用户名: 密码: 验证码:
RyR-2基因敲除减弱压力超负荷后心肌肥厚和降低心功能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兰尼碱2型受体(Ryanodine receptor type 2 RyR-2)主要存在于心肌细胞内质网上,介导心肌细胞内钙离子(Calciumion Ca2+)释放,Ca2+在心肌细胞的兴奋-收缩耦联中起关键作用,心肌细胞的每一次舒缩都伴有胞浆内Ca2+浓度的增高和恢复,除此之外,越来越多研究表明Ca2+也参与病理条件下心室重构及心力衰竭的发生过程。然而,在心室重构及心力衰竭的发病机制中,RyR-2受体的作用机制依然不甚明了。
     应用野生型小鼠(WT)及RyR-2基因敲除小鼠(RyR-2+/-)通过升主动脉缩窄的方法构建压力超负荷引起的心室重构模型,进行RyR-2的分子机制研究。结果表明,在基础生理条件下,与RyR-2+/+小鼠相比,RyR-2+/-小鼠尽管已经出现明显Ca2+释放异常,但在心肌细胞大小、心脏结构形态和心肌收缩功能等方面却无明显差异;主动脉缩窄后,小鼠心脏压力负荷增加,3周后,各组小鼠均发生了明显的心室重构--心肌肥厚,而相对wT小鼠,Ryy-2+/-小鼠的肥厚程度明显减弱、心肌纤维化程度以及收缩功能的减弱程度明显减轻,这些改变与心肌细胞凋亡增加而心肌细胞自噬减少有关,与心脏中微血管生成无关。进一步研究发现,一系列Ca2+调节蛋白包括L型钙通道(L-type Ca2+ channel, LCC)、钠钙交换体(Na1+/Ca2+ exchanger, NCX)、钙离子ATP酶2(SR Ca2+-ATPase 2, SERCA2)的基因表达紊乱;压力超负荷后RyR-2+/-小鼠心脏中与RyR-2受体结合的结合蛋白FKBP量减少而另一种与RyR-2受体结合的蛋白PKA量却增加。除此之外,我们还进一步分析了Ca2+依赖的蛋白激酶途径发现RyR-2是钙神经素(calcineurin)、细胞外信号调节激酶(extracellular signal-regulated protein kinases, ERK)和蛋白激酶B (protein kinase B, Akt)的调节因子,而在Ca2+/钙调蛋白依赖蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinaseⅡ, CaMKⅡ)途径中影响不大。
     由此可见,RyR-2受体的缺失破坏了细胞内钙稳态、增加心肌细胞凋亡而减少自噬、影响Ca2+相关蛋白激酶的活性从而减弱了心肌细胞对压力负荷增加所产生的重构改变,影响心脏功能,参与心力衰竭的发生。
     第一部分:RyR-2基因敲除对压力超负荷后心肌肥厚发生和心功能的影响
     目的:通过敲除RyR-2基因探讨该基因对心肌细胞内Ca2+稳态的影响并观察RyR-2基因敲除小鼠在压力超负荷情况下心肌肥厚的发生情况。
     方法:应用Langendorff装置体外灌流的方法获得并培养成年RyR-2+/+和RyR-2+/-小鼠心肌细胞,用AngⅡ作为刺激因素之一,3-4μmol/L fluo-3 AM孵育标记心肌细胞内Ca2+,在波长485nm时,分别激发心肌细胞荧光。应用荧光显微镜,经过530 nm带通滤波,观察激发出的荧光,并收集数据用来反应细胞内钙离子的浓度。,用0.25HZ电场刺激2min诱发心肌细胞收缩,随后将10 mmol/L咖啡因加入细胞中以诱导细胞内钙贮存的释放,分析细胞内钙瞬变。实验分RyR-2+/+小鼠组和RyR-2+/-组。分别将RyR-2+/+小鼠和RyR-2+/-小鼠随机分为TAC(Transverse aorta constriction)组和Sham组,分别给予缩窄升主动脉或假手术,三周后行心脏超声和新导管检查评价小鼠心脏结构和功能改变。HE染色和V-G染色分别观察心室重构和纤维化情况。
     结果:
     1)RyR-2基因敲除后,心肌细胞内钙瞬变幅度、收缩期胞内Ca2+浓度升高幅度、缩短分数百分率(FS%)等反应心脏收缩功能指标均明显降低。
     2)咖啡因诱导细胞收缩后细胞半舒张期时间在两组之间无明显变化。
     3)生理条件下,wT小鼠和RyR-2+/-小鼠的心脏无论在结构和收缩功能上均没有明显差别。
     4)TAC三周后,无论是wT小鼠还是RyR-2+/-小鼠均发生心肌肥厚,但二者之间肥厚程度有显著差别。与WT小鼠i相比,RyR-2+/-小鼠肥厚程度明显减轻。
     5)TAC三周后,与WT小鼠相比,RyR-2+/-小鼠的室间隔厚度(IVSTd)、左室射血分数(LVEF)、dP/dtmax著减少而,左室舒张末压力增高。
     6)组织化学结果显示TAC术后,与WT小鼠相比,RyR-2+/-小鼠心肌细胞增大程度、肌纤维增粗和纤维化程度均减弱。
     7) AngⅡ刺激并没有引起收缩期或舒张期细胞内Ca2+水平的改变。
     结论:
     1)RyR-2基因敲除后,小鼠心肌细胞内Ca2+稳态发生明显改变,提示RyR-2基因可能参与Ca2+介导的心肌肥厚的发生。
     2)尽管在生理条件下RyR-2之基因敲除无明显心脏异常,但在RyR-2敲除动物中压力负荷增引起的心肌肥厚明显减弱。
     第二部分:RyR-2基因对心肌肥厚相关基因和Ca2+调节蛋白影响
     目的:观察RyR-2基因敲除后,压力负荷增加时心肌肥大标志基因和钙调控蛋白变化情况。
     方法:RyR-2+/+小鼠和RyR-2+/-小鼠行TAC术,2天和三周后分别获取标本,应用northern blotting方法检测肥大基因ANP、BNP、钙离子通道蛋白LCC、SERCA2、NCX的基因表达情况;应用免疫共沉淀方法观察RyR-2结合蛋白FKBP、PKA等量的改变。同时假手术组作为对照。
     结果:
