用户名: 密码: 验证码:
B2型钇基金属间化合物点缺陷结构与Ni/Ni_3Al相界合金化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用第一原理的CASTEP软件,对B2型金属间化合物(RuAl、YAg、YCu、YIn、YRh)点缺陷结构及其力学性能与Re、Ru合金化对Ni/Ni_3Al相界电子结构影响进行了第一原理研究。第一原理的CASTEP软件是一种基于量子力学的专门为固体材料科学研究所设计的程序包,采用密度泛函理论(DFT)赝势平面波方法,能够很好地探索半导体、陶瓷、金属、矿物质和硅酸盐等材料的晶体和表面性能,典型的应用包括研究材料的表面化学、结构性质、能带结构、态密度和光学性能。
     RuAl、YAg、YCu、YIn、YRh与NiAl同为B2型金属间化合物,然而在实验中却发现RuAl、YAg、YCu、YIn、YRh合金的室温塑性远远要比NiAl合金好。本文通过对不同点缺陷结构形成热与形成能的计算与比较,分析和预测了RuAl、YAg、YCu、YIn、YRh合金中点缺陷结构的种类与存在形式。结果表明:RuAl金属间化合物的点缺陷主要是Ru空位和Al反位,在富Ru合金中主要为Ru反位,在富Al合金中则主要是Al反位。B2-YX (X= Cu, Rh ,Ag, In)合金点缺陷结构主要是X子晶格上的空位与Y子晶格上的反位,在富Y的YX金属间化合物中主要为X空位,在富X的YX金属间化合物中则主要是X反位。进一步通过对RuAl、YAg、YCu、YIn、YRh与NiAl不同点缺陷结构Cauchy压力参数C_(12)-C_(44)和G/B0值的比较,发现点缺陷对RuAl塑性的降低程度比NiAl低,因而含有点缺陷的实际合金的室温塑性RuAl比NiAl好;相反点缺陷能明显提高YAg、YCu、YIn、YRh金属间化合物的室温塑性,推测这很可能是含有点缺陷的实际YAg、YCu、YIn、YRh多晶材料比无缺陷理想单晶和NiAl多晶材料表现出更好室温塑性的原因之一。
     本文第二部分研究了Ru、Re单独合金化前后γ-Ni/γ′-Ni_3Al相界的电子与能态结构。断裂功计算结果显示:Ru置换Ni/Ni_3Al相界区域中的Ni或Al原子,都可明显提高Ni/Ni_3Al相界的断裂强度,尤其置换γ-Ni/γ′-Ni_3Al相界界面层的Al原子时,对相界的强化效果最好;Re置换γ-Ni相区中的Ni均可提高Ni/Ni_3Al相界的断裂强度;进一步研究了Re与Ru复合合金化前后γ-Ni/γ′-Ni_3Al相界的电子与能态结构。断裂功计算结果显示: Re与Ru在相界区的复合合金化,当Re与Ru分别占据共格(002)γ/γ′原子层邻近(001)γ原子层上的Ni原子位与(001)γ′原子层上的Al原子位时,γ-Ni/γ′-Ni_3Al相界的断裂强度可进一步提高,若其中的Ru置换γ′-Ni_3Al相区内层Al,则复合合金化Ni/Ni_3Al相界的断裂强度不仅没有提高,反而比Ru单独合金化时Ni/Ni_3Al相界的断裂强度还低。电子态密度与电子密度分布图的分析表明:Re与Ru合金化对γ-Ni/γ′-Ni_3Al相界断裂强度的影响可归因于Re和Ru与其最近邻Ni原子间强烈的电子相互作用引起的相界区域层间原子成键相互作用的改变。
Using CASTEP code based on first-principles, the point defective constructions and its mechanics property of B2 type intermetallic compound(eg: RuAl、YAg、YCu、YIn、YRh) , the energetics and electronic structure of Ni/Ni_3Al interface with Ru or Re or Ru and Re addition have been calculated. CASTEP is a state of the art quantum mechanics based program designed specifically for solid state materials science. CASTEP employs the Density Functional Theory (DFT) plane-wave pseudopotential method which allows you to perform first-principles quantum mechanics calculations that explore the properties of crystals and surfaces in materials such as semiconductors, ceramics, metals, minerals and zeolites. Typical applications involve studies of surface chemistry, structural properties, band structure, density of states and optical properties.
