用户名: 密码: 验证码:
基于Féry棱镜分光的太阳光谱仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
监测太阳辐射变化对太阳物理研究具有重要意义,并可为地球气候变化、地球空间天气预报等应用研究提供必要的基础科学数据。太阳辐射测量包括太阳总辐照度(TSI)测量和太阳光谱辐照度(SSI)测量两个方面。国际上已对地球大气层上界(TOA)TSI进行了大量高精度、不间断和重叠测量;但SSI测量则缺少足够的精度和时间连续性,尤其是波段覆盖很不完整。鉴于此,对以航天应用为背景的、基于微型化电替代辐射计ESR进行高精度在轨绝对辐照度定标的、宽光谱棱镜型太阳光谱仪(Solar Prism Spectrometer, SPS)进行了深入研究,依次进行了棱镜分光光路的光学系统设计和性能仿真、新型高精度波长反馈机构的光电系统设计、低噪声光谱信号检测方法研究以及SPS原理样机的波长/辐射定标方法研究等。
     首先,依据Féry棱镜原理,设计了SPS的扫描式主分光光路系统,工作波长范围0.25~2.50μm;棱镜在±2.5°转角内均平谱面成像,并由4个出射狭缝及对应的不同响应波段的光电二极管探测器同时扫描接收。基于Huygens点扩散函数(PSF)和线性系统理论提出了光谱响应函数(SRF)的计算机仿真方法,依据SRF仿真数据,计算了各出射狭缝的光谱带宽为1~41nm,并推导了各出射狭缝接收的中心波长与棱镜转角的关系。为实现棱镜转角的高精度反馈,设计了基于凹面反射镜和线阵CCD的参考光路系统。
     其次,设计了由嵌入式控制系统和PC机主控软件组成的SPS的电子学控制系统。高精度光电信号检测和精密波长扫描分别是SPS辐射度精度和波长精度的保证;设计了光电二极管低噪声前端放大电路,通过实验测得VNIR1和VNIR2两光谱通道的信噪比均大于1000;通过高性能步进电机驱动系统和高速比减速器机构实现棱镜0.8″的步进分辨率,使用参考光路CCD像斑的重心定位法实现角度反馈不确定度达到0.11″。设计了PC机主控软件的调试模式、测量模式和定标模式,用来实现对SPS的远程控制。
     最后,使用汞灯和高分辨率光栅单色仪对SPS原理样机进行了波长定标实验,通过多项式拟合方法建立了VNIR1和VNIR2两光谱通道的输出波长与参考光路CCD像斑位置间的函数关系,波长定标不确定度分别优于0.37nm和0.89nm。分析了波长扫描法(直接法)和棱镜扫描法(间接法)测量SRF的等效性,并使用632.8nm激光器光源进行了SRF的棱镜扫描法测量实验,获得的光谱带宽与仿真结果相差7%以内。使用1000W标准灯对SPS进行了辐照度定标实验,获取了辐射定标系数,定标不确定度为~3.17%;同时分析了辐射测量不确定度,达到~3.18%。
Measurements of solar radiation and its variation are not only important forsolar physics research, but also necessary for studies on the Earth's climate changes,space weather forecast and other application areas. Total Solar Irradiance (TSI) andSolar Spectral Irradiance (SSI) are the two aspects of solar radiation measurements.Precise, continuous and overlapped TSI measurements at Top of the Atmosphere(TOA) have been taken out internationally, whereas the SSI measurements are stilllack of sufficient accuracy and temporal continuity, especially difficult to cover thewhole spectral range. Therefore, a spaceborne Solar Prism Spectrometer (SPS) withwide spectral coverage is suggested; a miniaturized electrical substitution radiometerESR can be used by it for high-precision absolute irradiance calibration on orbit. Thetasks of optimization and simulation of prism-dispersion optical system, design ofprecision wavelength scan and feedback system, low-noise detection of weakspectral signals, wavelength and radiation calibrations of SPS prototype and so onhave been carried out successively.
     Firstly, the dispersion optics of SPS covering wavelength from0.25to2.50μmis designed based on Féry prism principles. The flat-field spectrum moves as theprism rotating within±2.5°, and is scanned by four exit slits and correspondingphotodiodes of different sensitive wavelength ranges. Based on Huygens PointSpread Function (PSF) and linear system theory, a Spectral Response Function (SRF) simulation method is suggested, from which the SPS’s spectral bandpass (FWHM) isderived as being from1to41nm, and the relationship between the centralwavelength of exit slits and prism rotation angle is also deduced. A reference opticalpath composed of a concave mirror and a linear CCD is designed for precise rotationangle feedback.