     1)TAC引起ANP和BNP基因表达增高,TAC引起ANP和BNP基因表达增高在RyR-2+/-小鼠组中程度有所减轻
     2)TAC2天和三周后RyR-2+/+小鼠α-SKA表达增高水平一致,而RyR-2+/-小鼠中TAC3周后α-SKA出现更明显的增高。
     3)TAC诱导RyR-2+/+小鼠RyR-2和SERCA2基因表达下调而LCC和NCX基因表达上调。TAC诱导RyR-2+/-小鼠NCX因表达下调而SERCA2和LCC基因表达不变
     4)基础条件F,与RyR-2结合的FKBP的量在RyR-2+/-小鼠有所减少,而与RyR-2结合的PKA的量却呈现出增加。TAC 3周后,与RyR-2结合的FKBP的量在WT和RyR-2+/-小鼠中均减少,与RyR-2结合的PKA的量均增加。
     结论:RyR-2基因敲除后影响了压力负荷增加所致肥厚基因的表达并引起钙通道蛋白表达异常。
     第三部分:RyR-2基因敲除减弱肥大信号传导途径的激活
     目的:观察TAC后WT和RyR-2+/-小鼠心脏中不同肥大信号途径中激酶如CaMKⅡ、钙神经素(calcineurin)、ERK和AKT的表达变化。
     方法:手术和分组同前,获取小鼠心脏组织标本,应用western blotting的方法检测CaMKⅡ、calcineurin、ERK和AKT蛋白表达;体外培养心肌细胞以不同浓度AngⅡ刺激,检测CaMKⅡ和calcineurin活性改变。
     结果:
     1)AngⅡ以剂量依赖方式迅速激活CaMKⅡ, CaMKⅡ活性显著增加;而对calcineurin, AngⅡ并没有显著激活作用。
     2)WT小鼠中压力超负荷增加CaMKⅡ和calcineurin表达;RyR-2+/-小鼠中压力超负荷引起CaMKⅡ表达增加而calcineurin途径无明显激活。
     3)WT小鼠中TAC 3周后显著激活ERK、AKT通路而RyR-2+/-小鼠两条通路无明显激活改变。
     结论:敲除RyR-2基因减弱压力超负荷引起肥大反应是通过影响calcineurin信号途径实现的。
     第四部分:RyR-2基因敲除后压力超负荷引起心功能减退的可能机制研究
     目的:从凋亡、自噬及血管发生情况方面分析RyR-2基因可能的影响心功能的机制。
     方法:临床收集5例心脏组织标本,分为心衰组和正常对照组,分析RyR-2基因表达,动物分组及手术方法同前,获取心脏标本,组织切片染色,TUNEL方法检测心肌细胞凋亡情况,免疫染色和Western Blotting方法检测细胞自噬和微血管计数情况。
     结果:
     1)衰竭心脏中RyR-2基因表达降低,降低程度与心功能状态正相关。
     2)RyR-2+/-小鼠中TAC后,心肌细胞凋亡较RyR-2+/+明显增加。
     3)RyR-2+/-小鼠中TAC后,心肌细胞自噬较RyR-2+/+明显增加。
     4)RyR-2+/-小鼠中TAC后,血管生成较RyR-2+/+无明显改变。
     结论:RyR-2基因敲除后压力负荷增加引起心功能减退可能与心肌细胞凋亡增多、自噬减少有关,而与血管生成无明显关系。
Ryanodine receptor type 2 (RyR-2) mediates Ca2+ release from sarcoplasmic reticulum (SR) and plays a key role in the pathogenesis of contractile dysfunction that is associated with altered intracellular Ca2+ handling. However, the role of RyR-2 in the development of cardiac hypertrophy remains unclear. Here, mice with reduction of RyR-2gene (RyR-2+/-) and their littermate wild type (WT) mice were analyzed. At baseline, there was no difference in cardiomyocyte size, heart morphology and cardiac contractile function between WT and RyR-2+/- mice, although Ca2+ release from SR was impaired in isolated RyR-2+/- cardiomyocytes. When these animals were subjected to the pressure overload stimulation, comparing to WT ones, RyR-2+/- mice exhibited attenuated cardiac hypertrophy, myocardial fibrosis and contractile functions associated with increased apoptosis and decreased autophagy of cardiomyocyte, but unrelated to the impaired cardiac angiogenesis. Pressure overload-induced increases in activation of calcineurin, extracellular signal-regulated protein kinases (ERKs) and protein kinase B/Akt in WT heart was disappeared in RyR-2+/- mice, but that of Ca2+/calmodulin-dependent