用户名: 密码: 验证码:
增龄引起犬心房电及结构重构与钙通道离子分子改变和心房颤动机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:增龄是一个正常的生理衰老过程,但它却引起了心房肌细胞电生理特性的改变。对增龄导致心房电重构和结构重构及其相关的钙电流离子分子机制的全面了解,有助于明确增龄引起房颤的原因和影响因素,为房颤的治疗提供新的思路。本研究课题包括:1)测量成年、老年犬体表心电图P波时限、P波离散度等电生理指标;采用程序刺激,测量两组犬心房不同部位(右左心房、左右心耳和肺静脉)有效不应期(ERP). ERP离散度、不应期频率白适应性特征,比较成年、老年犬心房组织电生理特性的差别;2)应用MAS SON染色法观察心肌细胞胶原容积指数,以确定心房纤维化程度,TUNEL法检测心房肌细胞凋亡,应用电镜观察各组心房肌细胞超微结构,计算其凋亡指数,观察增龄引起心房电生理改变过程中伴随的细胞凋亡、结构重构与心房钙离子(Ca2+)通道电重构过程之间的相关性;3)通过全细胞膜片钳技术和方法,观察成年、老年犬不同部位心房肌细胞的L-型电压依赖钙通道电流(ICa-L)的电流密度、通道激活和失活特性,分析其变化规律及钙离子电流调控适应机制;4)通过分子生物学方法,检测成年、老年犬心房不同部位心房肌细胞L-型电压依赖钙通道αl亚单位(CaV1.2)、L-型Ca2+释放通兰尼碱受体(RYR2)、肌浆网钙调控-Ca2+ATP酶(SERCA2)>钙激活蛋白酶-I(Calpain I)、磷酸受钠蛋白(PLN1)等各目标基因在mRNA和蛋白质水平的表达变化,并分析各目标基因在m.RNA和蛋白质表达水平与心房电生理变化的相关机制。探索增龄在房颤发生中的地位和作用。为临床更好的防治房颤提供理论依据。方法:1)本课题第一部分:17只犬分为两组:成年犬7只,老年犬10只。两组犬均采用以下方法进行相关研究:苯妥英钠(20mg/kg,静脉注射)麻醉后,获取犬标准12导体表心电图。经胸超声测量犬双侧心房、双侧心室大小及左心室射血分数(LVEF)。分别于双侧股静脉及颈内静脉置入鞘管,开胸暴露心脏后,将6F十极电极头端缝合固定于左心耳(LAA)、左上肺静脉(LSPV)和左下肺静脉(LIPV)及右心耳(RAA)、右上肺静脉(RSPV)和右下肺静脉(RIPV)。S1S2程序刺激测定高位右心房(HRA),冠状静脉窦近段(CSp)、远段(CSd), LAA、RAA, LSPV, LIPV, RSPV, RIPV等部位的ERP。每一部位重复起搏测量3次取平均值并记录。分别在LAA、RAA以1000次/分高频刺激诱发房颤,如上述刺激无法诱发房颤,则予迷走神经干1000次/分高频刺激诱发房颤。上述研究结束后开胸取出心脏,采用MASSON三色染色法观察心房肌纤维胶原容积指数,TUNEL法检测心房肌凋亡细胞;2)本课题第二部分:对7只成年犬14个心房心肌细胞、10只老年犬16个心房心肌细胞的数据进行研究。采用全膜片钳技术记录心房肌细胞ICa-L动作电位时限(APD)、动作电位2相平台期电压和幅度,心房肌细Ica-L特性。3)本课题第三部分:对17犬左心耳组织,提取总RNA、并进行SERCA2, CaV1.2, RYR2, PLN1等的mRNA纯度测定,逆转录反应生成cDNA,以cDNA为模板进行荧光PCR鉴定以明确所分析SERCA2, CaV1.2, RYR2, PLN1基因及蛋白为所研究的目标基因和蛋白。结果:1)老年犬体表心电图P波时限以及P波离散度较成年犬明显增加(P<0.05)。老年犬LVEF较成年犬降低,但双侧心房大小及左右心室舒张末期内径两组间比较无明显差异。以S1S2300ms基础周长进行程序刺激测定的ERP在两组动物间的比较:ERP在RAA及CSp老年犬较成年犬明显延长(P<0.05),在LAA及CSd老年犬较成年犬明显缩短。尽管两组间ERP在LIPV, RSPV, RIPV无明显差异,但老年犬ERP在LSPV较成年犬明显缩短。心房不同部位和肺静脉ERP离散度老年犬较成年犬明显增大(P<0.05),老年犬与成年犬相比LAA, CSd和LSPV的ERP频率自适应性性明显下降(P<0.05),但LIPV, RSPV, RIPV的ERP频率自适应性两组间有变化但未达到统计学差别(P>0.05);2)两组犬心房肌纤维中胶原容积分数比较,老年犬心房肌纤维中的胶原容积分数明显高于成年犬(P<0.05)。老年犬心房肌凋亡细胞即凋亡指数较成年犬明显增加(P<0.05);3)通过研究发现成年犬和老年犬比较,心房肌细胞APD成年犬为(320.0±7.9ms),而老年犬明显延长,为(340.5±10.1ms),差别有统计学意义(P<0.05)。动作电位2相平台期电压,老年犬组为(-9.5±1.7mv),与成年犬(-6.4±1.1mv),相比明显降低,差别有统计学意义(P<0.05)。对7只成年犬的14个心房心肌细胞、10只老年犬的16个心房心肌细胞的数据进行了统计分析。老年犬较成年犬心房肌细胞ICa-L密度明显降低(-14.04±0.82pA/pF比-8.11±0.54pA/pF,P<0.05),差异有统计学意义;4)对两组犬基因表达参数比较发现:成年犬CaV1.2为2.38±0.4,老年犬为0.9±0.35,CaV1.2,基因表达明显下调,两组比较差异有有统计学意义(P<0.05);成年犬Ca2+释放通兰尼碱受体(RYR2)基因为1.49±1.69,老年犬为4.39±4.68,两组比较差异有统计学意义(P<0.05);两组犬SERCA2基因表达、Calpain-I及PLN1基因表达比较差异无有统计学意义;5)、对两组犬蛋白表达参数比较发现:成年犬CaV1.2蛋白为0.29±0.12,老年犬为0.13±0.10,CaV1.2蛋白表达明显下调,两组比较差异有有统计学意义(P<0.05);成年犬Ca2+释放通道RYR2蛋白为0.08±0.36,老年犬为0.18±0.21,两组比较差异有有统计学意义(P<0.05); SERCA2、Calpain-I及PLN1蛋白表达两组比较差异无有统计学意义。结论:我们的研究显示:1)老年犬心肌细胞ERP延长及ERP离散度的增加,心房肌细胞APD延长,动作电位2相平台期电压降低,心房肌细胞ICa-L密度降低等电生理特性的变化,增龄引起的上述心房肌细胞电生理特性的改变是导致心房肌细胞Ca2+通道电重构的电生理基础;2)增龄引起心房肌细胞胶原容积分数增加导致心房纤维化进展,增龄引起心房肌凋亡细胞增加,这些改变是增龄引起心房肌细胞解剖重构的病理基础;3)老年犬心房肌细胞CaV1.2基因表达下调、钙离子释放通RYR2基因表达下调,SERCA2基因和Calpain-I及PLN1基因表达无明显改变;老年犬心房肌细胞CaV1.2蛋白表达下调、Ca2+释放通RYR2蛋白质表达上调,SERCA2蛋白和Calpain-I及PLN1蛋白表达无明显改变;上述各目标基因在mRNA和蛋白质表达水平改变是增龄引起心房ERP延长和频率自适应性降低等电生理特性变化的原因。增龄导致上述这些电生理特性改变以及组织病理学改变和钙通道离子、分子的改变可能是老年相关性房颤的潜在机制之一