     Secondly, the SPS’s electrical control system consisting of a embedded systemand a PC master program is developed. Precise photocurrent detection and finewavelength scanning are the bases for the SPS’s radiation and wavelength accuracyrespectively. A low-noise pre-amplifier circuit is designed, and experiments indicatethe SNRs of VNIR1and VNIR2spectral channels are greater than1000. The prism’sfine rotation is achieved by applying a reliable stepper motor driver and a high ratiogear mechanism, and the precise angle feedback is achieved by CCD image process.The rotating resolution reaches0.8″, and the angle feedback pricision reaches0.11″.The PC program is designed with debugging, measurement and calibration modes toremotely control the SPS.
     Finally, wavelength calibration experiments are carried out by using a mercurylamp and a high-resolution grating monochromator. The relationship betweenwavelength and CCD spot centroid are established respectively for VNIR1andVNIR2spectral channels by polynomial fittings, and the calibration uncertainties areestimated to be better than0.37nm and0.89nm respectively. The equivalence ofwavelength scanning method and prism scanning method for SRF measurement istheoretically analyzed and numerically simulated, and a632.8nm laser is applied tomeasure the SRF according to the latter method. The bandpass obtained fromscanning632.8nm laser has a deviation of less than7%from simulation results. A1000W standard irradiance lamp is used to carry out the irradiance calibrationexperiment, with a calibration uncertainty evaluated to be~3.17%. The measurementuncertainty is evaluated to be~3.18%.
引文
[1]林元章.太阳物理导论[M].北京:科学出版社,2000
    [2] W.K. Tobiska,T. Woods,F. Eparvier. The SOLAR2000empirical solar irradiancemodel and forecast tool[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2000,62(14):1233-1250
    [3]苏同卫.太阳长期活动的地球响应[D]:[硕士学位论文].昆明:中国科学院研究生院(云南天文台),2006
    [4]占腊生,叶艺林,袁文亮.太阳活动周期及其数学描述[J].天文研究与技术,2008,5(02):106-115
    [5] G. Rottman. Measurement of Total and Spectral Solar Irradiance[J]. Space ScienceReviews,2006,125(1-4):39-51
    [6] N.A. Krivova,S.K. Solanki. Models of solar irradiance variations: Currentstatus[J]. Journal of Astrophysics and Astronomy,2008,29(1):151-158
    [7]张亮,王赤,傅绥燕.太阳活动与全球气候变化[J].空间科学学报,2011,31(05):549-566
    [8]曹婷婷,罗时荣,赵晓艳.太阳直射光谱和天空光谱的测量与分析[J].物理学报,2007,56(09):5554-5557
    [9]杨希峰,刘涛,赵友博.太阳光和天空光的光谱测量分析[J].南开大学学报(自然科学版),2004,37(04):69-74
    [10]小普卓玛.太阳辐射光及其对人类的影响[J].西藏大学学报(汉文版),2007,22(03):121-124
    [11] B. Diffey. Solar ultraviolet radiation effects on biological systems[J]. Physics inmedicine and biology,1991,36(3):299
    [12] G. Kopp,G. Lawrence,G. Rottman. The total irradiance monitor (TIM): scienceresults[J]. The Solar Radiation and Climate Experiment (SORCE),2005:129-139
    [13] G. Thuillier,T. Foujols,D. Bolsée. SOLAR/SOLSPEC: Scientific objectives,instrument performance and its absolute calibration using a blackbody as primarystandard source[J]. Solar Physics,2009,257(1):185-213
    [14] J. Lean. Contribution of Ultraviolet Irradiance Variations to Changes in the Sun'sTotal Irradiance[J]. Science,1989,244(4901):197-200
    [15] D. Crommelynck,V. Domingo,C. Fr hlich. The Solar Variations (SOVA)experiment in the EURECA space platform[J]. Advances in Space Research,1991,11(4):83-87