protein kinase II (CaMKII) was similar between RyR-2+/- and WT mice, suggesting that RyR-2 is a regulator for calcineurin, ERK and Akt but not for CaMKII during pressure overload. Although the detailed mechanism is unclear, our data indicate that RyR-2 contributes to the development of cardiac hypertrophy and adaptation of cardiac function during pressure overload through regulation of Ca2+ handing, activation of calcineurin, ERKs and Akt and cardiomyocyte survival.
     PART 1:Reduction of RyR-2 gene results in altered Ca2+ handling in adult cardiac myocytes and attenuated cardiac hypertrophy and contractility in response to pressure overload
     Objective:To examined the impact of heterozygous RyR-2 gene disruption on Ca2+ handling and contractility in isolated adult cardiac myocytes and to evaluate cardiac morphology and contractile function of WT and RyR-2+/- mice after TAC by echocardiography and catheterization.
     Method:Adult cardiomyocytes were isolated from mice by Langendorff perfusion method. The intracellular Ca2+ transients were electrically ctivatedat0.25Hz,stabilized within 2 min, and then 10 mmol/L caffeine was rapidly applied to the cardiomyocytes just afte the pacing was turned off. The cells were excited by UV light of 485 nm, and the emission of 530 nm was collected. TAC was performed on WT and RyR-2+/- mice for 2 days and 3 weeks respectively. The right carotid blood pressure was measure and the thickness of left ventricular wall and heart function were measured by echocardiography. H-E and V-G staining analysis were used to reveal the myofiber size and the extent of fibrosis.
     Results:
     1)The amplitude of Ca2+ tntracellular Ca2+ concentration during systole, and percentile fractional shortening were significantly reduced in myocytes isolated from RyR-2+/- mice compared to those isolated from WT mice.
     2) The half time of relaxation from caffeine-induced contracture was comparable between WT and RyR-2+/- myocytes.
     3)There was no significant difference in dimension and contractility between WT and RyR-2+/(?) mice.
     4) 3 weeks after TAC, thickness of interventricular septum in diastole (IVSTd) and LV ejection fraction (LVEF) in RyR-2+/- mice were significantly reduced compared to those of WT mice and hemodynamic studies revealed increased LVEDP、decreased dP/dtmax in RyR-2+/- mice.
     5) Morphological studies showed heart weight/body weight ratio of RyR-2+/- mice 3 weeks after TAC was significantly smaller than that of WT mice.
