. Functionalization of single-walled carbon nanotubes with 1,4-benzenediamine using a diazonium reaction [J]. J. Phys. Chem. C,2008, 112(3):738-40.
    [70]D. J. Nelson, H. Rhoads, C. Brammer. Characterizing covalently sidewall-functionalized SWCNTs [J]. J. Phys. Chem. C,2007,111(48):17872-8.
    [71]C. D. Doyle, J. M. Tour. Environmentally friendly functionalization of single walled carbon nanotubes in molten urea [J]. Carbon,2009,47(14):3215-3218.
    [72]C. A. Dyke, M. P. Stewart, F. Maya, J. M. Tour. Diazonium-based functionalization of carbon nanotubes:XPS and GC-MS analysis and mechanistic implications [J]. Synlett,2004,1:155-60.
    [73]A. M. Rao, E. Richter, S Bandow, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes [J]. Science,1997,275(5297): 187-191.
    [74]H. D. Li, K. T. Yue, Z. L. Lian, et al. Temperature dependence of the Raman spectra of single-wall carbon nanotubes [J]. App. Phys. Lett.,2000,76(15): 2053-5.
    [75]M. S. Strano, C. A. Dyke, M. L. Usrey, et al. Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization [J]. Science,2003,301(5639): 1519-1522.
    [76]R. Krupke, F. Hennrich, H. V. Lohneysen, et al. Separation of metallic from semiconducting single-walled carbon nanotubes [J]. Science,2003,301(5631): 344-7.
    [77]Y. Liu, Z. Yao, A. Adronov. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling [J]. Macromolecules,2005, 38(4):1172-9.
    [78]M. Liu, Y. Yang, T. Zhu, et al. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid [J]. Carbon,2005,43(7):1470-1478.
    [79]C. Staii, A. T. Johnson, Jr. DNA-decorated carbon nanotubes for chemical sensing [J]. Nano Lett.,2005,5(9):1774-1778.
    [80]K. Cattanach, R. D. Kulkarni, M. Kozlov, et al. Flexible carbon nanotube sensors for nerve agent simulants [J]. Nanotechnology,2006,17(16):4123-4128.
    [1]J. Kong, M. G. Chapline, H. J. Dai. Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv. Mater.,2001,13(18):1384-1386.
    [2]J. Yan, Y. C. Zhou, P. Yu, et al. An electrochemical sensor for 3,4-dihydroxyphenylacetic acid with carbon nanotubes as electronic transducer and synthetic cyclophane as recognition element [J]. Chem. Commun.,2008,36: 4330-4332.
    [3]S. Erbas, A. Gorgulu, M. Kocakusakogullaric et al. Non-covalent functionalized SWNTs as delivery agents for novel Bodipy-based potential PDT sensitizers [J]. Chem. Commun.,2009,33:4956-4958.
    [4]D. R. Kauffman, and A. Star. Carbon nanotube gas and vapor sensors [J]. Angew. Chem. Int. Ed.,2008,47(35):6550-6570.
    [5]T. Zhang, S. Mubeen, N. V. Myung, et al. Recent progress in carbon nanotube-based gas sensors [J]. Nanotechnology,2008,19(33):332001.
    [6]D. L. Fu, H. Lim, Y. M. Shi, et al. Differentiation of gas molecules using flexible and all-carbon nanotube devices [J]. J. Phys. Chem. C,2008,112(3):650-653.
    [7]E. S. Snow, F. K. Perkins, E. J. Houser, et al. Chemical detection with a single-walled carbon nanotube capacitor [J]. Science,2005,307(5717): 1942-1945.
    [8]P. F. Qi, O. Vermesh, M. Grecu, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection [J]. Nano Lett.,2003,3(3):347-351.
    [9]K. H. An, S. Y. Jeong, H. R. Hwang, Y. H. Lee. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites [J]. Adv. Mater.2004,16(12) 1005-1009.
    [10]E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine, R. C. Haddon. Chemically functionalized single-walled carbon nanotubes as ammonia sensors [J]. J. Phys. Chem. B,2004,108(51):19717-19720.