    [16] C. Fr hlich,J. Romero,H. Roth. VIRGO: Experiment for helioseismology andsolar irradiance monitoring[J]. Solar Physics,1995,162(1):101-128
    [17] D. Crommelynck,V. Domingo,A. Fichot. Preliminary results from the SOVAexperiment on board the European Retrievable Carrier (EURECA)[J]. Metrologia,1993,30(4):375
    [18] C. Fr hlich,B.N. Andersen,T. Appourchaux. First results from VIRGO, theexperiment for helioseismology and solar irradiance monitoring on SOHO[J]. SolarPhysics,1997,170(1):1-25
    [19] C. Fr hlich,D.A. Crommelynck,C. Wehrli. In-flight performance of the VIRGOsolar irradiance instruments on SOHO[J]. Solar Physics,1997,175(2):267-286
    [20] L. Damé,D. Cugnet,M. Herse. PICARD: Solar Diameter, Irradiance andClimate[C]. Proceedings of The Solar Cycle and Terrestrial Climate, Solar andSpace weather:2000,463:223
    [21] W. Schmutz,A. Fehlmann,G. Hülsen. The PREMOS/PICARD instrumentcalibration[J]. Metrologia,2009,46(4): S202
    [22] G. Thuillier,S. Dewitte,W. Schmutz. Simultaneous measurement of the totalsolar irradiance and solar diameter by the PICARD mission[J]. Advances in SpaceResearch,2006,38(8):1792-1806
    [23] A. Irbah,C. Dufour,M. Meftah. Solar radius measurements with the SODISMinstrument: methods and algorithm developments for the PICARD Payload DataCenter[J]. Astronomische Nachrichten,2010,331(9-10):59
    [24] M. Meftah,J.F. Hochedez,A. Irbah. PICARD SODISM, a space telescope tostudy the Sun from the middle ultraviolet to the near infrared[J]. Solar Physics,2014,289(3):1043-1076
    [25] J. Frederick,D. Heath,R. Cebula. Instrument characterization for the detection oflong-term changes in stratospheric ozone-An analysis of the SBUV/2radiometer[J].Journal of Atmospheric and Oceanic Technology,1986,3:472-480
    [26] D. Heath,A.J. Krueger,H. Roeder. The solar backscatter ultraviolet and totalozone mapping spectrometer (SBUV/TOMS) for Nimbus G[J]. Optical Engineering,1975,14(4):144323-144323-
    [27] E. Hilsenrath,D. Williams,R. Caffrey. Calibration and radiometric stability ofthe Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment[J]. Metrologia,1993,30(4):243
    [28] C.A. Reber,C.E. Trevathan,R.J. Mcneal. The upper atmosphere researchsatellite (UARS) mission[J]. Journal of Geophysical Research,1993,98(D6):10643-10610,10647
    [29] NASA. UARS Project Data Book: The UARS Instruments,1987.
    [30] Springer New York. The SORCE MissionThe Solar Radiation and Climate Experiment (SORCE).http://dx.doi.org/10.1007/0-387-37625-9_2,2005.
    [31] G.J. Rottman,T.N. Woods,T.P. Sparn. Solar-Stellar Irradiance ComparisonExperiment1:1. Instrument design and operation[J]. Journal of Geophysical Research:Atmospheres,1993,98(D6):10667-10677
    [32] T.N. Woods,G.J. Rottman,G.J. Ucker. Solar-Stellar Irradiance ComparisonExperiment1:2. Instrument calibrations[J]. Journal of Geophysical Research:Atmospheres,1993,98(D6):10679-10694
    [33] G.J. Rottman,T.N. Woods. Upper Atmosphere Research Satellite (UARS) SolarStellar Irradiance Comparison Experiment (SOLSTICE)[C]. Proceedings of: SPIE1994,2266:317-327
    [34] Springer. Solar-stellar irradiance comparison experiment II (SOLSTICE II):instrument concept and design,2005.
