半导体胶体粒子及其复合微球的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Synthesis and Properties of Semiconductor Colloidal Particles and Composite Microspheres
  • 作者:李春光
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2010
  • 导师:施展
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-05-01
摘要
本论文旨在利用简单的反应体系制备半导体氧化物和硫化物胶体粒子,并在磁性荧光双功能复合微球的制备方面开展了一些工作。我们发展了一步合成聚电解质修饰的氧化锌胶体纳米晶簇的方法,并进一步将该制备方法用于硫化铅胶体纳米晶簇的合成,最终实现对单分散水溶性胶体粒子的可控合成。为该体系胶体粒子在化学传感器、胶体光子晶体等方面的应用提供可靠的实验依据。
     根据目前液相反应体系存在的局限性,我们发展了一种非传统的合成方法用于合成多氧化态的金属钒氧化物。通过调变反应参数调变其粒子尺寸和性质并对其在光/热电转换等性质进行了深入的探讨。
     在前人相关研究工作的基础上,我们发展了一种合成磁性荧光复合微球的方法。通过引入“表面保护刻蚀法”将致密的二氧化硅层转化为多孔结构,大大提高了复合微球对量子点的负载。通过调控包覆层的厚度还制备了具有磁性核的二氧化硅的空心结构,为下一步在生物标记方面的应用奠定基础。
Semiconductor colloidal particles as building blocks can be applied to fabricate novel functional materials according to their special light and electric properties. As for the preparation of semiconductor colloidal particles and composite microspheres, the simple, green, low cost and scalable synthetic system are highly required by the potential application in traditional and novel industry. The particle size, morphology and aggregation can be well tuned by changing the reaction parameter and the particle could have excellent disperibility in green solvents such as water. Moreover, some special colloidal particles which can not be prepared conveniently through traditional synthetic methods could successfully obtained by simple reaction procedure.
     1. Over past decades, highly monodisperse and water-soluble colloidal nanocrystal clusters have been the object of intensive scientific and technological interest. However, the assembly of nanocrystals in a facile manner into advanced secondary structures with continuous size tuning remains a significant challenge. The formation mechanism also needs to be detailed discussed. So the poloyl such as diethylene glycol has high boiling point, permittivity and good stability, was chose for synthesis of colloidal nanocrystal clusters with controllable particle size.
     ZnO colloidal nanocrystal clusters (CNCs) have been one-pot synthesized through poloyl mediated high temperature hydrolysis reaction. The particle size can be tuned from 60nm to about 180nm by changing the volume of NaOH in the reaction system due to more OH- could accelerate the hydrolysis of metal cation. We further synthesized monodisperse PbS CNCs under similar condition based on ZnO CNCs. The molar ratios of lead cation to thiourea have great effect on the particle size of product. The formation mechanism of colloidal nanocrystal clusters has also been discussed. PbS nanocubes of ~27nm can be obtained by varying the reaction parameter, and they can disperse stably in water for a long time. The PbS nanocubes and CNCs with different size lead to the different absorption spectra in UV, visible and near IR area. Moreover, the very uniform and highly charged PbS CNCs form periodic structures with regular interparticle spacing of a few nanometers according to the different particle size so that the system strongly diffract light. They are the simplest photonic crystals only in particular directions. The key point in our synthesis is to use poly(acrylic acid) as the surfactant. It shows very strong coordination of carboxylate groups with metal cations, and the uncoordinated carboxylate groups on the polymer chains extend into aqueous solution conferring upon the particles a high degree of dispensability in water. An additional benefit of uncoordinated carboxylate groups is to provide conjunction points for further attachment of other materials.
     2. There are several oxidation states for some special transition metal, these transition metal usually have poor solubility, easy to hydrolyze and very sensitive to pH value, so it’s very difficult to obtain the pure metal with tunable size or morphology by controlling the reaction procedure. In this paper, we developed two kinds of synthetic methods to prepare metal vanadium oxide colloids with tunable particle size. The products have excellent optical or catalytic properties, and can be applied in relevant areas. Monodisperse vanadium oxide colloids such as V2O5, V2O3 and VO2 colloids spheres have been successfully prepared though facile reduction method by hydrogen. The particle size can be well tuned between 200~500nm. The reversible phase transition of VO2 colloids spheres at about 68oC from low temperature monoclinic to tetragonal phase at high temperature is detailedly discussed. The obvious changes of optical property in visible region before and after the phase transition have been monitored by VU-vis absorption spectra. The result shows that these VO2 colloids spheres have high phase transition efficiency and their optical properties are highly related to the particle size. The simulation of the experimental results indicates that the experimental data are agree well with the theoretical simulation. The product could be a promising candidate for potential applications in optical switching devices, temperature-sensing devices and optical data storage medium.