    [11]E. S. Forzani, X. L. Li, P. M. Zhang, et al. Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions [J]. Small,2006,2(11): 1283-1291.
    [12]J. Szejtli. Introduction and general overview of cyclodextrin chemistry [J]. Chem. Rev.,1998,98(5):1743-1753.
    [13]K. A. Connors. The stability of cyclodextrin complexes in solution [J]. Chem. Rev.,1997,97(5):1325-1357.
    [14]C. Zhong, T. Mu, L. Wang, et al. Unexpected fluorescent behavior of a 4-amino-1,8-naphthalimide derived beta-cyclodextrin:conformation analysis and sensing properties [J]. Chem. Commun.,2009,27:4091-4093.
    [15]Y. Chen, L. Yu, X. Z. Feng, et al. Construction, DNA wrapping and cleavage of a carbon nanotube-polypseudorotaxane conjugate [J]. Chem. Commun.,2009,27: 4106-4108.
    [16]A. D. Strickland, C. A. Batt. Detection of Carbendazim by Surface-Enhanced Raman Scattering Using Cyclodextrin Inclusion Complexes on Gold Nanorods [J]. Anal. Chem.,2009,81(8):2895-2903.
    [17]R. Freeman, T. Finder, L. Bahshi, et al. beta-Cyclodextrin-Modified CdSe/ZnS Quantum Dots for Sensing and Chiroselective Analysis [J]. Nano Lett.,2009, 9(5):2073-2076.
    [18]J. L. Bahr, J. M. Tour. Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J]. Chem. Mater.,2001,13(11):3823-3824.
    [19]C. A. Dyke, J. M. Tour. Unbundled and highly functionalized carbon nanotubes from aqueous reactions [J]. Nano Lett.,2003,3(9):1215-1218.
    [20]C. A. Dyke, J. M. Tour. Solvent-free functionalization of carbon nanotubes [J]. J. Am. Chem. Soc.,2003,125(5):1156-1157.
    [21]J. L. Hudson, M. J. Casavant, J. M. Tour. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes [J]. J. Am. Chem. Soc.,2004,126(36): 11158-11159.
    [22]A. K. Flatt, B. Chen, J. M. Tour. Fabrication of carbon nanotube-molecule-silicon junctions [J]. J. Am. Chem. Soc.,2005,127(25):8918-8919.
    [23]M. D. Ellison, P. J. Gasda. Functionalization of single-walled carbon nanotubes with 1,4-benzenediamine using a diazonium reaction [J]. J. Phys. Chem. C,2008, 112(3):738-740.
    [24]Y. Liu, Z. Yao, A. Adronov. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling [J]. Macromolecules,2005, 38(4):1172-1179.
    [25]Z. Guo, F. Du, D.M. Ren, et al. Covalently porphyrin-functionalized single-walled carbon nanotubes:a novel photoactive and optical limiting donor-acceptor nanohybrid [J]. J. Mater. Chem.,2006,16(29):3021-3030.
    [26]M. Liu, Y. Yang, T. Zhu, et al. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid [J]. Carbon,2005,43(7):1470-1478.
    [27]M. S. Strano, C. A. Dyke, M. L. Usrey, et al. Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization [J]. Science,2003,301(5639): 1519-1522.
    [28]M. C. LeMieux, M. Roberts, S. Barman, et al. Self-sorted, aligned nanotube networks for thin-film transistors [J]. Science,2008,321(5885):101-104.
    [29]T. Hertel, R. E. Walkup, P. Avouris. Deformation of carbon nanotubes by surface van der Waals forces [J]. Phys. Rev. B,1998,58(20):13870-13873.
    [30]D. Qian, E. C. Dickey, R. Andrews, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Appl. Phys. Lett., 2000,76(20):2868-2870.
    [1]X. X. Han, Y. Kitahama, T. Itoh, et al. Protein-Mediated Sandwich Strategy for Surface-Enhanced Raman Scattering:Application to Versatile Protein Detection [J]. Anal. Chem.,2009,81(9):3350-3355.
    [2]H. Ko, V. V. Tsukruk. Nanoparticle-Decorated Nanocanals for Surface-Enhanced Raman Scattering [J].Small,2008,4(11),1980-1984.