     6) Histological analysis revealed that myofiber size and the extent of fibrosis were significantly reduced in RyR-2+/- mice compared to WT mice.The size of isolated cardiomocytes was comparable between WT and RyR-2+/- cells at baseline but was significantly reduced in RyR-2+/- cells compared to WT cells after TAC.
     7) AngⅡ(10 nmol/L) could not induce increases in cytosolic free Ca2+ levels at both the systolic and diastolic phases in cultured cardiomyocytes of neonatal rats.
     Conclusion:
     1) The heterozygous deletion of RyR-2 gene resulted in altered Ca2+ handling in isolated cardiac myocytes.
     2) These observations suggest that, although there is no apparent cardiac phenotype at baseline, heterozygous deletion of RyR-2 gene resulted in attenuated cardiac hypertrophy and impaired contractility in response to pressure overload.
     PART 2:Reduction of RyR-2 gene results in the alteration of hemodynamic load-responsive gene expression program
     Objective:To examine induction of hypertrophic responses of the heart to hemodynamic overload in the heart at 2 days and 3 weeks after TAC.
     Method:Mice were divided in to WT and RyR-2+/- groups. TAC and sham operation was performed respectively. The strategy of northern blotting was used to test the fetal-type cardiac genes such as ANP, BNP and a-SKA and also the expression of genes encoding Ca2+ handling proteins such as SERCA2, LCC, NCX.
     Results:
     1) TAC-mediated induction of ANP and BNP genes was downregulated whereas induction of a-SKA gene was not altered at day 2 and enhanced 3 weeks after TAC in the heart of RyR-2+/- mice.
     2) In WT hearts,3 weeks of pressure overload induced downregulation of RyR-2 and SERCA2 genes and upregulation of LCC and NCX genes.
     3) In RyR-2+/- hearts, the expression levels of SERCA2 and LCC genes were not altered whereas that of NCX gene was downregulated.
     4) Association of FKBP with RyR-2 was further decreased and phosphorylation of RyR-2 by PKA was further increased in the WT heart compared to WT hearts after TAC.
     Conclusion:
     1) Pressure overload-responsive gene expression program is impaired or altered by heterozygous deletion of RyR-2 gene.
     2) Hypertrophic responses of the gene program regulating the expression of Ca2+ handling proteins are also altered by heterozygous deletion of RyR-2 gene.
     PART 3:Reduction of RyR-2 gene results in the attenuated activation of hypertrophic signaling pathways in response to pressure overload
     Objective:To examine whether the load-induced activation of hypertrophic signaling pathways are impaired in RyR-2+/- hearts.
     Method:Since pressure overload-induced cardiac hypertrophy is attenuated in RyR-2+/- mice and CaMKII and calcineurin are critical regulators of Ca2+ -mediated cardiac hypertrophy, histochemical staining. The expression of CaMKⅡ、calcineurin、ERK and AKT in myocardium were detected by Western blotting.
     Results:
     1) Although AngⅡrapidly (at 1 min) increased activities of CaMKII in a dose-dependent manner, it could not induce an increase in calcineurin activation.
     2) Pressure overload activated CaMKII and calcineurin in WT hearts.
     3) Activation of calcineurin in response to pressure overload was impaired in RyR-2+/- hearts whereas the activation of CaMKII was comparable between WT and RyR-2+/- hearts.
     4) TAC for 3 weeks induced robust activation of ERK1/2 and Akt in WT hearts but not in RyR-2+/- hearts.
     Conclusion:These observations indicate that heterozygous deletion of RyR-2 gene led to the attenuated activation of hypertrophic signaling pathways in response to pressure overload, which may account for the reduced growth of the heart in RyR-2+/ mice after TAC.
     PART 4:Reduction of RyR-2 gene results in increased apoptosis and decreased autophagy but unchanged angiogenesis in pressure overloaded heart
     Objective:To find out the possible additional mechanisms that contribute to impaired cardiac function in RyR-2+/- mice independently of the alteration in Ca2+ homeostasis
     Method:Human failing hearts were obtained from 3 end-stage heart failure patients with dilated cardiomyopathy (DCM). Two donor hearts that could not be transplanted for technical reasons were used for controls. The expression of RyR-2 at the mRNA level was evaluated using RT-PCR. Mice were divided in to RyR-2+/+ and RyR-2+ groups. TAC and sham operation was performed respectively.The density of capillaries in the myocardium was examined by CD31 immunostaining, and the number of CD31-positive microvessels per 100 cardiomyocytes was calculated. Apoptotic death of cardiomyocytes was detected in situ by TUNEL kit in paraffin-embedded heart tissue sections. Autophagy of cardiomyocytes was evaluated by LC3b immunostaining on paraffin sections. Immunostaining was performed using rabbit anti-LC3b antibody after minimal antigen retrieval.