     The B2 type intermetallic compound, for example: RuAl、YAg、YCu、YIn and YRh alloy, exhibit excellent room temperature toughness in conventionality experiment. But other B2 type intermetallic compound, for example: NiAl alloy, is not. Based on the calculation and comparison on the heat of formation and the energy of formation of several point defective structures, the type and the geometrical configuration of point defects in B2 type intermetallic compound(RuAl、YAg、YCu、YIn andYRh) are analyzed and forecasted in the first part of this paper. Results show that the major point defects in B2-RuAl intermetallic compound are vacancy defect or anti-site defect in the Ru sublattice, i.e., Ru vacancy and Al anti-site. In rich-Ru alloy it is mainly Ru anti-site defect, whereas in rich-Al alloy it is mostly Al anti-site defect. The major point defects in B2-YX (X=Cu, Rh, Ag, In) intermetallic compound are the vacancy defect in the X sublattice or the anti-site defect in the Y sublattice, i.e., X vacancy defect in rich-Y intermetallic compound and X anti-site defect in rich-X intermetallic compound. In addition, the comparison of Cauchy pressre parameter (C12-C44) and the G/B0 values of ideal B2-YX (X= Cu, Rh, Ag, In)、NiAl and RuAl crystals with their point defective structures reveals: (1)decreasing degree of C12-C44 caused by point defect in RuAl is lower than that in NiAl, which is responsible for that RuAl metallic compound with point defects has a better ductility than NiAl metallic compound with point defects at room temperature; (2) point defects are beneficial for improving the ductility of B2-YX intermetallic compound. Which maybe is responsible for the outstanding ductility of B2-YX (X= Cu, Rh, Ag, In) intermetallic compound at room temperature compared with ideal B2-YX crystals and the B2-NiAl multicrystal.
     The energetics and electronic structure of Ni/Ni_3Al interface with Re or Ru addition have been calculated based on first principles plane-wave pseudopotential method in the second part of this paper. The calculation of Griffith rupture work W demonstrated: (1) either the substitution of Re atom for Ni atom inγ-Ni block are profitable to improve the rupture strength of the Ni/Ni_3Al interface; (2)either the substitution of Ru atom for Ni atom or Al atom in Ni/Ni_3Al interface are profitable to improve the rupture strength of the interface too, And the best is the substitution of Ru for Al atom at the coherent Ni/Ni_3Al interfacial layer among these substitutions. For the multiple addition of Re and Ru, a obvious strengthening effect on the Ni/Ni_3Al interface compared with that of the Re or Ru addition can be seen when Re and Ru atoms occupy respectively at Ni and Al sites at (001) atomic layers adjacent to the coherent (002) interfacial atomic layer. Whereas, when Ru atom locates at Al site inγ′-Ni_3Al block and far away from the coherent (002) interfacial layer, it is found the multiple addition of Re and Ru does not further elevate the rupture strengths of Ni/Ni_3Al interface but makes them decrease to a lower value than the Ni/Ni_3Al interface with Ru addition. The analysis of electron densities of states (DOS) and the distributions of valence electron densities of Ni/Ni_3Al interface before and after alloying reveals that the alloying effect of Re and Ru on the rupture strength ofγ-Ni/γ′-Ni_3Al interface is attributed to the change of the interlayer bonding in the interfacial region induced by the stronger electronic interactions within first nearest neighbor (FNN) Re-Ni and Ru-Ni atoms compared with FNN Ni-Ni and Ni-Al.