Objectives:The goal of the present study was to determine weather the changes of P-wave duration, dispersion of P-wave effective refractory (ERP) period and dispersion of ERP in adult and aged normal canine. Explore the underling mechanism that aging-associated changes in the atrial actionpotential (AP) and atrial myocardial current of L-type calcium channel, provide a substrate for abnormal conduction and arrhythmogenesis, particularly atrial fibrillation (AF). Methods:1) Two groups of mongrels either sex weighing 18~26kg (19.6±5.8)kg were investigated:seven adult (2~2.5years) and ten old (> 8years). Animals were anesthetized with sodium pentobarbital (20mg/kgi.v.). Twelve-lead ECG measurements were made on conscious dogs resting quietly using electrocardiogram. Echocardiograms were performed to exclude the structural heart disease. Dual atrium and ventriaular size, the left ventricular ejection fraction (LVEF) were also measured by echocardiogram. A right cervical vein cutdown was then a 6-Fr quadripolar electrode catheter was inserted into the high right atria (HRA) and a multipolar catheters were placed at the coronary sinus (CS). The chest was opened through the fourth intercostal space. After left lateral thoracotomy, the pericardium was incised to expose the heart. A multielectrod catheters was secured to left atrial appendage (LAA), left superior pulmonary vein (LSPV) or left inferior pulmonary vein (LIPV), Similar electrode catheters were secured to right atrial appendage (RAA), right superior pulmonary vein (RSPV) and right inferior pulmonary vein (RIPV) through a right thoracotomy approach at the fourth intercostal space. The effective refractory period (ERP) of HRA, coronary sinus proximal (CSp), coronary sinus distal (CSd), LAA or RAA, LSPV, LIPV, RSPV, RIPV were measured in sequence at an atrial pacing of S1S2. The measurements were repeated 3 times and then averaged.To induce AF, atrial burst pacing was delivered through quadripolar electrode by a high-frequenc pacing in the RAA at a rate of 1000 bpm. If AF was not induced, a high-frequenc stimulats in the cervical vagosympathetic at a rate of 1000 bpm.We averaged the time of the duration of AF induced at 3 procedures in all dogs of each group.2) The current of L-type calcium channel was recorded by patch clamp technique in the whole cell mode. Action potential duration (APD), amplitude of action potential plateau, Ica-L peak current density were measurements.3) We measured the mRNA gene and protein expression levels of L-type Ca channelα1 subunit (CaV1.2), sarcoplasmic reticulum Ca+-ATPase (SECRA2), Calpain I, ryanodine receptor (RyR-2) in atrial myocardial tissue from two groups of 17 dogs. Results:1) P-wave duration and dispersion of P-wave were both longer in aged animals (P<0.05). The LVEF was significantly lower in aged than adult groupswhereas differences in left atrial dimensionLAD), right atrial dimension (RAD), left ventricular diastolic dimension (LVDd), right ventricular diastolicdimension (RVDd) between the two groups failed to achieve statistical significance.The ERP of RAA and CSp measured during atrial-programmed stimulation was significantly longer in the aged than in the adult dogs (P<0.05). However, the ERP of LAA and CSd was significantly shorter in the aged than in the adult dogs. Although significant shorter of ERP in LIPV, RSPV, RIPV was not observed, the ERP of LSPV was significantly shorter in the aged than in the adult dogs. Compared with adult dogs the dERP of different site of atrium and pulmonary veins (PVs) were increased in aged dogs (P<0.05). Compared with adult dogs a rate dependency of ERP in LAA, CSd and LSPV was significantly shorter in the aged dogs (P <0.05). Although shorter of rate dependency of ERP in LIPV, RSPV, RIPV was observed, but there are not significantly shorter in the aged than adult dogs. (P>0.05).2) Ica-L peak current density was (-14.04±0.82pA/pF), in adult group compared with (-8.11±0.54pA/pF, P<0.05) in the aged group and action potential duration to 90% repolarization (APD90) of aged group was significantly decreased. Left、right atrium transverse diameter gradually increased, but have no significant difference (P>0.05).3) The mRNA gene expression levels of CaV1.2 was significantly lower in the aged doges (0.9±0.35) than in the adult dogs (2.38±0.4, P<0.05), The mRNA gene expression levels of RYR2 was significantly higher in the aged doges (4.39±4.68) than in the adult dogs (1.49±1.69, P<0.05), There were not significantly different gene expression levels of SECRA2> PLN1 and Calpain I in two groups; The protein expression levels of CaV1.2 was significantly lower in the aged doges (0.13±0.10) than in the adult dogs (0.29±0.12, P<0.05), The prorein expression levels of RYR2 was significantly higher in the aged doges (0.18±0.21) than in the adult dogs (0.08±0.36, P<0.05), There were not significantly different protein expression levels of SECRA2, PLN1and Calpain I in two groups. Connclusions:The pesent study demonstrated the change of ERP, dERP.APD, Ica-L peak current density in two groups dogs. There are have a structural remodeling and electrical remodeling presented in aged doges. The gene and ion channel protein expression levels was different in two groups. These aging-related changes of atrial myocyte electrical and structural properties and molecular changes in aged dogs play a impotrant role in the predisposition to developing and maintaining AF due to aging.