     Results:
     1) Comparing with controls, the DCM hearts showed a decrease of RyR-2 gene expression, and the decrease seemed to be more significant in patients with worse contractile functions.
     2) At baseline condition, the number of apoptotic cardiomyocytes in the heart as evidenced by TUNEL positivity was comparable between WT and RyR-2+/- mice, however, after chronic pressure overload, cardiomyocyte apoptosis in RyR-2+/- heart was significantly increased compared to that in WT hearts.
     3) The extent of autophagy in the myocardium after pressure overload as evidenced by LC3b positive dots or increased expression of beclinl was attenuated in RyR-2+/-hearts compared to that inWT hearts.
     4) The number of capillaries and the expression of vascular endothelial growth factor (VEGF) were not altered between WT and RyR-2+/- hearts after chronic pressure overload.
     Conclusion:
     1) The heterozygous deletion of RyR-2 gene led to increased myocyte apoptosis after chronic pressure overload.
     2) The heterozygous deletion of RyR-2 gene led to decreased autophagy in the heart after chronic pressure overload.
     3) The myocardial ischemia does not contribute to contractile dysfunction of RyR-2+/- hearts after pressure overload.
引文
1. Frey N, Olson EN. Cardiac hypertrophy:the good, the bad, and the ugly. [J]. Annu Rev Physiol.2003; 65:45-79.
    2. Chien KR. Stress pathways and heart failure. [J].Cell.1999; 98:555-558.
    3. Stuyvers BD, Boyden PA, ter Keurs HEDJ. Calcium Waves:Physiological Relevance in Cardiac Function. [J].Circ Res.2000; 86:1016-1018.
    4. Carafoli E. Calcium signaling:a tale for all seasons. [J].Proc. Natl. Acad. Sci. USA.2002;99:l 115-1122.
    5. Bers DM. Calcium fluxes involved in control of cardiac myocytes contraction. [J].Circ Res.2000; 87:275-281.
    6. Bers DM. Calcium cycling and signaling in cardiac myocytes. [J]Annu Rev Physiol.2008;70:23-49.
    7. Muth JN, Body I, Lewis W, Varadi G, Schwartz A. A Ca2+-dependent transgenic model of cardiac hypertrophy:A role for protein kinase Calpha.[J].Circulation. 2001; 103:140-147.
    8. Yamazaki T, Komuro I, Zou Y, Kudoh S, Shiojima I, Mizuno T, Hiroi Y, Nagai R, Yazaki Y. Efficient inhibition of the development of cardiac remodeling by a long-acting calcium antagonist amlodipine. [J].Hypertension.1998; 31:32-38.
    9. Zou Y, Yamazaki T, Nakagawa K, Yamada H, Iriguchi N, Toko H, Takano H, Akazawa H,Nagai R, Komuro I. Continuous blockade of L-type Ca2+ channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. [J].Hypertens Res.2002; 25:117-124.
    10. Ji Y, Lalli MJ, Babu GJ, Xu Y, Kirkpatrick DL, Liu LH, Chiamvimonvat N, Walsh RA,Shull GE, Periasamy M. Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. [J].JBiol Chem.2000;275:38073-38080.20
    11. Andersson KB, Birkeland JA, Finsen AV, Louch WE, Sjaastad I, Wang Y, Chen J, Molkentin JD, Chien KR, Sejersted OM, Christensen G. Moderate heart dysfunction in mice with inducible cardiomyocyte-specific excision of the SERCA2 gene. [J].J Mol Cell Cardiol.2009; 47:180-187.
    12. Hobai IA, O'Rourke B. The potential of Na+/Ca2+exchange blockers in the treatment of cardiac disease. [J]. Expert Opin Investig Drugs.2004;13:653-664.
    13. Takimoto E, Yao A, Toko H, Takano H, Shimoyama M, Sonoda M, Wakimoto K, Takahashi T, Akazawa H, Mizukami M, Nagai T, Nagai R, Komuro I. Sodium calcium exchanger plays a key role in alteration of cardiac function in response to pressure overload. [J].FASEB J.2002; 16(3):373-378.
