用户名: 密码: 验证码:
基于无线网络技术的高速公路驾驶员防撞决策系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速公路建设规模的扩大,高速公路交通事故也频繁发生。而发生在高速公路上的事故类型大多数为追尾碰撞事故,经研究发现,开发汽车防撞预警系统可有效预防大多数追尾碰撞事故。现有的汽车防撞系统研究中,多数是单车预警防碰撞,鉴于此,本文对基于车间通信技术的高速公路驾驶员防撞决策系统进行了研究。
     ZigBee技术是一种新兴的无线数据传输网络,是实现车间通信的理想选择。利用ZigBee技术进行车辆间通信来实时交换车辆的速度、加速度等信息,使防撞预警系统对当前车辆运行状态掌握的更及时、准确;本文一方面综合人、车、路等因素,将两车发生追尾碰撞时的运行状况归纳为三种车辆行驶状态的碰撞,建立了三种基于车间通信的防追尾安全距离模型,并对该模型中速度、加速度、道路附着系数等影响因素进行了仿真分析;另一方面,在对同向同车道前后两车的超车动态过程分析的基础上,建立了超车安全距离模型,并对模型中影响参数的进行仿真分析。
     本系统设计的车载ZigBee主节点部分,主要由采集节点和汇聚节点构成,在该系统中,速度采集节点和加速度采集节点将测量到的车辆速度和加速度通过ZigBee的无线通信传输发送给汇聚节点,车载ZigBee节点的主控芯片依据建立的防追尾安全距离模型和超车距离模型运算出此时的理论安全距离和超车距离,同时用车载毫米波雷达测得的实际车间距离也传输到车载节点,车载节点的主控芯片对此时行车状态进行分析判断,从而在紧急情况下能为驾驶员提供及时有效的辅助决策。
     为实现上述功能,本文对采集节点、汇聚节点,速度采集节点、加速度采集节点和雷达测距单元进行了硬件和软件设计,最后本文又介绍了防追尾、超车、超车判定决策方案以及仿真程序流程设计、并设计出驾驶员辅助决策系统方案界面以及仿真程序和步骤。系统界面仿真结果表明该系统在行车过程中,可以为驾驶员提供辅助驾驶信息,对预防高速公路上的交通事故具有一定的积极意义。
With the rapid development of highway, traffic accidents on the highway arehappening in an increasing frequency. The typical accident is the rear-ends collisionaccidents,and The study found that, the development of automotive pileup warningsystem could prevent a majority of rear-ends collision accidents effectively. Priorresearches on vehicle collision avoidance system are mostly aimed to one vehicle. Inview of this, this paper made a study about highway driver decision-making forcollision avoidance system based on the inter-vehicle communication technology.
     As a new technology in wireless data transmission network, ZigBee is able tosatisfy the communication between vehicles very well. so ZigBee technology usedin vehicle communication, is able to transmit the information, such as the real-timevehicle speed, acceleration and other information easily, which can make to thecollision warning system so that it can get the information of current running state ofvehicle timely and accurately. this paper, on the one hand, summed the running statesin rear-end collisions between two vehicles up into three kinds of running state invehicle collisions with the human, vehicle, road and other factors integrated, andconstruct three anti-collision safe distance models based on the inter-vehiclecommunication, then made simulation analysis of the velocity, acceleration, the roadadhesion coefficient and other affecting factors with the models. On the other hand,have established the passing safety distance model based on the analysis of dynamicpassing process of two cars in the same direction and the same lane around.
     The system of vehicle-board ZigBee master node part, mainly composed of acollection node and gathering node. In this system, transmit information of themeasured speed and acceleration of the vehicle to the gathering node through theZigBee. the main control chip of vehicle-board ZigBee calculates the theoreticalsafety distance and passing distance according to the anti-collision safety distancemodel and passing distance model established. At the same time the real distancebetween two cars, measured by the vehicle-board millimeter wave radar, is alsotransmitted to the vehicle nodes. then, the master control chip of node in caranalysises and judges the running state of the car, Thus provides decision-makingtimely and effectively for drivers in emergency situations.
     In order to realize the function, this paper designed hardware and software ofthe collection node, gathering node, speed collection node, acceleration collectionnode and radar-measured range unit. Finally, this paper also introduced simulationprogram design of the anti-rear, passing and passing judgment decision scheme, and designed a driver assistance decision system scheme and gave simulation interfaceprocedures and steps. System interface simulation results showed that the systemcould provide decision-making information for drivers during driving process andhave an certain positive significance in preventing traffic accidents one the highway.
引文
[1]彭春华,刘建业.车辆检测传感器综述[J].传感器与微系统,2007,26(6):4-11.
    [2]金艳华.车载无线自组织网MAC协议的研究[D].重庆:重庆邮电大学硕士学位论文,2010.
    [3]中国交通统计年鉴.北京:中国交通年鉴社,2004~2009.
    [4]中国交通统计年鉴.北京:中国交通年鉴社,2010.
    [5] Kyongsu Yi, Minsu Woo, etal.An Experimental Investigation of a CW/CASystem for Automobile Using Hardware in the Loop Simulation [R].Proceedings of the American control conference, San Diego, California,1999.
    [6]梁忠艳.基于车-车通信安全距离模型的驾驶员辅助决策研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [7]钱宇斌,胡宇.现代汽车安全技术[M].上海:上海交通大学出版社,2006.
    [8] W. Ulke, R. Adomat, K. Butscher, W. Lauer. Radar Based Automotive ObstacleDetection System[J]. SAE940904,1994.