引文
[1]倪军华.计算物理前沿及其与计算技术的交叉.物理, 2002, 31(7): 464- 465
    [2]熊家炯.材料设计.天津:天津大学出版社, 2000, 12-16
    [3]严辉,杨巍,宋雪梅,等.第一原理方法在材料科学中的应用.北京工业大学学报, 2004, 30(2): 210-213
    [4]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料.北京:国防工业出版社, 2001, 2-3
    [5] Guo J T, Cui C Y, Zhou L Z. Investigation on intermetallic NiAl-Cr(Mo, Hf) alloys. Acta Metall Scinica, 2002, 38(11): 1157-1162
    [6] Ma G J, Wu C W, Zhou W L, et al. Initial study of strengthening of NiAl-Cr(Mo)-Hf alloys by strong magnetic field. J Mater Res, 2005, 20: 295- 298
    [7] Amazigo J C, Budiansky B. Interaction of particulate and transformation toughening. J Mech Phys Solids, 1988, 36: 581-595
    [8] Li M, Soboyejo W O. Synergistic toughening of a hybrid NiAl composite reinforced with partially stabilized zirconia and molybdenum particles. Mater Sci Eng A, 1999, 271: 491-495
    [9] Chen R S, Guo J T, Yin W M, et al. Superplasticity of a multiphase Ni-25Al-25Cr intermetallic alloy. Scripta Mater, 1999, 40: 209-215
    [10] Du X H, Guo J T, Zhou B D. Superplasticity of stoichiometric NiAl with large grains. Scripta Mater, 2001, 45: 69-74
    [11] Zhou W L, Guo J T, Chen R S, et al. Superplasticity in NiAl intermetallics macroalloyed with iron. Mater Lett, 2001, 47: 30-34
    [12] Du X H, Guo J T, Zhou B D. Superplastic behavior in pseudo-eutectic NiAl–9Mo alloy. Mater Lett, 2002, 52: 442-447
    [13] Qi Y H, Guo J L, Cui C Y, et al. Superplasticity of a directionally solidified NiAl–Fe(Nb) alloy at high temperature. Mater Lett, 2002, 57: 552-557
    [14] Matsuura K, Kudoh M, Oh J H, et al. Development of freeform fabrication of intermetallic compounds. Scripta Mater, 2001, 44: 539-544
    [15] Oh J H, Kirihara S, Miyamoto Y, et al. Process control of reactive rapid prototyping for nickel aluminides. Mater Sci Eng A, 2002, 334: 120-126
    [16] Matsuura K, Kudoh M, Kirihara S, et al. Proceedings of 24th Annual Conferenceon Composites, Advanced Ceramics, Materials, and Structures: B, Ceramic Engineering and Science Proceedings. OH: Am Ceram Soc, 2000: 1518-1520
    [17] Darolia R, Lahrman D, Field R. The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl. Scripta Metall Mater, 1992, 26: 1007-1012
    [18]李虎田,郭建亭,叶恒强. NiAl及金属间化合物结构材料改善室温塑韧性及制备工艺的研究进展.稀有金属材料与工程, 2006, 35: 1162-1166
    [19] Cammarota P, Casagrande A. Effect of ternary additions of iron on microstructure and microhardness of the intermetallic NiAl in reactive sintering. J Alloys Compounds, 2004, 38l: 208-214
    [20] Guo J T, Zhou J. Preliminary investigation on the phosphorous-induced softening in polycrystalline NiAl intermetallic compound. J Alloys Compounds, 2003, 352: 255-259
    [21] Weixing Chen, Josh R Hines, You Wang. Significant Improvement in Room Temperature Ductility of NiAl by Cr-Ce Complexes. Advanced Engineering Materials, 2004, 6(11): 876-879
    [22] Ishida K, Kainuma R, Ueno N, et al. Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall Trans A, 199l, 22: 441-446
    [23] Gschneidner K, Russell A M, Pecharsky A, et al. A family of ductile intermetallic compounds. Nature Mater, 2003, 2(9): 587-591
    [24] Russell A M, Zhang Z, Lograsso T A et al. Mechanical properties of single crystal YAg. Acta Mater, 2004, 52: 4033-4040
    [25] Zhang Z, Russell A M, Biner S B, et al. Fracture toughness of polycrystalline Ycu, DyCu, and YAg. Intermetallics, 2005, 13: 559-564
    [26] Kim T, Hong K T, Lee K S. The relationship between the fracture toughness and grain boundary character distribution in polycrystallineNiAl.Intermetallics, 2003,11:33-39
    [27] James R Morris,Yiying Ye,Yong Bin Lee , et a1. Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds.Acta Mater, 2004, 52: 4849-4857
    [28] Mücklich F, Ili? N. RuAl and its alloys. Part I. Structure, physical properties, microstructure and processing.Intermetallics, 2005; 13: 5-21
    [29] Nandy T K, Feng Q, Pollock T M. Deformation of a platinum-containing RuAl intermetallic by <111> dislocations. Scripta Mater, 2003, 48: 1087-1092
    [30] Ofori A P, Rossouw C J, Humphreys C J. Determining the site occupancy of Ruin the L12 phase of a Ni-base superalloy using ALCHEMI. Acta Mater, 2005; 53: 97-110
    [31] P.Caron, in Materials for Advanced Power Engineering 1998, Edited by J.L.Beckers F.Schubert and P.J.Ennis, Vol.5 III, University de Liege European Commission, Jülich, German, (1998) p. 897-899
    [32] Harada H, In: Lecomte-Beckers J, Schubert F, Ennis P J, editors. Superalloys: Materials for Advanced Power Engineering 1998, Vol 5 III. Jülich, German: University de Liege European Commission; (1998) p. 131-132
    [33]郑运荣,韩雅芳.燃气涡轮用单晶高温合金的成本因素.金属学报, 2002, 38(11): 1203-1209.