    [35] G. Brueckner,K. Edlow,L. Floyd. The solar ultraviolet spectral irradiancemonitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite(UARS)[J]. Journal of Geophysical Research: Atmospheres (1984–2012),1993,98(D6):10695-10711
    [36] M. Vanhoosier,J.-D. Bartoe,G. Brueckner. A high precision solar ultravioletspectral irradiance monitor for the wavelength region120–400nm[J]. Solar Physics,1981,74(2):521-530
    [37] M.E. Vanhoosier. Absolute UV Irradiance Calibration Of The Solar UV SpectralIrradiance Monitor (SUSIM) Instruments[J].1988:291-296
    [38] G. Brueckner, L. Floyd, P. Lund. Solar ultraviolet spectral-irradianceobservations from the SUSIM-UARS experiment[J]. Metrologia,1995,32(6):661
    [39] L.E. Floyd,L.C. Herring,D.K. Prinz. Maintaining calibration during thelong-term space flight of the Solar Ultraviolet Spectral Irradiance Monitor(SUSIM)[C]. Proceedings of SPIE's1996International Symposium on OpticalScience, Engineering, and Instrumentation: International Society for Optics andPhotonics1996:36-47
    [40] L.E. Floyd,L.C. Herring,D.K. Prinz. Instrument responsivity evolution ofSUSIM UARS[C]. Proceedings of SPIE's International Symposium on OpticalScience, Engineering, and Instrumentation: International Society for Optics andPhotonics1998:445-456
    [41] M.E. Vanhoosier,J.-D.F. Bartoe,G.E. Brueckner. Absolute solar spectralirradiance120nm-400nm (results from the Solar Ultraviolet Spectral IrradianceMonitor-SUSIM-experiment on board Spacelab2)[J]. Astrophysical Letters andCommunications,1988,27:163-168
    [42] G. Thuillier,M. Hersé,P. Simon. Observation of the UV solar irradiance between200and350nm during the ATLAS-1mission by the SOLSPEC spectrometer[J]. SolarPhysics,1997,171:283~302
    [43] G. Thuillier,M. Hersé,P. Simon. Observation of the solar spectral irradiancefrom200nm to870nm during the ATLAS1and ATLAS2missions by theSOLSPEC spectrometer[J]. Metrologia,1998,35(4):689-697
    [44] G. Thuillier,M. Hersé,P.C. Simon. The Visible Solar Spectral Irradiance from350to850nm As Measured by the SOLSPEC Spectrometer During the ATLAS IMission[J]. Solar Physics,1998,177(1):41-61
    [45] G. Thuillier,M. Hersé,D. Labs. The solar spectral irradiance from200to2400nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECAmissions[J]. Solar Physics,2003,214(1):1-22
    [46] G. Schmidtke,C. Fr hlich,G. Thuillier. ISS-SOLAR: Total (TSI) and spectral(SSI) irradiance measurements[J]. Advances in Space Research,2006,37(2):255-264
    [47] T. Woods,G. Rottman,J. Harder. Overview of the EOS SORCE mission[C].Proceedings of SPIE:2000,4135:192-203
    [48]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1989
    [49] T. De Graauw,L. Haser,D. Beintema. Observing with the ISO Short-WavelengthSpectrometer[J]. Astronomy and Astrophysics,1996,315: L49-L54
    [50] D.A. Beintema,M.W. De Graauw,W. Luinge. Design and measured performanceof the ISO Short Wavelength Spectrometer[C]. Proceedings of Optical Engineeringand Photonics in Aerospace Sensing: SPIE1993,1946:293-301
    [51] J. Houck,T. Roellig,J. Van Cleve. IRS: the Spectrograph on SIRTF; ItsFabrication and Testing[C]. Proceedings of SPIE Proceedings:2000,4131:370-377
    [52] J.R. Houck,T.L. Roellig,J. Van Cleve. The infrared spectrograph (IRS) on theSpitzer space telescope[J]. The Astrophysical Journal Supplement Series,2004,154(1):18-24
    [53] J. Houck,J. Van Cleve,B. Brandl. IRS: the Infrared Spectrograph on SIRTF[C].Proceedings of Proceedings of the Conference ISO beyond the Peaks”, Villafrancadel Castillo, Spain: ESA2000:1-3