    [9] C. C. Chien, Y Zhang, C. Y Cheng. Autonomous Intelligent Cruise Controlusingboth Front and Back Information for Tight Vehicle Following Maneuvers[J].Proceedings of the American Control Conference Seattle,Washington.1995,48(1):319-328.
    [10] S. ShJ, adover. Operation of automated guide way transit vehicles indynamically reconfigured trains and platoons[J]. UMTA MA060085791979.
    [11] J.D.Chovan,etal. Examination of Lane Change Crashes and Potential IVHSCountermeasures [M].National Highway Traffic Safety Administration,1994.
    [12] Jose L. Bascunana. Analysis of Lane Change Crash Avoidance[J].SAE951895,1995.
    [13] David L.Smith, Richard Glassco, James Chang, Daniel Cohen. Feasibility ofModeling Lane-Change Performance[J].SAE2003-01-0280,2003.
    [14] H.Jula, E.Kosmatopoulos, P.Ioannou. Collision Avoidance Analysis for LaneChanging and Merging[J] IEEE Transactions on Vehicular Technology,2000,49(6):2295-2308.
    [15]马骏.高速公路行车安全距离的分析与研究[J].西安公路交通大学学报,1998,18(4):90-94.
    [16]郑安文,张炳焕.高速公路不同跟车状态下安全行车间距分析[J].武汉科技大学学报,2003,26(1):54-57.
    [17]郑安文.高速公路行车间距分析与防追尾装置开发[J].武汉理工大学学报,2002,24(9):62-65.
    [18]肖梅.高速公路追尾碰撞预防报警系统再研究[D].西安:长安大学硕士论文,2003.
    [19]刘刚,侯德藻等.汽车主动避撞系统安全报警算法[J].清华大学学报(自然科学版),2004,44(5):697-700.
    [20]侯德藻,刘刚.新型汽车主动避撞安全距离模型[J].汽车工程,2005,27(12)186-191.
    [21]王文霞.高速公路基本路段车辆换道安全距离模型的研究[D].长春:吉林大学硕士学位论文,2007.
    [22]陈德海.真实环境下车辆行驶安全性综合评价及防碰撞系统研究[D].南昌:江西理工大学硕士学位论文,2007.
    [23]鲍利平,杨荫,龚正等.公路运输车辆安全距离分析[J].军事交通学院学报,2008,10(4):2932.
    [24]王荣本,游峰,崔高健等.车辆安全换道分析[J].吉林大学学报,2005,33(2):179-183.
    [25]连晋毅,华小洋.汽车防追尾碰撞数学模型研究[J].中国公路学报,2005.18(3).
    [26]唐阳山,江振伟,白艳等.汽车防碰撞安全距离模型及仿真研究[J].辽宁工业大学学报(自然科学版),2008,28(5):324-326.
    [27]高守玮,吴灿阳等.ZigBee技术实践教程[M].北京:北京航空航天大学出版社,2009.
    [28] http://baike.baidu.com/view/3085090.htm
    [29]王琛,柴桥林,王芳等.基于树形结构的ZigBee能量均衡协议研究[J].2009,30(15):3534-3536.
    [30]成小良,邓志东.基于ZigBee规范构建大规模无线传感器网络[J].通信学报,2008.29(11):158-164
    [31]易飞,高峰.基于车-车通讯技术的无线定位系统设计[J].广西工学院学报,2009,11(4).
    [32]牟连佳,牟连泳.无线传感网络及其在工业领域应用研究[J].工业控制计算机,2005.18(1):3-5.
    [33]郑霖,曾志民,万济萍等.基于IEEE802.15.4标准的无线传感器网络[J].传感器技术,2005.24(7):86-88.
    [34]王伟杰,黄守志,赵学增.基于ZigBee的高速公路车辆间通信技术研究[J].大连交通大学学报,2009.12(18):30-6.
    [35]王静,张会清.基于ZigBee的无线网络定位技术的研究与实现[J].传感器与微系统,2010,29(2):13-15.
    [36] http://wenku.baidu.com/view/763e6185bceb19e8b8f6bae9.html.
    [37]李晓霞,李百川,侯德藻等.汽车追尾碰撞预警系统开发研究[J].中国公路学报,2001.14(3):93-95.
    [38]韩洋.高速公路汽车追尾防撞预警系统研究[D].太原:中北大学硕士论文,2003.
    [39]刘郑国.高速公路追尾碰撞预防报警系统主控单元开发研究[D].西安:长安大学硕士学位论文,2003.
    [40]许洪国.汽车运用工程[M].北京:人民交通出版社,2009.
    [41]曾诚.基于CAN-BUS的汽车防撞报警系统控制单元的研究开发[D].西安:长安大学硕士学位论文,2004.
    [42]徐英俊.城市微观交通仿真车道变换模型研究[D].长春:吉林大学硕士学位论文,2005.
    [43]游峰.智能车辆自动换道与自动超车控制方法的研究[D].长春:吉林大学硕士学位论文,2005.
    [44]王春磊.基于ZigBee的高速公路车辆防碰撞预警系统研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [45]孟微国.三轴加速度计ASXL330的特点及其应用[J].电子设计工程,2007(2):47-50.
    [46]段晓敏,李杰,刘文怡等.基于MEMS加速度计的数字倾角测量仪的设计[J].电子设计工程,2009,17(8):71-72.
    [47]袁西,陈栋,田湘等.三轴数字加速度计在捷联惯导ADXL345及其中的应用[J].电子设计工程,2010,18(3):138-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700