     3. Multifunctional colloids have been successfully prepared by doping QDs, magnetic nanocrystals or catalyst into silica or polymer beads. Considering their extensive biological and medical application, the facile, green and scalable synthetic methods are required, high loading of functional nanocrystals are also very important. In the paper, we introduce the so-called“surface protected etching method”to render the silica shell of Fe3O4@SiO2 microspheres porous structure. The UV-Vis spectrometry is used to monitor this process by measuring the transmission of the solution because of the original solution becomes more and more transparent with the prolonged etching time. Unlike the traditional methods, the QDs are directly grown within Fe3O4@SiO2 beads, and produce dual-functional microspheres with a series of single light, high loading and high quantum yields. The porous shells also act as physical barriers preventing the aggregation of the particles in the reaction. There were a few references reported recently that incorporation QDs into silica or polymer beads, unfortunately, the potential application to biological field was limited by size of these microspheres and the preparation method, the particle size is too large, the existing method have some trouble with low loading capacity, fluorescence quenching and low quantum yield of QDs. Moreover, ollow silica sphere with mobile magnetic cores were also successfully fabricated. The porosity of the shell can be conveniently tuned by the extent of etching time, thus providing a possibility to control the diffusion of molecules through the shell according their sizes. The method described here is therefore expected to find use in important application areas such as drug delivery and biological sensing.
引文
[1] E. Matijevi?, Chem. Mater. 1993, 5, 412.
    [2] E. Matijevic, Langmuir 1994, 10, 8.
    [3] S. C. Glotzer, Science 2004, 306, 419.
    [4] S. Iijima, Nature 1991, 354, 56.
    [5] P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, Science 1997, 278,100.
    [6] C. N. R. Rao, A.Govindaraj, Acc. Chem. Res. 2002, 35, 998.
    [7] R. H. Baughman, A. A Zakhidov, W. A. Heer, Science 2002, 297, 787.
    [8] P. Kim, C. M. Lieber, Science 1999, 286, 2148.
    [9] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science 2001, 294,1313.
    [10] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001, 293, 1289.
    [11] J. C. Johnson, H. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, Nature 2002, 419, 106.
    [12] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425.
    [13] C. R. Martin, Science 1994, 266, 1961.
    [14] J. Park, K. An, Y. Hwang, J.-G. Park, H.-J Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nature Mater. 2004, 3, 891.
    [15] T. P. Chou, Q. Zhang, G. E. Fryxell, G. Cao, Adv. Mater. 2007, 19, 2588.
    [16] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706.
    [17] A. E. Henkes, Y. Vasquez, R. E. Schaak, J. Am. Chem. Soc. 2007, 129, 1896.
    [18] H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am.Chem. Soc. 2008, 130, 1818.
    [19] E. C. Nelson, P. V. Braun, Science 2007, 318, 924.
    [20] K. Rajeshwar, N. R. de Tacconi, C. R. Chenthamarakshan, Chem. Mater. 2001, 13, 2765.
    [21] P. W. Atkins, Physical Chemistry, 4th ed. Oxford University Press: Oxford, 1990.
    [22] Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater. 2000, 12, 693.
    [23]徐如人,庞文琴,霍启升,无机合成与制备化学,第二版,高等教育出版社, 2009.
    [24] Y. Wang, N. J. Herron, J. Phys. Chem., 1991, 95, 525.
    [25] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano. Lett. 2001, 1, 207.
    [26] A. J. Legget, S. Chakravarty, Rev. Mod. Phys. 1987, 59, 1.
    [27] Y. He, H. T. Lu, L. M. Sai, W. Y. Lai, Q. L. Fan, L. H. Wang, W. Huang, J. Phys. Chem. B 2006, 110, 13352.
    [28] N. Pradan, D. Goorskey, J. Thessing, X. G. Peng, J. Am. Chem. Soc. 2005, 127,17586.
    [29] B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi,?J. Phys. Chem. B. 1997, 101, 9463.
    [30] M. A. Hines, J. Phys. Chem. B 1998, 102, 3655.
    [31] S. Sun, Adv. Mater. 2006, 18, 393.
    [32] K. I. Hadjiivanov, D. G. Klissurski, Chem. Soc. Rev. 1996, 25, 61.
    [33] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735.
    [34] R.Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
    [35] T. Brockmann, P. Fontana, B. Meng, U. Müller, Beton- Stahlbetonbau 2008, 103, 446.