    [34] Liu L M, McAllister B, Ye H Q, Hu P. Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): a density functional theory study on the intrinsic role of water. J Am Chem Soc, 2006, 128(12): 4017-4022
    [35] Liu Y, Chen K Y, Lu G, et al. Impurity effects on the Ni/Ni3Al interface cohesion. Acta Mater, 1997, 45: 1837-1849
    [36] Chen K Y, Zhao L R, Tse J S. A first-principles survy ofγ/γ′interface strengthening by alloying elements in single crystal Ni-base superalloys. Mater Sci Eng A, 2004, 365: 80-84
    [37] Chen K Y, Zhao L R, Tse J S. Synergetic effect of Re and Ru onγ/γ′interface strengthening of Ni-base single crystal superalloys. Mater Sci Eng A, 2003, 360: 197-201
    [38] Chen K Y, Zhao L R, Tse J S. Sulfur embrittlement onγ/γ′interface of Ni-base single crystal superalloys. Acta Mater, 2003, 51: 1079-1086
    [39] Chen K Y, Zhao L R, Tse J S. Atomic mechanism of the Re and Ru strengthening effect on theγ/γ′interface of Ni-based single-crystal superalloys: a first-principles study. Pilots Mag, 2003, 83: 1685-1690
    [40] Peng P, Jin Z H, Yang R, et al. First-principles study of effect of lattice misfit on the bonding strengh of Ni/Ni3Al interface. J Mater Sci, 2004, 39: 3957-3962.
    [41] Peng P, Zhou D W, Liu J S, et al. First-principles study of the properties of Ni/Ni3Al interface doped with B or P. Mater Sci Eng A, 2006, 416: 169-175
    [42] Peng P, Soh A K, Yang R, et al. First-principles study of effect of Re addition on the strength and toughness ofγ/γ′interface in Ni-based superalloy. Comput Mater Sci, 2006, 38: 354-361
    [43] Wanderka N, Glatzel U. Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy. Mater Sci Eng A, 1995, 203:69-74
    [44] Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-based superalloy. Mater Sci Eng A, 1998, 250: 88-92
    [45] Darolia R, Lahrman D F, Field R D. In: Rerchman S, Duhl D N, Maurer G, Antolovich S, Lund C. editors. Superalloys 1988, Warrendale (PA): TMS; 1988, p. 255-257
    [46] Fu C L, Ye Y Y, Yoo M H. Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl. Phys Rev B,1993, 48(9): 6712-6715
    [47] Jordan J L, Deevi S C. Vacancy formation and effects in FeAl. Intermetallics, 2003, 11: 507-528
    [48] Pollock T M, Lu D C, Shi X, et al. A comparative analysis of low temperature deformation in B2 aluminides. Mater Sci Eng A, 2001, 317: 241-248
    [49]周世勋著.量子力学教程.北京:高等教育出版社, 1992, 21-32
    [50]廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京:清华大学出版社, 1984, 1-10
    [51] Kohn W, Density Functional Theory. New York, 1995, 1-20
    [52] Paul Z, Stefan K, John P. Density functional from LDA to GGA. Comput Mater Sci, 1998,11(1): 122-127
    [53]黄美纯.密度泛函理论若干进展.物理学进展, 2000, 20(3): 199-219
    [54] Hohenberg P, Kohn, W. Inhomogeneous electron gas. Phys Rev B, 1964, 136: 864-871
    [55] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev A, 1965, 140(4A): 1133-1138
    [56] Hedin L, Lundqvist B I, Explicit local exchange-correlation potentials. J Phys. C: Solid State Phys, 1971, 4(14): 2064-2083
    [57] Barth U V, Hendin L. A local exchange-correlation potential for the spin polarizied. J Phys C: Solid State Phys, 1972, 5(13): 1629-1642
    [58] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 1980, 45(7): 566-569
    [59] Nusair M, Wilk L, Vosko S H. A comparison of spin-density functional calculations for the Knight shift in Mg. J Phys F: Met Phys, 1981, 11(8): 1683 -1690
    [60] Janak J F. Itinerant ferromagnetism in fcc cobalt. Solid State Common, 1978, 25(2): 53-55
    [61] Perdew J P, Wang Y. Accurate and simple analytic representation of theelectron-gas correlation energy. Phys Rev B, 1992, 45(23): 13244-13249
    [62] Langreth D C, Mehl M J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys Rev B, 1983, 28(4): 1809-1834