    [3]R. A. Tripp, R. A. Dluhy, Y. P. Zhao. Novel nanostructures for SERS biosensing [J]. Nanotoday,2008,3(3-4):31-37.
    [4]W. Wang, C. M. Ruan, B. H. Gu. Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy [J]. Anal. Chim. Acta,2006,567(1):121-126.
    [5]R. A. Alvarez-Puebla, R. Contreras-Caceres, I. Pastoriza-Santos, et al. Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis [J]. Angew. Chem. Int. Ed.,2009,48(1): 138-143.
    [6]R. M. Jarvis, A. Brooker, R. Goodacre. Surface-enhanced Raman scattering for the rapid discrimination of bacteria [J]. Faraday. Discuss,2006,132:281-192.
    [7]H. Ko, S. Chang, V. V. Tsukruk. Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules [J]. ACS. Nano,2009,3(1): 181-188.
    [8]W. Xie, L. Wang, Y. Y. Zhang, et al. Nuclear Targeted Nanoprobe for Single Living Cell Detection by Surface-Enhanced Raman Scattering [J]. Bioconjugate. Chem.,2009,20(4):768-773.
    [9]L. L. Sun, Y. H. Song, L. Wang,et al. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection [J]. J. Phys. Chem. C,2008,112(5):1415-1422.
    [10]R. A. Alvarez-Puebla, D. S. Dos Santos Jr, R. F. Aroca. SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials [J]. Analyst,2007,132(12):1210-1214.
    [11]M. Y. Sha, H. X. Xu, S.G. Penn, et al. SERS nanoparticles:a new optical detection modality for cancer diagnosis [J]. Nanomedicine,2007,2(5):725-734.
    [12]A. D. McFarland, M. A. Young, J. A. Dieringer, et al. Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J]. J. Phys. Chem. B,2005, 109(22):11279-11285.
    [13]I. Mrozek, C. Pettenkofer, A. Otto. Raman-spectroscopy of carbon-monoxide adsorbed on silver island films [J]. Surf. Sci.,1990,238(1-3):192-198.
    [14]Y. L. Wang, W. Ren, S. J. Dong, et al. Characterization and optimization of AuNPs labeled by Raman reporters on glass based on silver enhancement [J]. J. Raman. Spectrosc.,2009,40(5):571-576.
    [15]R. Sato-Berru, R. Redon, A. Vazquez-Olmos, et al. Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy [J]. J. Raman. Spectrosc.,2009,40(4): 376-380.
    [16]A. Musumeci, D. Gosztola, T. Schiller,et al. SERS of Semiconducting Nanoparticies (TiO2 Hybrid Composites) [J]. J. Am. Chem. Soc.,2009,131(17): 6040-6041.
    [17]M. Sardo, C. Ruano, J. L. Castro, et al. Surface enhanced Raman scattering of trans-3-hydroxycinnamic acid adsorbed on silver nanoparticles [J]. Chem. Phys. Lett.,2008,467(1-3):101-104.
    [18]L. Y. Cao, P. Diao, L. M. Tong, et al. Surface-enhanced Raman scattering of p-aminothiophenol on a Au(core)/Cu(shell) nanoparticle assembly [J]. Chem. Phys. Chem.,2005,6(5):913-918.
    [19]J. A. Dieringer, K. L. Wustholz, D. J. Masiello, et al. Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule [J]. J. Am. Chem. Soc.,2009,131(2):849-854.
    [20]M. Z. Si, Y. P. Kang. Z. G. Zhang. Surface-enhanced Raman scattering (SERS) spectra of chloramphenicol in Ag colloids prepared by microwave heating method [J]. J. Raman. Spectrosc.,2009,40(9):1319-1323.
    [21]P. C. Wu, C. G. Khoury, T. H. Kim, et al. Demonstration of Surface-Enhanced
    Raman Scattering by Tunable, Plasmonic Gallium Nanoparticles [J]. J. Am. Chem. Soc.,2009,131(34):12032-12033.
    [22]J. Zhao, L. Jensen, J. H. Sung, et al. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles [J]. J. Am. Chem. Soc.,2007,129(24):7647-7656.