    [36] H. Hildebrand, K. Mackenzie, F. D. Kopinke, Chem. Ing. Tech. 2007, 79, 1461.
    [37] Y. L. Wang, X. C. Jiang, Y. N. Xia, J. Am. Chem. Soc. 2003, 125, 16176.
    [38] A. Kolmakov,D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano. Lett. 2005, 5, 667.
    [39] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Appl. Phys. Lett. 2004, 84, 3654.
    [40] C. Li, D. H. Zhang,; X. L. Liu, S. Han, T. Tang, J. Han, C. W. Zhou, Appl. Phys.Lett. 2003, 82, 1613.
    [41] I. Raible, M. Burghard, U. Schlecht, A. Yasuda, T. Vossmeyer, Sensor. Actuat. B. Chem. 2005, 106, 730.
    [42] W. St?ber, A Fink, J. Colloid Interface Sci. 1968, 26, 62.
    [43] L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. 2000, 122, 12700.
    [44] W. W. Yu, Y. A. Wang, X. G. Peng, Chem. Mater. 2003, 15, 4300.
    [45] L. Qu, X. G. Peng, J. Am. Chem. Soc. 2002, 124, 2049.
    [46] L. Manna, E. C. Scher, L. Li, A. P. Alivisatos, J. Am. Chem. Soc. 2002, 124, 7136.
    [47] D. V. Talapin, R. Koeppe, S. G?tzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, H. Weller, Nano. Lett. 2003, 3, 1677.
    [48] Y. W. Cao, U. Banin, J. Am. Chem. Soc. 2000, 122, 9692.
    [49] E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowshi, M. Haase, H. Weller, J. Am. Chem. Soc. 2002, 124, 11480..
    [50] S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204.
    [51] X. G. Peng, Chem. Eur. J. 2002, 8, 334.
    [52] L. Qu, Z. A. Peng, X. G. Peng, Nano. Lett. 2001, 1, 333.
    [53] W. W. Yu, X. G. Peng, Angew. Chem. Int. Ed. 2002, 41, 2368.
    [54] D. Battaglia, X. Peng, Nano Lett. 2002, 2, 1027.
    [55] Y. Sun, Y. Xia, Science 2002, 298, 2176.
    [56] J. Chen, J. M. McLellan, A. Siekkinen, Y. Xiong, Z.-Y. Li, Y. N. Xia, J. Am. Chem. Soc. 2006, 128, 14776.
    [57] C. Feldmann, Adv. Mater. 2001, 13, 1301.
    [58] C. Feldmann, Adv. Funct. Mater. 2003, 13, 101.
    [59] C. Feldmann, H. O. Jungk, Angew. Chem., Int. Ed. 2001, 40, 359.
    [60] C. Feldmann, C. Metzmacher, J. Mater. Chem. 2001, 11, 2603.
    [61] Q. L. Zheng, Y. Zhang, Angew. Chem. Int. Ed. 2006, 45, 7732.
    [62] J.Ge, Y. Hu, M. Biasini, C. Dong, J. Guo, W. P. Beyermann, Y. Yin, Chem. Eur. J. 2007, 13, 7153.
    [63] X. H. Li, J. X. Li, G. D. Li, D. P. Liu, J. S. Chen, Chem.–Eur. J. 2007, 13, 8754.
    [64]李新昊,复合胶体粒子的制备、性能及形成机理研究,吉林大学博士论文。
    [65] X. Wang, J. Zhuang, Q. Peng, Y. Li, Nature 2005, 437, 121.
    [66] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847.
    [67] V. K. LaMer, Ind. Eng. Chem. 1952, 44, 1270.
    [68] T. Sugimoto, S. Chen, A. Muramatsu, Colloids Surf. A: Physicochem. Engng Aspects 1998, 135, 207.
    [69] X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343.
    [70] C. D. M. Doneg,S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 2003, 107, 489.
    [71] D. V. Talapin, A. L. Rogach, M. Haase, H. Weller, J. Phys. Chem. B 2001, 105, 12278.
    [72] W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 2003, 15, 2854.
    [73] R. L. Penn, J. F. Banfield, Science 1998, 281, 969.
    [74] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science 2000, 289, 751.
    [75] C. Pacholsk, A. Kornowski, H. Weller, Angew. Chem. Int. Ed., 2002, 41, 1188.
    [76] Z. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237.
    [77] J. Ge, Y. Hu, Y. Yin, Angew. Chem., Int. Ed. 2007, 46, 7428.
    [78] Y. Wang, J. F. Wong, X. Teng, X. Z. Lin, H. Yang, Nano. Lett. 2003, 3, 1555.