    [63] Perdew J P. Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys Rev Lett, 1985, 55(16): 1665- 1668
    [64] Perdew J P, Wang Y. Accurate and simple density fuctional for the electronic exchange energy: generalized gradient approximation. Phys Rev B, 1986, 33(12): 8800-8802
    [65] Perdew J P. Density functional approximation for correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33(12): 8822-8828
    [66] Becke A D. Density functional calculations of molecular bond energies. J Chem Phys, 1986, 84(8): 4524-4529
    [67] Becke A D. Density functional exchange energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38(6): 3098-3100
    [68] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation energy and correlation. Phys Rev B, 1988, 37(2): 785-789
    [69] Perdew J P, In: P Ziesche, H Eschrig (Eds) electronic structure of solids. akademie verlag, Berlin, 1991, 11-14
    [70] Perdew J P, Chevary J A, Vosko S H, et al. Fiolhais C, Atoms, molecules, solids and surfaces: applications of the GGA for exchange and correlation. Phys Rev B, 1992, 46(11): 6671-6687
    [71] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865-3868
    [72]程大勇.金属材料弹性性质与电子结构的第一原理计算: [中国科学院博士学位论文].沈阳:中国科学院金属研究所, 2001, 60-66
    [73] Hedin L, Lundqvist B I. Explicit local exchange correlation potentials. J Phys C, 1971, 4: 2064-2083
    [74] Lundqvist S, March N. Theory of the Inhomogeneous Electron Gas. Plenum: New York, 1983, 62-68
    [75] Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B, 1999, 59: 7413-7421
    [76] Andzelm J, Wimmer E, Salahub D R. Spin density functional approach to thechemistry of transition metal clusters: Gaussian-type orbital implementation, in The Challenge of d- and f-Electrons: Theory and Computation, Salahub D R, Zerner M C, Eds, ACS Symposium ser 1989, 394-397
    [77] Versluis L, Ziegler T, The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J Chem Phys, 1988, 88: 322-328
    [78] Ashcroft N W, Mermin N D. Solid State Physics, Holt Saunders, Philadelphia, 1976, 113-115
    [79] Payne M C, Teter M P, Allan D C, et al. Iterative Minimization Techniques for Ab Initio Total Energy Calculations: Molecular Dynamics and Conjugate Gradients. Rev Mod Phys, 1992, 64:1045-1097
    [80] Jung W G, Kleppa O J. Standard molar enthalpies of formation of MeAl( Me = Ru,Rh,Os,Ir). Metall Trans B, 1992, 23: 53-56
    [81] Gargano P, Mosca H, Bozzolo G, et al. Atomistic modeling of RuAl and (RuNi)Al alloys. Scripta Mater, 2003, 48: 695-700
    [82] Manh D N,Pettifor D G. Electronic structure, phase stability and elastic moduli of AB transition metal aluminides. Intermetallics, 1999, 7: 1095-1106
    [83] Bozzolo G H, Noebe R D, Amador C. Site occupancy of ternary additions to B2 alloys. Intermetallics, 2002, 10: 149-159
    [84] Prins S N, Cornish L A, Stumpf W E, et al. Thermodynamic assessment of the Al-Ru system. Calphad, 2003, 27(1): 79-90
    [85] Neumann J P, Chang Y A, Lee C M. Thermodynamics of intermetallic phases with the triplet-defect B2 structure. Acta Metall, 1976, 24(7): 593-604
    [86] Fleischer R L. Substitutional solutes in AlRu. I Effects of solute on moduli, lattice parameters and vacancy production. Acta Metall Mater, 1993, 41(3): 863-869
    [87] Gobran H A, Liu K W, Heger D, et al. Investigation on point defect structure in single phase B2 type RuAl alloys by lattice parameter measurements. Scripta Mater, 2003, 49(11): 1097-1102
    [88] Rice J R. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J Mech Phys Solids, 1992, 40: 239-271
    [89] Fu C L, Yoo M H. Deformation behavior of B2 type aluminides: FeAl and NiAl. Acta Metall Mater, 1992, 40(4): 703-711