    [54] J.R. Houck,J.E. Van Cleve. IRS: an infrared spectrograph for SIRTF[C].Proceedings of SPIE:1995,2475:456-463
    [55] J.P. Burrows,K.V. Chance. Scanning imaging absorption spectrometer foratmospheric chartography[C]. Proceedings of Orlando'91, Orlando, FL:International Society for Optics and Photonics1991:146-154
    [56] J. Burrows,E. H lzle,A. Goede. SCIAMACHY—Scanning imaging absorptionspectrometer for atmospheric chartography[J]. Acta Astronautica,1995,35(7):445-451
    [57] H. Bovensmann,J. Burrows,M. Buchwitz. SCIAMACHY: Mission objectivesand measurement modes[J]. Journal of the Atmospheric Sciences,1999,56(2):127-150
    [58]薛庆生.用于空间大气遥感的临边成像光谱仪研究[D]:[博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2010
    [59] J.P. Burrows,M. Weber,M. Buchwitz. The global ozone monitoring experiment(GOME): Mission concept and first scientific results[J]. Journal of the AtmosphericSciences,1999,56(2):151-175
    [60] N. Fox,J. Aiken,J.J. Barnett. Traceable radiometry underpinning terrestrial-andhelio-studies (TRUTHS)[J]. Advances in Space Research,2003,32(11):2253-2261
    [61]方伟,金锡峰.一种双锥腔补偿型绝对辐射计的研制[J].太阳能学报,1992,13(04):406-411
    [62]方伟,禹秉熙,姚海顺.太阳辐照绝对辐射计与国际比对[J].光学学报,2003,(01):112-116
    [63]禹秉熙,方伟,姚海顺.神舟3号飞船上太阳辐射测量[J].空间科学学报,2004,(02):119-123
    [64]方伟,禹秉熙,王玉鹏.太阳辐照绝对辐射计及其在航天器上的太阳辐照度测量[J].中国光学与应用光学,2009,(01):23-28
    [65]程宇奇.太阳辐射监测仪在轨数据处理方法研究[R].博士后研究工作报告,中国科学院长春光学精密机械与物理研究所,长春,2012
    [66]方伟,王玉鹏,梁静秋.可作为光谱仪器定标基准源的新型光电探测器[J].红外与激光工程,2007,36(S2):517-520
    [67]叶新,方伟,杨东军.太阳光谱绝对测量中的数据采集系统设计[J].微计算机信息,2009,(22):69-70+86
    [68]刘恩超,郑小兵,李新.绝对光谱辐照度仪的波长定标[J].光学精密工程,2013,21(03):608-615
    [69]张艳娜,刘恩超,李新.可见-近红外波段太阳光谱辐照度仪的辐射定标方法研究[J].应用光学,2014,35(01):11-16
    [70]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社,1999
    [71]夏果.宽波段微型光谱仪设计优化及应用[D]:[博士学位论文].杭州:浙江大学,2013
    [72]杨怀栋,陈科新,黄星月.常规光谱仪器分光系统的比较[J].光谱学与光谱分析,2009,(06):1707-1712
    [73] P. Griffiths,J.A. De Haseth. Fourier transform infrared spectrometry[M].:JohnWiley&Sons,2007
    [74]吴国安.光谱仪器设计[M].:科学出版社,1978
    [75]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,(01):75-80
    [76]程梁.微型光谱仪系统的研究及其应用[D]:[博士学位论文].杭州:浙江大学,2008
    [77] P. Mouroulis, R.O. Green, T.G. Chrien. Design of Pushbroom ImagingSpectrometers for Optimum Recovery of Spectroscopic and Spatial Information[J].Appl. Opt.,2000,39(13):2210-2220
    [78]张浩,方伟,叶新.宽光谱棱镜型太阳光谱仪设计[J].光学学报,2013,(02):178-186
    [79]郑玉权.超光谱成像仪的精细光谱定标[J].光学精密工程,2010,18(11):2347-2354
    [80] J. Harder, G. Thuillier, E. Richard. The SORCE SIM Solar Spectrum:Comparison with Recent Observations[J]. Solar Physics,2010,263(1):3-24
    [81] R.D. Saunders,J.B. Shumaker. Apparatus function of a prism-grating doublemonochromator[J]. Appl. Opt.,1986,25(20):3710-3714
    [82] P. Wilksch. Instrument function of the Fabry-Perot spectrometer[J]. Appliedoptics,1985,24(10):1502-1511
    [83] P.A. Jansson. Method for Determining the Response Function of aHigh-Resolution Infrared Spectrometer[J]. J. Opt. Soc. Am.,1970,60(2):184-190
    [84] H.J. Kunze. Introduction to Plasma Spectroscopy[M]. Heidelberg:Springer,2009,49-51
    [85] A. Brablec,D. Trunec,F. Stastny. Deconvolution of spectral line profiles:solution of the inversion problem[J]. Journal of Physics D: Applied Physics,1999,32:1870
    [86] G. Petrov. A simple algorithm for spectral line deconvolution[J]. Journal ofQuantitative Spectroscopy and Radiative Transfer,2002,72(3):281-287
    [87]林冠宇.紫外臭氧垂直探测仪波长精度分析与波长定标新方法的研究[J].仪器仪表学报,2010,31(12):2668-2674
    [88]王加朋,王淑荣,徐领娣.紫外辐射计的波长定标及不确定度分析[J].光电工程,2008,35(06):42-47