    [79] M. E. Gindy, A. Z. Panagiotopoulos, R. K. Prud’homme, Langmuir 2007, 24, 83.
    [80] J. Xie, C. Xu, Z. Xu, Y Hou, K. L. Young, S. X. Wang, N. Pourmond, S. Sun, Chem. Mater. 2006, 18, 5401.
    [81] H. Wu, H. Zhu, J. Zhuang, S.Yang, C.Liu, Y. C. Cao, Angew. Chem. Int. Ed. 2008, 47, 3730.
    [82] W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016.
    [83] M. Kim, Y. Chen, Y. Liu, X. Peng, Adv Mater. 2005, 17, 1429
    [84] R. De Palma, S. Peeters, M. J. Van Bael, H. Van den Rul, K. Bonroy, W. Laureyn, J. Mullens, G. Borghs, G. Maes, Chem. Mater. 2007, 19, 1821.
    [85] S. Kim, M. G. Bawendi, J. Am. Chem. Soc. 2003, 125, 14652.
    [86] F. Dubois, B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, J. Am. Chem. Soc. 2007, 129, 482.
    [87] T. Zhang, J. Ge, Y. Hu, Y. Yin, Nano. Lett. 2007, 7, 3203.
    [88] X. H. Gao, X. M. Nie, J. Phys. Chem. B 2003, 107, 11575.
    [89] R. Wilson, D. G. Spiller, I. A. Prior, K. J. Veltkamp, A. Hutchinson, Acs. Nano. 2007, 1, 487.
    [90] J. Kim. J. E. Lee. J.W. Lee. Y. J. Jang, S.W. Kim, K. J. An, J. H. Yu, T. Hyeon, Angew. Chem. Int. Ed, 2006, 45, 4789.
    [91] N. Liu, B. S. Prall, I. Victoe, J. Am. Chem. Soc. 2006, 128, 15362.
    [92] J. Yang, S. R. Dave, X. H. Gao. J. Am. Chem. Soc. 2008, 130, 5286.
    [93] J. Yang, H. I. Elim, Q. Zhang, J. Y. Lee, W. Ji, J. Am. Chem. Soc. 2006, 128, 11921.
    [94] W. L. Shi, Y. Sahoo, H. Zeng, Y. Ding, M. T. Swihart, P. N. Prasad, Adv. Mater. 2006, 18, 1889.
    [95] J. H. Gao, B. Zhang, Y. Gao, Y. Pan, X. X. Zhang, B. Xu, J. Am. Chem. Soc. 2007, 129, 11928.
    [96] H. Lee, S. E. Habas, G. A. Somorjai, P. Yang, J. Am. Chem. Soc. 2008, 130, 5406.
    [97] S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nat. Mater. 2007, 6, 692.
    [98] R. D Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L.-W. Wang, A. P. Alivisatos, Science 2007, 317, 355.
    [99] J. S. Jang, S. H. Choi, H. G. Kim, J. S. Lee, J. Phys. Chem. C 2008, 112, 17200.
    [100] R. Klajn, K. J. M. Bishop, M. Fialkowski, M. Paszewski, C. J. Campbell, T. P. Gray, B. A. Grzybowski, Science 2007, 316, 261.
    [101] R. Klajin, K. J. M. Bishop, B. A. Grzybowski, Proc. Natl. Acad. Sci. USA 2007, 104, 10305.
    [102] N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
    [103] M. Sarikaya, C. Tamerler, A. K.-Y. Jen, K. Schulten, F. Baneyx, Nat. Mater. 2003, 2, 577.
    [104] Y. Lu, J. Liu, Acc. Chem. Res. 2007, 40, 315.
    [1] J. H. Fendler, Wiley-VCH, Weinheim, 1998.
    [2] H. Weller, Angew. Chem. Int. Ed. Engl. 1993, 32, 41.
    [3] A. L. Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, H. Weller, Adv. Funct. Mater. 2002, 12, 653.
    [4] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000, 287, 1989.
    [5] T. Hyeon, Chem. Commun. 2003, 927;
    [6] K. Jacobs, D. Zaziski, E. C. Scher, A. B. Herhold, A. P. Alivisatos, Science 2001, 293, 1803.
    [7] P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, Nature 2000, 406, 968.
    [8] A. P. Alivisatos, Science 1996, 271, 933.
    [9] X. H. Li, J. X. Li, G. D. Li, D. P. Liu, J. S. Chen, Chem. Eur. J. 2007, 13, 8754.
    [10] J. H. Warner, Adv.Mater. 2008, 20, 784.
    [11] Y. Yin, A. P. Alivisatos, Nature 2005, 437, 664.