    [90] Morris J R, Ye Y Y, Lee Y B, et al. Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds. Acta Mater, 2004, 52:4849-4857
    [91]庄厚龙,彭平,周惦武,等. B2型Y基金属间化合物YX(X=Ag,Cu,In,Rh)延性预测.稀有金属材料与工程, 2006, 35: 247-252
    [92] Segall M D, Lindan Philip J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Condens Matter, 2002, 14: 2717-2743
    [93] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett, 1996, 77: 3865-3868
    [94] Thomas R M, Ann E M. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys Rev B, 2002, 66: 214110-214117
    [95] Fischer T H, Almlof J. General methods for geometry and wave function optimization. J Phys Chem, 1992, 96: 9768-9774
    [96] Pulay P. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I. Theory. Mol Phys, 1969, 17: 197-204
    [97] Pettifor D G. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol, 1992, 8: 345-349
    [98] Chang K M, Darolia R, Lipsitt H A. Cleavage fracture in B2 aluminides. Acta Metall Mater, 1992, 40(10): 2727-2737
    [99] Levit V I, Bul I A, Hu J, et al. High tensile elongation ofβ-NiAl single crystals at 293 K. Scripta Mater, 1996, 34(12): 1925-1930
    [100]Wolff I M, Sauthoff G. Role of an intergranular phase in rual with substitutional additions. Acta Mater, 1997, 45(7): 2949-2969
    [101]Westbrook J H, Fleischer R L. Intermetallics compounds: Principles and Practice, Vol.I, Eds. John Wiley and Sons(London), 1995, 195-201
    [102]Kellou A, Feraoun H I, Grosdidier T, et al. Energetics and electronic properties of vacancies, anti-sites, and atomic defects (B, C, and N) in B2-FeAl alloys. Acta Mater, 2004, 52: 3263-3271
    [103]Darolia R, Walston W S, Noebe R, et al. Mechanical properties of high purity single crystal NiAl. Intermetallics, 1999, 7(10): 1195-1202
    [104]Würschum R, Badura–Gergen K, Kümmerle E A, et al. Characterization of radiation-induced lattice vacancies in intermetallic compounds by means of positron-lifetime studies. Phys Rev B, 1996, 54(2): 849-856
    [105]Pike L M, Chang Y A, Liu C T. Point defect concentrations and hardening in binary B2 intermetallics. Acta Mater, 1997, 45(9): 3709-3719
    [106]Buschow K H J. Intermetallic compounds of rare earths and non-magneticmetals. Rep Prog Phys, 1979, 42: 1373-1477
    [107]Yatsenko S P, Semyannikov A A, Shakarov H O, et al. Phase diagrams of binary rare earth metal-indium systems. J Less-Common Metal, 1983, 90: 95- 108
    [108]Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag, 1954, 45: 823-843
    [109]Chen K Y, Zhao L R, Rodgers, et al. Alloying effects on elastic properties of TiN-based nitrides. J Phys D:Appl Phys, 2003, 36: 2725-2729
    [110]Francis G P, Payne M C. Finite basis set corrections to total energy pseudopotential calculations. J Phys: Condens Matter, 1990, 2: 4395-4404
    [111]Harada H, Ishida A, Bhadeshia H K D H, et al. Atom-probe microanalysis of a nickel-base single crystal superalloy. Appl Surf Sci, 1993, 67: 299-304.
    [112]Hu Q M, Yang R, Xu D S, et al. Energetics and electronic structure of grain boundaries and surfaces of B- and H-doped Ni3Al. Phys Rev B, 2003, 67: 224203-224212
    [113]Boettger J C. Nonconvergence of surface energies obtained from thin-film calculations. Phys Rev B, 1994, 49: 16798-16800
    [114]Fu C L, Yoo M H. Electronic structure and mechanical behavior of transition-metal aluminides: a first-principles total-energy investigation. Mater Che m Phys, 1992, 32: 25-32
    [115]Tse J S, Zhao L R, Chen K. Atomic mechanism of the Re and Ru strengthening effect on theγ/γ′interface of Ni-based single-crystal superalloys: a first-principles study. Pilots Mag, 2003, 83: 1685 -1698
    [116]Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Sci Technol, 1999, 3: 513-523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700