    14. Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. [J].JMol Cell Cardiol.2002; 34:951-969.
    15. Yano M, Ikeda Y, Matsuzaki M. Altered intracellular Ca2+handling in heart failure. [J]. J Clin Invest.2005; 115:556-564.
    16. Molkentin JD. Dichotomy of Ca2+in the heart:contraction versus intracellular signaling. [J].J Clin Invest.2006; 116:623-626.
    17. Wehrens XH, Lehnart SE, Marks AR. Intracellular calcium release and cardiac disease. [J].Annu Rev Physiol.2005; 67:69-98.
    18. Marks AR. Ryanodine receptors, FKBP12, and heart failure. [J].Front Biosci. 2002;7:d970-d977.
    19. Zhao L, Sebkhi A, Nunez DJ, Long L, Haley CS, Szpirer J, Szpirer C, Williams AJ,Wilkins MR. Right ventricular hypertrophy secondary to pulmonary hypertension is linked to rat chromosome 17:evaluation of cardiac ryanodine RyR-2 receptor as a candidate. [J].Circulation.2001; 103:442-447.
    20. Houser SR, Molkentin JD. Does contractile Ca2+ control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes? [J].Sci Signal.2008; 1:pe31.
    21. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. [J].Circ Res.2006; 98:15-24.
    22. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signaling pathways. [J].Nat Rev Mol Cell Biol.2006; 7:589-600.
    23. Marks AR, Calcium and the heart:a question of life and death. [J].J Clin Invest. 2003;111:597-600.
    24. Takeshima H, Komazaki S, Hirose K, Nishi M, Noda T, Iino M. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. [J].EMBO J.1998;17:3309-3316.
    25. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. [J].Nature.2007; 446:444-448.
    26. Yao A, Su Z, Nonaka A, Nonaka A, Zubair I, Lu L, Philipson KD, Bridge JHB, Barry WH, Effects of overexpression of the Na+-Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes. [J].Circ Res.1998; 82:657-665.
    27. Zou Y, Hiroi Y, Uozumi H, Takimoto E, Toko H, Zhu W, Kudoh S, Mizukami M, Shimoyama M, Shibasaki F, Nagai R, Yazaki Y, Komuro I. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. [J]. Circulation.2001; 104:97-101.
    28. Hoshijima M, Chien KR. Mixed signals in heart failure:cancer rules. [J].JClin Invest.2002; 109:849-855.
    29. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart. [J].JClin Invest. 2005; 115:565-571.
    30. Rothermel BA, Hill JA. Autophagy in load-induced heart disease. [J].Circ Res. 2008; 103:1363-1369.
    31. Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. [J].Circ Res.2008; 103:343-351.
    32. Dorn GW,2nd. Myocardial angiogenesis:its absence makes the growing heart founder. [J].Cel lMetab.2007; 5:326-327.
    33. Walsh K, Shiojima I. Cardiac growth and angiogenesis coordinated by intertissue interactions. [J]. JClin Invest.2007; 117:3176-3179.
    34. Zou Y, Yao A, Zhu W, Kudoh S, Hiroi Y, Shimoyama M, Uozumi H, Kohmoto O,Takahashi T, Shibasaki F, Nagai R, Yazaki Y, Komuro I. Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin.[J]. Circulation.2001; 104:102-108.
    35. Sanna B, Bueno OF, Dai YS,Wilkins BJ, Molkentin JD. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. [J]. Mol Cell Biol.2005; 25:865-878.
    36. Carreno JE, Apablaza F, Ocaranza MP, Jalil JE. Cardiac hypertrophy:molecular and cellular events. [J]. Rev Esp Cardiol 2006; 59:473-86
    37. Yamazaki T, Komuro I, Yazaki Y. signaling pathways for cardiac hypertrophy [J]. ceu si al,1998,1O(1O):693-698.
    38. Ishigai, Y, Mori, T, Ikeda, T, et al. Role of bradykinin-NO pathway in prevention of cardiac hypertrophy by ACE inhibitor in rat cardiomyocytes [J]. Am J Physiol,1997.273:H2659-H2663
    39. Calderone, A, Thaik, CM, Takahashi, N, et al.. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts [J]. J clin Invest,1998,101:812818.