    [12] Z. A. Peng, X. Peng, J. Am. Chem. Soc. 2002, 124, 3343.
    [13] Y. Sun, Y. Xia, Science 2002, 298, 2176.
    [14] X. Wang, J . Zhuang, Q. Peng, Y. D. Li, Nature 2005, 437, 121.
    [15] M. P. Pileni, Nat. Mater. 2003, 2, 145.
    [16] A.Narayanaswamy,H.Xu,N.Pradhan,X.Peng, Angew. Chem. Int. Ed. 2006, 45, 5361.
    [17] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, C. B. Murray, Nature 2006, 439, 55.
    [18] X. L. Hu, J. M. Gong, L. Z. Zhang, J. C. Yu, Adv. Mater. 2008, 20, 4845.
    [19] J. Lee, A. O. Govorov, N. A. Kotov, Angew. Chem. Int. Ed. 2005, 44, 7439.
    [20] J. E. Halpert, V. J. Porter, J. P. Zimmer, M. G. Bawendi, J. Am. Chem. Soc. 2006, 128, 12590.
    [21] C. G. Li, Y. Zhao, L. Wang, G. H. Li, Z. Shi, S. H. Feng, Eur. J. Inorg. Chem. 2010, 2010, 217.
    [22] J. Ge, Y. Hu, M. Biasini, C. Dong, J. Guo, W. P. Beyermann, Y. Yin, Chem. Eur. J. 2007, 13, 7153.
    [23] J. Ge, Y. Hu, M. Biasini, W. P. Beyermann, Y. Yin, Angew. Chem., Int. Ed. 2007, 46, 4342.
    [24] J. Ge, Y. Hu, Y. Yin, Angew. Chem. Int. Ed. 2007, 46, 7428.
    [25] J. Ge, Y. Yin, J. Mater. Chem. 2008, 18, 5041.
    [26] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weberm, R. Russo, P. D. Yang, Science 2001, 292, 1897.
    [27] Z. L. Wang, J. H. Song, Science 2006, 312, 242.
    [28] N. Pinna, G. Garnweitner, M. Antonietti, M. Niederberger, J. Am. Chem. Soc. 2005, 127, 5608.
    [29] R. Q. Song, A. W. Xu, B. Deng, Q. Li, G. Y. Chen, Adv. Funct. Mater. 2007, 17, 296.
    [30] Y. Peng, A. W. Xu, B. Deng, M. Antonietti, H. Colfen, J. Phys. Chem. B 2006, 110, 2988.
    [31] M. S. Mo, S. H. Lim, Y. W. Mai, R. K. Zheng, S. P. Ringer, Adv. Mater. 2008, 20, 339.
    [32] M. S. Mo, J. C. Yu, L. Z. Zhang, S. K. A. Li, Adv. Mater. 2005, 17, 756.
    [33] B. Liu, H. C. Zeng, J. Am. Chem. Soc. 2004, 126, 16744.
    [34] B. Liu, H. C. Zeng, Chem. Mater. 2007, 19, 5824.
    [35] Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao, Angew. Chem. Int. Ed. 2008, 47, 2402.
    [36] L. Spanhel, J. Sol-Gel Sci. Technol. 2006, 39, 7.
    [37] J. Norwig, W. H. Meyer, G. Wegner, Chem. Mater. 1998, 10, 460.
    [38] G. Wegner, P. Baum, M. Müller, J. Norwig, K. Landfester, Macromol. Symp. 2001, 175, 349.
    [39] D. Mumalo-Djokic, W. B. Stern, A. Taubert, Cryst. Growth Des. 2008, 8, 330.
    [40] A. Taubert, G. Wegner, J. Mater. Chem. 2002, 12, 805.
    [41] A. Taubert, G. Glasser, D. Palms, Langmuir 2002, 18, 4488.
    [42] A. Taubert, C. Ku1bel, D. C. Martin, J. Phys. Chem. B 2003, 107, 2660.
    [43] J. Joo, S. G. Kwon, J. H. Yu, T. Hyeon, Adv. Mater. 2005, 17, 1873.
    [44] C. Feldmann, Adv. Mater. 2001, 13, 1301.
    [45] C. Feldmann, H. O. Jungk, Angew. Chem. Int. Ed. 2001, 40, 359.
    [46] C. Feldmann, Adv. Funct. Mater. 2003, 13, 101.
    [47] S. Libert, V. Gorshkov, D. Goia, E. Matijevi, V. Privman, Langmuir 2003, 19, 10679.
    [48] D. H. Lee, R. A. Condrate, J. S. Reed, J. Mater. Sci. 1996, 31,471.