    [23]P. Zhang, Y. Y. Guo. Surface-Enhanced Raman Scattering inside Metal Nanoshells [J]. J. Am. Chem. Soc.,2009,131(11):3808-3809.
    [24]R. A. Alvarez-Puebla, R. F. Aroca. Synthesis of Silver Nanoparticles with Controllable Surface Charge and Their Application to Surface-Enhanced Raman Scattering [J]. Anal. Chem.,2009,81(6):2280-2285.
    [25]L. O. Brown, S. K. Doom, A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing [J]. Langmuir,2008,24(6):2277-2280.
    [26]J. Kneipp, X. T. Li, M. Sherwood, et al. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing [J]. Anal. Chem,2008,80(11):4247-4251.
    [27]H. J. Chen, Y. L. Wang, S. J. Dong. Synthesis of different gold nanostructures by solar radiation and their SERS spectroscopy [J]. J. Raman. Spectrosc.,2009, 40(9):1188-193.
    [28]E. N. Esenturk, A. R. H. Walker. Surface-enhanced Raman scattering spectroscopy via gold nanostars [J]. J. Raman. Spectrosc.,2009,40(1):86-91.
    [29]R. Sanci, M. Volkan, Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates [J]. Sens. Actuators B,2009,139(1):150-155.
    [30]S. H. Ciou, Y. W. Cao, H. C. Huang, et al. SERS Enhancement Factors Studies of Silver Nanoprism and Spherical Nanoparticle Colloids in The Presence of Bromide Ions [J]. J. Phys. Chem. C,2009,113(22):9520-9525.
    [31]B. K. Jena, C. R. Raj. Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity [J]. Chem. Mater.,2008,20(11):3546-3548.
    [32]L. Cui, A. Wang, D. Y. Wu,et al. Shaping and Shelling Pt and Pd Nanoparticles for Ultraviolet Laser Excited Surface-Enhanced Raman Scattering [J]. J. Phys. Chem. C.,2008,112(45):17618-17624.
    [33]P. N. Sisco, C. J. Murphy, Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte [J]. J. Phys. Chem. A,2009,113(16):3973-3978.
    [34]V. Maltzahn G, A. Centrone, J. H. Park, et al. SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-infrared Imaging and Photothermal Heating [J]. Adv. Mater.,2009,21(31),3175-3180.
    [35]H. I. Peng, C. M. Strohsahl, K. E. Leach, et al. Label-Free DNA Detection on Nanostructured Ag Surfaces [J]. ACS. Nano,2009,3(8):2265-2273.
    [36]B. Nikoobakht, M. A. El-Sayed. Surface-enhanced Raman scattering studies on aggregated gold nanorods [J]. J. Phys. Chem. A,2003,107(18):3372-3378.
    [37]M. C. Pablos Espana, F. J. Arrebola-Liebnas, A. Garrido-Frenich, et al. Analysis of pesticides in water samples using GC-ECD and GC-MS/MS techniques [J]. Anal. Chem.,1999,75(1-2):165-179.
    [38]Collaborative International Insecticide Analytical Council (CIPAC) Handbook (CIPAC Ltd.,1994), Vol.1B, p.1849.
    [39]C. Goncalves, M. F. Alpendurada. Solid-phase micro-extraction-gas chromatography-(tandem) mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities [J]. J. Chromatogr. A,2004,1026(1-2):239-250.
    [40]A. L. Hart, W. A. Collier, D. Janssen. The response of screen-printed enzyme electrodes containing cholinesterases to organo-phosphates in solution and from commercial formulations Biosens. Bioelectron,1997,12(7):645-654.
    [41]A. Di Muccio, I. Camoni, M. Ventriglia, D. A. Barbini, et al. Simplified cleanup for the determination of benzimidazolic fungicides by high-performance liquid-chromatography with UV detection [J]. J. Chromatogr. A,1995,697(1-2): 145-152.
    [42]E. Paradopoulou-Mourkidou and J. J. Patsias, J. Chromatogr. A,1996,726,99.