    40. A. Oliver PM. Fox JE. Kim R. Rockman HA. Kim HS. Reddick RL. Pandey KN. Milgram SL. Smithies O. Maeda N. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor. [J]. Proceedings of the National Academy of Sciences of the United States of America.1997, 94(26):14730-5,
    41. Mori, T; Chen, YF; Feng, JA, et al. Volume overload results in exaggerated cardiac hypertrophy in the atrial natriuretic peptide knockout mouse. [J] cardiovascular research 2004,61:4,771-779
    42. Frey N, Olson EN. Cardiac hypertrophy:the good, the bad, and the ugly. [J]. Ann Rev Physiol 2003;65:45-79.
    43. Balakumar P, Singh AP, Singh M. Rodent models of heart failure. [J]. J Pharmacol Toxicol Methods 2007;56:1-10.
    44. Hilfiker-Kleiner D, Landmesser U, Drexler H. Molecular mechanisms in heart failure:focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis. [J]. J Am Coll Cardiol 2006;48:A56-66.
    45. Beisvag V, Kemi OJ, Arbo I, Loennechen JP,Wisloff U, Langaas M, et al.Pathological and physiological hypertrophies are regulated by distinct gene programs. [J]. Eur J Cardiovasc Prev Rehabil 2009;16:690-7.
    46. Reddy RN, Knotts TL, Roberts BR, Molkentin JD, Price SR, Gooch JL. Calcineurin A-beta is required for hypertrophy but not matrix expansion in the diabetic kidney. [J]J Cell Mol Med 2009, doi:10.1111/j.1582-4934.2009.00910.x.
    47. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. [J]. Cell 1998;93:215-28
    48. Molkentin JD, DornGW.Cytoplasmic signaling pathways that regulate cardiac hypertrophy. [J]. Ann Rev Physiol 2001;63:391-426.
    49. Taigen T, De Windt LJ, Lim HW, Molkentin JD. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. [J]. Proc Natl Acad Sci USA 2000;97:1196-201.
    50. Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. [J]. Nat Med 2009; 15:75-83.
    51. Shubeita HE, McDonough PM, Harris AN, et al. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes:a paracrine mechanism for myocardial cell hypertrophy. [J]. J Biol Chem 1990;265:20555-62.
    52. Yamazaki T, Komuro I, Kudoh S, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. [J]. J Biol Chem 1996; 271:3221-8.
    53. Wollert KC, Taga T, Saito M, et al. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy:assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. [J]. J Biol Chem 1996;271:9535-45.
    54. Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway:divergence from downstream CT-1 signals for myocardial cell hypertrophy. [J]. I Biol Chem 1997; 272:5783-91.
    55. Ito H, Hiroe M, Hirata Y, et al. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. [J].Circulation1993;87:1715-21.
    56. Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross J Jr Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. [J]. J Clin Invest 1995;95:619-27.
    1. Carreno JE, Apablaza F, Ocaranza MP, Jalil JE. Cardiac hypertrophy:molecular and cellular events. [J]. Rev Esp Cardiol 2006;59:473-86
    2. Frey N, Olson EN. Cardiac hypertrophy:the good, the bad, and the ugly. [J]. Ann Rev Physiol 2003;65:45-79.
    3. Balakumar P, Singh AP, Singh M. Rodent models of heart failure. [J]. J Pharmacol Toxicol Methods 2007;56:1-10.
    4. Reddy RN, Knotts TL, Roberts BR, Molkentin JD, Price SR, Gooch JL. Calcineurin A-beta is required for hypertrophy but not matrix expansion in the diabetic kidney. [J]. J Cell Mol Med 2009, doi:10.1111/j.1582-4934.2009.00910.x.
    5. Molkentin JD, DornGW. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. [J]. Ann Rev Physiol 2001;63:391-426.
    6.Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. [J].Cell 1998;93:215-28
    7. Luedde M, Katus HA, Frey N. Novel molecular targets in the treatment of cardiac hypertrophy. [J]. Recent Patent Cardiovasc Drug Discov 2006; 1:1-20.
    8. Bourajjaj M, Armand AS, da Costa Martins PA, Weijts B, van der Nagel R, Heeneman S, et al. NFAT-2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. [J]. J Biol Chem 2008;283:22295-303.
    9. Van Rooij E,Doevendans PA,Crijng HJ,et al.MCIP1 overexpression suppresses left ventricular remodeling and sustains cardiac function after myocardial infarction [J]. Circ Res,2004,94:e18-e26.
    10. Abrenica B, AlShaaban M, Czubryt MP. The A-kinase anchor protein AKAP121 is a negative regulator of cardiomyocyte hypertrophy. [J].J Mol Cell Cardiol 2009;46:674-81.