    [49] H. Li, C. P. Tripp, Langmuir 2005, 21, 2585.
    [50] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys. 1996, 79, 7983.
    [1] J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner, Phys. Rev. B 1993, 48, 2819.
    [2] H. Hirata, K. Higashiyama, Bull. Chem. Soc. Jpn. 1971, 44, 2420.
    [3] P. K. Nair, O. Gomezdaza, M. T. S. Nair, Adv. Mater. Opt. Electron. 1992, 1, 139.
    [4] T. K. Chaudhuri, S. Chatteries, Proc. Int. Conf. Thermoelectr. 1992, 11, 40.
    [5] M. A. Hines, G. D. Scholes, Adv. Mater. 2003, 15, 1844.
    [6] E. H. Sargent, Adv. Mater. 2005, 17, 515.
    [7] Y. L. Wang, L. Cai, Y. N. Xia, Adv. Mater. 2005, 17, 473.
    [8] S. F. Wang, F. Gu, M. K. Lv, Langmuir 2006, 22, 398.
    [9] N. N. Zhao, L. M. Qi, Adv. Mater. 2006, 18, 359.
    [10] G. J. Zhou, M. K. Lv, Z. L. Xiu, S. F. Wang, H. P. Zhang, Y. Y. Zhou, S. M. Wang, J. Phys. Chem. B 2006, 110, 6543.
    [11] S. Lee, Y. Jun, S. Cho, J. Cheon, J. Am. Chem. Soc. 2002, 124, 11244.
    [12] Z. P. Peng, Y. S. Jiang, Y. H. Song, C. Wang, H. Zhang, Chem. Mater. 2008, 20, 3153.
    [13] C. L. L?, C. Guan, Y. F. Liu, Y. R. Cheng, B. Yang, Chem. Mater. 2005, 17, 2448.
    [14] J. H. Warner, A. A. R. Watt, R. D. Tilley, Nanotechnology 2005, 16, 2381.
    [15] K. S. Babu, C. Vijayan, P. Haridoss, Materials Science and Engineering C 2007, 27, 922.
    [16] A. Sashchiuk, L. Amirav, M. Bashouti, M. Krueger, U. Sivan, E. Lifshitz, Nano. Lett. 2004, 4, 159.
    [17] K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, J. Am. Chem. Soc. 2005, 127, 7140.
    [18] C. Feldmann, Adv. Mater. 2001, 13, 1301.
    [19] C. Feldmann, H. O. Jungk, Angew. Chem. Int. Ed. 2001, 40, 359.
    [20] C. Feldmann, Adv. Funct. Mater. 2003, 13, 101.
    [21] C. Feldmann, C. Metzmacher, J. Mater. Chem. 2001, 11, 2603.
    [22] Q. L. Zheng,; Y. Zhang, Angew. Chem., Int. Ed. 2006, 45, 7732.
    [23] S. Libert, V. Gorshkov, D. Goia, E. Matijevi, V. Privman, Langmuir 2003, 19, 10679.
    [24] J. Chastain, Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer, Norwalk, CT, 1992.
    [25] D. H. Lee, R. A. Condrate, J. S. Reed, J. Mater. Sci. 1996, 31,471.
    [26] H. Li, C. P. Tripp, Langmuir 2005, 21, 2585.
    [27] Y. Batonneau, C. B. J. Laureyns, J. C. Merlin, J. Raman Spect. 2000, 31, 1113.
    [28] D. S. Gregory, F. Steven, J. H. C. Robin, C. Manuel, J. Appl. Phys. 2002, 92, 4375.
    [29] D. K. Todd, W. W. Frank, Phys. Rev. B 1997, 55, 9860.
    [30] K. K. Nanda, S. N. Sahu, R. K. Soni, S. Tripathy, Phys. Rev. B 1998, 58, 15405.
    [31] J. Ge, J. W. H.-X. Z. X. W. Q. P., Y. D. Li, Chem. Eur. J. 2005, 11, 1889.
    [32] G. D. Smith, S. Firth, R. J. H. Clark, M. Cardona, J. Appl. Phys. 2002, 92, 4375.
    [33] Y. Batonneau, C. Bremard, J. Laureyns, J. C. Merlin, J. Raman Spectrosc. 2000, 31, 1113.
    [34] N. N. Zhao, L. M. Qi, Adv. Mater. 2006, 18, 359.
    [35] L. H. Dong, Y. Chu, Y. J. Zhuo, W. Zhang, Nanotechnology 2009, 20, 125301.
    [36] J. Ge, Y. Hu, Y. Yin, Angew. Chem. Int. Ed. 2007, 46, 7428.