引文
[1]Hyun D-H, Hernandez JO, Mattson MP, et al. The plasma membrane redox system in aging[J]. Ageing Research Reviews 2006;5(2):209-220.
    [2]Blasco MA. Telomeres and human disease:ageing, cancer and beyond[J]. Nat Rev Genet 2005;6(5):611-622.
    [3]Go AS. The epidemiology of atrial fibrillation in elderly persons:the tip of the iceberg[J]. Am J Geriatr Cardiol 2005;14(2):56-61.
    [4]Allessie MA, Boyden PA, Camm AJ, et al. Pathophysiology and prevention of atrial fibrillation[J]. Circulation 2001; 103(5):769-777.
    [5]Go AS, Hylek EM, Phillips KA, et al. Prevalence of Diagnosed Atrial Fibrillation in Adults National Implications for Rhythm Management and Stroke Prevention:the AnTicoagulation and Risk Factors In Atrial Fibrillation(ATRIA)Study[J]. JAMA. 2001;285:(10)2370-2375
    [6]Friberg J, Buch P, Scharling H, et al. Rising rates of hospital admissions for atrial fibrillation[J]. Epidemiology 2003; 14(6):666-672.
    [7]Le Heuzey JY, Paziaud O, Piot O, et al. Cost of care distribution in atrial fibrillation patients:the COCAF study[J]. Am Heart J 2004; 147(2):121-126.
    [8]Kannel WB, Wolf PA, Benjamin EJ, et al. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation:population-based estimates[J]. Am J Cardiol.1998;82(1):2N-9N.
    [9]中华医学会心血管病分会.中国部分地区心房颤动住院病例回顾性调查[J].中华心血管病杂志,2003,31(4):913-916
    [10]Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime Risk for Development of Atrial Fibrillation The Framingham Heart Study [J]. Circulation.2004; 110(3):1042-1046.
    [11]Ott A, Breteler MM, de Bruyne MC, et al. Atrial fibrillation and dementia in a population-based study. The Rotterdam Study [J]. Stroke.1997 28(2):316-321
    [12]Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke:the Framingham Study[J]. Stroke 1991;22(3):983-988
    [13]Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial firbrillation[J]. Am Heart J,1964,67(l):200-220.
    [14]Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins[J]. N Engl J Med.1998;339(10): 659-666.
    [15]Haissaguerre M, Shah DC, Jais P, et al. Electrophysiological breakthroughs from the left atrium to the pulmonary veins.[J] Circulation.2000;102(22):2463-2465.
    [16]Bettoni M, Zimmermann M. Autonomic tone variations before the onset ofparoxysmal atrial fibrillation. Circulation 2002;105(24):2753-2759.
    [17]Sharifov OF, Fedorov VV, Beloshapko GG, et al. Roles of adrenergic and cholinergic stimulation in spontaneousatrial fibrillation in dogs. J Am Coll Cardiol 2004;43(2):483-490.