    11. Frey N, Barrientos T, Shelton JM, Frank D, Rutten H, Gehring D, et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. [J]. Nat Med 2004; 10:1336-43.
    12. Hagemann D, Bohlender J, Hoch B, et al. Expression of Ca2+ /calmodulin-dependent p rotein kinase II subunit isoforms in rats with hypertensive cardiac hypertrophy.[J]. Mol Cell B iochem,2001,220 (1-2) 69-76.
    13. Tsu jimoto I, H ikoso S, Y amagu ch i, et al The Antioxidant edara vone attenuates pressure overload-induced left ventricular hypertrophy. [J] Hypertension,2005,45 (5):9212926.
    14. N akagami H, TakemotoM, Liao JK. NADPH ox idase derived superoxideanion mediates angiotensin Ⅱ induced cardiac hypertrophy. [J] J Mol Cel lCard iol, 2003,35 (7):8512859.
    15. Ritchie RH,Delbridge LMD. Cardiac hypertrophy, substrate utilization and metabolic remodelling:cause or effect [J]. Clin Exp Pharmacol Physiol,2006, 33 (122):159.
    16. Tsujimoto I,Hikoso S, Yamaguchi O,et al. The antioxidant edaravone attenuates pressure overload-induced left ventricular hypertrophy. [J]. Hypertension,2005, 45 (5):921.
    17. Cheng TH,Shih NL, Chen CH,et al. Role of mitogen-activated protein kinase pathway in reactive oxygen species mediated endothelin-1-induced β-myosin heavy chain gene expression and cardiomyocyte hypertrophy. [J]. J Biomed Sci,2005,12(1):123.
    18. Garciarena CD, Caldiz CI, Portiansky EL, Chiappe de Cingolani GE, Ennis IL Chronic NHE-1 blockade induces an antiapoptotic effect in the hypertrophied heart. [J]. J Appl Physiol 2009; 106:1325-31.
    19. Blum A, Miller H. Role of cytokines in heart failure. [J]. Am Heart J 1998;135:181-6.
    20. MannDL, Young JB. Basic mechanisms in congestive heart failure:recognizing the role of proinflammatory cytokines. [J].Chest 1994;105:897-904.
    21. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. [J].Heart 2004;90:464-70
    22. Cairns CB, Panacek EA, Harken AH, Banerjee A. Bench to bedside:tumor necrosis factor-alpha:from inflammation to resuscitation. [J].Acad Emerg Med 2000;7:930-41.
    23. Balakumar P, Singh M. Anti-TNF-alpha therapy in heart failure:future directions. [J].Basic Clin Pharmacol Toxicol 2006;99:391-7.
    24. Henriksen PA, Newby DE. Therapeutic inhibition of tumor necrosis factor:in patients with heart failure:cooling an inflamed heart. [J].Heart 2003;89:14-8.
    25. Glennon PE, Kaddoura S, Sale EM, et al. Depletion of mitogen- activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. [J]. Circ Res,1996,78(6):954-961.
    26. Choukroun G, Hajjar R, Fry S, et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH (2)-terminal kinases.[J]. J Clin Invest,1999,104(4):391-398.
    27. Behr TM, Nerurkar SS, Nelson AH, et al. Hypertensive end-organ damage and premature mortality are p38 mitogen activated protein kinase-dependent in a rat model of cardiac hypertrophy and dysfunction. [J]. Circulation,2001,104(11): 1292-1298.
    28. Blum A, Miller H. Role of cytokines in heart failure. [J].Am Heart J 1998;135:181-6.
    29. MannDL, Young JB. Basic mechanisms in congestive heart failure:recognizing the role of proinflammatory cytokines. [J].Chest 1994; 105:897-904.
    30. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. [J].Heart 2004;90:464-70.
    31. Balakumar P, Singh M. Anti-TNF-therapy in heart failure:future directions. [J].Basic Clin Pharmacol Toxicol 2006;99:391-7
    32. Sriramula S, H aqueM,Ma jidDS, et al Involvement of tumor necrosis factor-a in angiotensinⅡ mediated effec ts on salt appetite, hypertension, and cardiac hypertrophy[J].H ypertension,2008,51(5):134521351.
    33. Chen QM, Tu VC. Apoptos is and heart failure:mechanisms and therapeutic implications[J]. Am J Cardiovasc Drugs,2002,2(1):43257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700