    [89]李新,张国伟,寻丽娜.短波红外平场光谱仪的波长定标[J].光学学报,2008,28(05):902-906
    [90]崔敦杰.成像光谱仪的定标[J].遥感技术与应用,1996,11(03):
    [91]李晓晖,颜昌翔.成像光谱仪星上定标技术[J].中国光学与应用光学,2009,2(04):309-315
    [92]李幼平,禹秉熙,王玉鹏.成像光谱仪辐射定标影响量的测量链与不确定度[J].光学精密工程,2006,14(05):822-828
    [93]李健军,郑小兵,卢云君.硅陷阱探测器在350—1064nm波段的绝对光谱响应度定标[J].物理学报,2009,(09):6273-6278
    [94]郑小兵,吴浩宇,章骏平.不确定度优于0.035%的绝对光谱响应率标准探测器[J].光学学报,2001,(06):749-752
    [95]陈洪耀,张黎明,邹鹏.系统级定标方法实现基于低温辐射计的标准灯400~900nm波段光谱辐照度[J].光学学报,2010,30(11):3349-3353
    [96]国家计量技术规范.测量不确定度评定与表示.http://epub.cnki.net/grid2008/brief/detailj.aspx?filename=SCSD000001061119&dbname=SCSD,1999.
    [97]方伟.双锥腔互补偿型绝对辐射计(DCICAR)[D]:[博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2005
    [98]祝绍箕,邹海兴,包学诚.衍射光栅[M].北京:机械工业出版社,1986
    [99]石顺祥,张海兴,刘劲松.物理光学与应用光学[M].西安:西安电子科技大学出版社,2000
    [100] P. Mouroulis,D.W. Wilson,P.D. Maker. Convex grating types for concentricimaging spectrometers[J]. Applied optics,1998,37(31):7200-7208
    [101] J.F. James. Spectrograph design fundamentals[M].:Cambridge UniversityPress,2007
    [102] H. Beutler. The theory of the concave grating[J]. JOSA,1945,35(5):311-350
    [103] H. Noda,T. Namioka,M. Seya. Geometric theory of the grating[J]. JOSA,1974,64(8):1031-1036
    [104]孔鹏,巴音贺希格,李文昊.宽波段全息罗兰光栅的优化[J].中国激光,2011,(04):226-230
    [105]孔鹏,唐玉国,巴音贺希格.双光栅切换微型平场全息凹面光栅光谱仪[J].光学学报,2013,33(1):105001-105001
    [106] D. Kwo,G. Lawrence,M. Chrisp. Design of a grating spectrometer from a1:1Offner mirror system[C]. Proceedings of31st Annual Technical Symposium: SPIE1987,818:275-281
    [107] M.P. Chrisp. Convex diffraction grating imaging spectrometer[P]. U S专利:5,880,834,1999
    [108] D.R. Lobb. Theory of concentric designs for grating spectrometers[J]. Appl.Opt.,1994,33(13):2648-2658
    [109]刘玉娟.基于同心光学系统的新型成像光谱仪研究[D]:[博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2012
    [110] C. Fery. Spectroscope prism with curved surfaces[P]. USA专利:1007346,1911
    [111] C. Féry. A prism with curved faces, for spectrograph or spectroscope[J]. TheAstrophysical Journal,1911,34:79
    [112] D. Warren,J. Hackwell,D. Gutierrez. Compact prism spectrographs based onaplanatic principles[J]. Optical Engineering,1997,36:1174
    [113] D. Warren,J. Hackwell. Compact prism spectrograph suitable for broadbandspectral sureys with array detectors[P]. U.S.专利:5127728,1992
    [114] J.A. Hackwell, D.W. Warren, M.A. Chatelain. Low-resolution arrayspectrograph for the2.9-to13.5-um spectral region[C]. Proceedings of Proc. SPIEConf.1235Instrumen. Astron. VII:1990,1235:171-180
    [115] D.W. Warren,J.A. Hackwell. A Compact Prism Spectrograph Suitable ForBroadband Infrared Spectral Surveys With Array Detectors[C]. Proceedings ofOE/LASE'89,15-20Jan., Los Angeles. CA: International Society for Optics andPhotonics1989:314-321
    [116] J.H. Hecht,D.J. Gutierrez,G.S. Rossano. Description of a proposed space-basedhigh-resolution ozone imaging instrument (HIROIG)[C]. Proceedings of:1994,2266:352-364
    [117] D. Mckenzie,K. Crawford,D. Gutierrez. High-Resolution Ozone Imager(HIROIG)[R]. DTIC Document,1998
    [118] J.A. Hackwell, D.W. Warren, R.P. Bongiovi. LWIR/MWIR imaginghyperspectral sensor for airborne and ground-based remote sensing[C]. Proceedingsof SPIE's1996International Symposium on Optical Science, Engineering, andInstrumentation: International Society for Optics and Photonics1996:102-107
    [119] I. Malitson. Interspecimen comparison of the refractive index of fused silica[J].J. Opt. Soc. Am.,1965,55(10):1205-1208
    [120] ZEMAX Development Corporation. ZEMAX Optical Design Program User'sGuide,2009.