    [37] P. A. Rundquist, P. Photinos, S. Jagannathan, S. A. Asher, J. Chem. Phys. 1989, 91, 4932.
    [38] R. D. Pradhan, J. A. Bloodgood, G. H. Watson, Phys. Rev. B 1997, 55, 9503.
    [39] I. M. Krieger, F. M. O’Neill, J. Am. Chem. Soc. 1968, 90, 3114.
    [40] P. A. Hiltner, I. M. Krieger, J. Phys. Chem. 1969, 73, 2386.
    [41] X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, S. A. Asher, Chem. Mater. 2002, 14, 1249.
    [42] J. H. Holtz, S. A. Asher, Nature 1997, 389, 829.
    [43] X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, S. A. Asher, Adv. Mater. 2001, 13, 1681.
    [44] J. Ge, Y. Yin, J. Mater. Chem. 2008, 18, 5041.
    [1] F. Guinneton, L. Sauques, J. C. Valmalette, Thin Solid Films 2004, 446, 287.
    [2] F. Morin, J. Phys. Rev. Lett. 1959, 3, 34.
    [3] M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S.- J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, D. N. Basov, Sciense 2007, 318, 1750.
    [4] B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, H. T. Kim, Y. S. Lim, Appl. Phys. Lett. 2007, 90, 023515.
    [5] E. E. Chain, Appl. Opt. 1991, 30, 2782.
    [6] C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard, Y. Sampeur, Surf. Coat. Tech. 1998, 98, 1477.
    [7] O. C. Lampe, J. O. Thomas, M. Hardgrave, Y. S. Anderson, J. Electrochem. Soc. 1995, 142, 3648.
    [8] I. Balberg, S. Trokman, J. Appl. Phys. 1975, 46, 2111.
    [9] I. P. Parkin, D. M. Troy, J. Chem. Education. 2006, 83, 393.
    [10] Z. Zha, Y. D. Zhang, Q. Wang, J. Harbin Institute of Tech. (Engl. Ed.) 1997, E-4, 86.
    [11] R. Lopez, L. A. Boatner, T. E. Haynes, Appl. Phys. Lett. 2001, 79, 3161.
    [12] J. B. Goodenough, J. Solid State Chem. 1971, 3, 490.
    [13] H. Jpn. Takei, J. Appl. Phys. 1968, 7, 827.
    [14] J. C. Valmalette, J. R. Gavarri, Sol. Energy Mater. Sol. Cells. 1994, 33, 135.
    [15] F. Guinneton, L. Sauques, J. Phys. Chem. Solids 2001, 62, 1229.
    [16] C. L. Xu, L. Ma, X. Liu, J. Mater. Res. Bull. 2004, 39, 881.
    [17] S. A. Lawton, E. A. Thby, J. Am. Ceram. Soc. 1995, 78, 104.
    [18] X. Chen, X. Wang, Z. Wang, J. Wan, J. Liu, Y. Qian, Nanotechnology 2004, 15, 1685.
    [19] F. Sediri, F. Touati, N. Gharbi, Mater. Sci. Eng., B 2006, 129, 251.
    [20] W. Chen, L. Mai, Y. Qi, Y. Dai, J. Phys. Chem. Solids 2006, 67, 896.
    [21] K. C. Kam,?A. K. Cheetham, Mater. Res. Bull. 2007, 41, 1015.
    [22] G. Xu, C. M.?Huang, M.?Tazawa, P.?Jin, L. H.?Chen, Opt.Commun. 2009, 282, 896.
    [23] A. Subrahmanyam, Y. B. K. Reddy, C. L. Nagendra, J. Phys. D: Appl. Phys. 2008, 41, 195108.
    [14] Y. Shimakawa, M. Takano, S. Yamamoto, Mater. Res. Soc. Symp. Pro. 2005, 879, 143.
    [25] R. Lopez, L. C. Feldman, R. F. Haglund, Phys. Rev. Lett. 2004, 93, 177403.
    [1] P. Tartaj, T. González-Carre?o, C. Serana, J. Phys. Chem. B 2003, 107, 20.
    [2] H. H. Yang, g S. Q. Zhan, X. L. Chen, Anal. Chem. 2004, 76, 1316.
    [3] A. Ulman, Chem. Rev. 1996, 96, 1533.
    [4] H. B. Na, J. H. Lee, K. An, Y. I. Park, M. Park, I. S. Lee, D.-H. Nam, S. T. Kim, S.-H. Kim, S.-W. Kim, K.-H. Lim, K.-S. Kim, S.- O. Kim, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 5397.