    [43]A. I. Valenzuela, R. Lorenzini, M. J. Redondo, et al. Matrix solid-phase dispersion microextraction and determination by high-performance liquid chromatography with UV detection of pesticide residues in citrus fruit [j]. J. Chromatogr. A,1999,839(1-2):101-107.
    [44]A. M. Stockton, T. N. Chiesl, J. R. Scherer,et al. Polycyclic Aromatic Hydrocarbon Analysis with the Mars Organic Analyzer Microchip Capillary Electrophoresis System [J]. Anal. Chem.,2009,81(2):790-796.
    [45]A. Neely, C. Perry, B. Varisli,et al. Ultrasensitive and Highly Selective Detection of Alzheimer's Disease Biomarker Using Two-Photon Rayleigh Scattering Properties of Gold Nanoparticle [J]. ACS. Nano,2009,3(9):2834-2840.
    [46]W. L. Daniel, M. S. Han, J. S. Lee, et al. Colorimetric Nitrite and Nitrate Detection with Gold Nanoparticle Probes and Kinetic End Points [J]. J. Am. Chem. Soc.,2009,131(18),6362-6363.
    [47]J. Szejtli. Introduction and general overview of cyclodextrin chemistry [J]. Chem. Rev.,1998,98(5):1743-1753.
    [48]K. A. Connors. The stability of cyclodextrin complexes in solution [J]. Chem. Rev.,1997,97(5):1325-1357.
    [49]A. P. Alivisatos, C. Sonnichsen. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy [J]. Nano. Lett.,2005,5(2):301-304.
    [50]C. J. Murphy, T. K. Sau, A. M. Gole,et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications [J]. J. Phys. Chem. B,2005, 109(29):13857-13870.
    [51]A. Gole, C. J. Murphy. Seed-mediated synthesis of gold nanorods:Role of the size and nature of the seed [J]. Chem. Mater.,2004,16(19):3633-3640.
    [52]N. R. Jana, L. Gearheart, C. J. Murphy. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Adv. Mater.,2001,13(18):1389-1393.
    [53]D. Vizitiu, C. S. Walkinshaw, B. I. Gorin,et al. Synthesis of monofacially functionalized cyclodextrins bearing amino pendent groups [J]. J. Org. Chem., 1997,62(25):8760-8766.
    [54]M. T. Rojas, R. Koniger, J. F. Fraser Stoddart,et al. Supported monolayers containing preformed binding-sites-synthesis and interfacial binding-properties of a thiolated beta-cyclodextrin derivative [J]. J. Am. Chem. Soc.,1995,117(1): 336-343.
    [55]A. Wijaya, Hamad-Schifferi, Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange [J]. Langmuir.,2008, 24(18):9966-9969.
    [56]D. Lee, S. Lee, G. H. Seong, et al. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy [J]. Appl. Spectrosc.,2006,60(4): 373-377.
    [57]M. J. Frisch, et.al. Gaussian 03, Revision E.01, Gaussian, Inc.:Wallingford, CT, USA 2004.
    [58]M. W. Wong. Vibrational frequency prediction using density functional theory [J]. Chem. Phys. Lett.,1996,256(4-5):391-399
    [59]D. J. Clouthier, D. L. Joo. The spectroscopy of hexafluorothioacetone, a blue gas [J]. J. Chem. Phys 1997,106(18):7479-7490.
    [60]H. X. Xu, J. Aizpurua, M. Kall, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering [J]. Phys. Rev. E,2000,62(3):4318-4324.
    [61]J. C. S. Costa, R. A. Ando, A. C. Santana, et al. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides [J]. Phys. Chem. Chem. Phys.2009,11(34):7491-7498.
    [62]A. Campion, P. Kambhampati. Surface-enhanced Raman scattering [J]. Chem. Soc. Rev.,1998,27(4):241-250.
    [63]K. Kneipp, H. Kneipp, I. Itzkan, et al. Ultrasensitive chemical analysis by Raman spectroscopy [J]. Chem. Rev.,1999,99(10):2957-2976.
    [64]M. J. Weaver, S. Zou, H. Y. H. Chan. The new interfacial ubiquity of surface-enhanced Raman spectroscopy [J]. Anal. Chem.,2000,72(1),38A-47A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700