    [121]周峰,闫海,王晓莉.基于ZEMAX用户自定义操作数的波前编码成像系统优化设计[J].光学精密工程,2010,18(03):528-535
    [122] MathWorks Inc. MATLAB Product Help,2011.
    [123] D. Griffith. How to Talk to ZEMAX from MatLab[J]. Zemax Knowledge base,January,2006,3:
    [124]张春雷,向阳.基于大气吸收带的超光谱成像仪光谱定标技术研究[J].光谱学与光谱分析,2012,32(01):268-272
    [125] P. Gege,J. Fries,P. Haschberger. Calibration facility for airborne imagingspectrometers[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(4):387-397
    [126] S.W. Brown,G.P. Eppeldauer,K.R. Lykke. Facility for spectral irradiance andradiance responsivity calibrations using uniform sources[J]. Applied optics,2006,45(32):8218-8237
    [127] R. Siddans,B. Kerridge,B. Latter. Analysis of GOME-2Slit functionMeasurements Algorithm Theoretical Basis Document[J].2006:
    [128] J. Harder, J. Fontenla, G. Lawrence. The spectral irradiance monitor:Measurement equations and calibration[J]. Solar Physics,2005,230(1):169-204
    [129] T. Instruments.“TMS320F2810, TMS320F2811, TMS320F2812,TMS320C2810, TMS320C2811, TMS320C2812, Digital Signal Processors, DataManual[J]. Literature Number: SPRS174T,2012:
    [130]张旭,韩其睿.基于TMS320F2812和ADS8505的数据采集系统[J].微计算机信息,2006,(34):115-116+133
    [131] HAMAMATSU PHOTONICS. Photodiode Technical Information.http://www.hamamatsu.com,2012.
    [132] Texas Instruments Inc. Transimpedance Considerations for High SpeedAmplifiers. http://www.ti.com,2009.
    [133] Texas Instruments Inc. Op Amp Noise Theory and Applications.http://www.ti.com,2008.
    [134] Texas Instruments Inc. Compensate Transimpedance Amplifiers Intuitively.http://www.ti.com,2005.
    [135]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2006
    [136] Texas Instruments Inc. FilterPro User's Guide. http://www.ti.com,2011.
    [137]范超毅,范巍.步进电机的选型与计算[J].机床与液压,2008,(05):310-313+324
    [138]张明.步进电机的基本原理[J].科技信息,2007,(09):83
    [139]何英.太阳辐射监测仪在轨太阳光线仿真系统的设计[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012
    [140] PULNiX America, Inc. Specifications of the Camera Link Interface Standardfor Digital Cameras and Frame Grabbers,2000.
    [141]杨利红,李新娥,李国宁.基于图像采集卡的图像显示与处理软件开发[J].液晶与显示,2010,25(06):909-913
    [142]裴舒.成像光谱仪光谱定标[J].光机电信息,2011,(11):48-51
    [143]金辉,姜会林,郑玉权.高光谱遥感器的光谱定标[J].发光学报,2013,(02):235-239
    [144] R. Siddans,B.J. Kerridge,Latter,B.G. Analysis of GOME-2Slit functionMeasurements-Executive Summary[J]. Executive Summary,2006:
    [145]吴振洲.微型Offner成像光谱仪和光谱数据处理[D]:[博士学位论文].合肥:
    中国科学技术大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700