    [5] I. Willner, E. Katz, Angew. Chem. Int. Ed. 2003, 42, 4576.
    [6] K. A. Hinds, J. M. Hill, E. M. Shapiro, M. O. Laukkanen, A. C. Silva, C. A. Combs, T. R. Varney, R. S. Balaban, A. P. Koretsky, C. E. Dunbar, Blood 2003, 102, 867.
    [7] H. L. Grossman, W. R. Myers, V. J. Vreeland, R. Bruehl, M. D. Alper, C. R. Bertozzi, J. Clarke, Proc. Natl. Acad. Sci. USA 2004, 101, 129.
    [8] P. S. Doyle, J. Bibette, A. Bancaud, J. L. Viovy, Science 2002, 295, 2237.
    [9] L.Yu, Y. Yin, B. T. Mayers, Y. Xia, Nano. Lett. 2002, 2, 183.
    [10] F. C. Meldrum, B. R. Heywood, S. Mann, Science 1992, 257, 522.
    [11] P. Tartaj, T. González-Carre?o, C. Serana, Adv. Mater. 2001, 13, 1620.
    [12] P. Tartaj, C. J. Serna, J. Am. Chem. Soc. 2003, 125, 15754.
    [13] W. St?ber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
    [14] A. P. Philipse, A. M. Nechifor, C. Pathmamanoharan,?Langmuir 1994, 10, 4451.
    [15] Q. Liu, Z. Xu, J. A. Finch, Chem. Mater. 1998, 10, 3938.
    [16] M. A. Correa-Duarte, M. Giersig, N. A. Kotov, Langmuir 1998, 14, 6430.
    [17] Y. Lu, Y. Yin, B. T. Mayers, Nano. Lett. 2002, 2, 183.
    [18] S. T. Selvan, C. Bullen, M. Muthupandian, P. Mulvaney, Adv. Mater. 2001, 13, 985.
    [19] C. Li, N. Murase,?Langmuir 2004, 20, 1.
    [20] V. C. Sundar, H. Eisler, M. G. Bawendi,?Adv. Mater. 2002, 14, 739.
    [21] J. Kim, J. E. Lee, J. Lee, Y. Jang, S.-w. Kim, K. An, J. H. Yu, T. Hyeon, Angew. Chem. Int. Ed, 2006, 45, 4789.
    [22] L. Namguo, S. P. Bradley, I. Victoe, J. Am. Chem. Soc. 2006,128, 15362.
    [23] X. Gao, S. Nie, J. Phys. Chem. B 2003, 107, 11575.
    [24] T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, U. Banin,?Chem. Mater. 2005, 17, 258.
    [25] T. R. Sathe, A. Agrawal, S. Nie, Anal. Chem. 2006, 78, 5627.
    [26] R. Wilson, D. G. Spiller, L. A. Prior, K. J. Veltkamp, A. Hutchinson, Acs. Nano. 2007, 1,487.
    [27] J. Yang, S. R. Dave, X. Gao, J. Am. Chem. Soc. 2008, 130, 5286.
    [28] X. X. Zhu, Y. C. Cao, X. Jin, J. Yang, X. F. Hua, H. O. Wang, B. Liu, Z. Wang, J. H. Wang, L. Yang, Y. D. Zhao, Nanotechonology 2008, 19, 025708.
    [29] Q. Zhang, T, Zhang, J. Ge, Y. Yin, Nano. Lett. 2008, 8, 2867.
    [30] J. Ge, Y. Hu, M. Biasini, C. Dong, J. Guo, W. P. Beyermann, Y. Yin, Angew. Chem. Int. Ed. 2007, 46, 4342.
    [31] L. Qi, X. Peng, J. Am. Chem. Soc. 2002, 124, 2049.
    [32] M. A. Cohen Stuart, G. J. Fleer, B. H. Bijsterbosch, J. Colloid Interface Sci. 1982, 90, 321.
    [33] A. Nelson, K. S. Jack, T. Cosgrove, D. Kozak, Langmuir 2002, 18, 2750.
    [34] V. M. Gun’ko, V. I. Zarko, E. F. Voronin, E. V. Goncharuk, L. S. Andriyko, N. V. Guzenko, L. V. Nosach, W. Janusz, J. Colloid Interface Sci. 2006, 300, 20.
    [35] A. G. Young, N. Al-Salim, D. P. Green, A. J. McQuillan, Langmuir 2008, 24, 3841.
    [36] M. A. Cohen Stuart, G. J. Fleer, B. H. Bijsterbosch, J. Colloid Interface Sci. 1982, 90, 310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700