    [18]Patterson E, Po SS, Scherlag BJ, et al. Triggered firing in pulmonary veinsinitiated by in vitro autonomic nerve stimulation. Heart Rhythm 2005;2(4):624-631.
    [19]Zhou J, Scherlag B, Edwards J, et al. Gradient of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi. J Cardiovasc Electrophysiol 2007;18(1):83-90.
    [20]Pappone C, Augello G, Sala S, et al. A randomized trial of circumferential pulmonary vein ablation versus antiarrhythmic drug therapy in paroxysmal atrial fibrillation:the APAF Study [J]. J Am Coll Cardiol.2006;48(21):2340-2347.
    [21]Scherlag BJ, Nakagawa H, Jackman WM, et al. Electrical stimulation to identify neural elements on the heart:their role in atrialfibrillation[J]. J Interv Card Electrophysiol 2005;13(Suppl. 1):37-42.
    [22]Danik S, Neuzil P, d'Avila A, et al. Evaluation of catheter ablation of periatrial ganglionic plexi in patients with atrial fibrillation[J]. Am J Cardiol 2008;102(3):578-583
    [23]Katritsis D, Giazitzoglou E, Sougiannis D, et al. Anatomic approach for ganglionic plexi ablation in patients with paroxysmal atrial fibrillation[J]. Am J Cardiol 2008;102(2):330-334.
    [24]Melo J, Voigt P, Sonmez B, et al. Ventral cardiac denervation reduces the incidence of atrial fibrillation after coronary artery bypass grafting[J]. J Thorac Cardiovasc Surg 2004;127(3):511-516.
    [25]Chen YJ, Chen SA, Tai CT, et al. Role of atrial electrophysiologyand autonomic nervous system in patients with supraventricular tachycardiaand paroxysmal atrial fibrillation[J]. J Am Coll Cardiol 1998;32(4):732-738.
    [26]Sharifov OF, Fedorov VV, Beloshapko GG, et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs[J]. J Am Coll Cardiol 2004;43(3):483-490.
    [27]Tan AY, Zhou S, Ogawa M, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines[J]. Circulation 2008;118(6):916-925.
    [28]Richer LP, Vinet A, Kus T, et al. a-adrenoceptor blockademodifies neurally induced atrial arrhythmias[J]. Am J Physiol 2008;295(7):R1175-R1180.
    [29]Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchangeinitiated by the Ca2+ transient:an arrhythmia trigger within pulmonary veins[J]. J Am Coll Cardiol, 2006;47(7):1196-1206.
    [30]Pachon MJC, Pachon MEI, A new treatment for atrial fibrillation based on spectral analysis to guide the catheter RF-ablation[J]. Europace,2004,6(4):590-601
    [31]Lin YJ, Tai CT, Kao T, et al. Frequency analysis in different types of paroxysmal atrial fibrillation[J] J Am Coll Cardiol.2006;47(7):1401-1407.
    [32]Anyukhovsky EP, Sosunov EA, Chandra P, et al. Age associated changes in electrophysiologic remodeling:a potential contributor to initiation of atrial fibrillation[J]. Cardiovasc Res 2005;66(2):353-363.
    [33]Anyukhovsky EP, Sosunov EA, Plotnikov A, et al. Cellular electrophysiologic properties ofold canine atria provide a substrate for arrhythmogenesis[J]. CardiovascRes 2002;54(3):462-469.
    [34]Weber KT, Pick R, Jalil JE, et al. Patterns of myocardial fibrosis[J]. J Mol Cell Cardiol 1989;21(suppl 5):121-131.
    [35]Allessie M, Schotten U. Verheule S, et al. Gene Therapy for Repair of Cardiac Fibrosis. A Long Way to Tipperary[J]. Circulation 2005;111(2):391-393.
    [36]Spach MS, Heidlage JF, Barr RC, et al. Cell size andcommunication role in structural and electrical development and remodeling of the heart[J]. Heart Rhythm 2004;(4):500-515.
    [37]Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age[J]. Circ Res 1986;(3):356-371.
    [38]de Bakker JM, van Rijen HM. Continuous and discontinuous propagation in heart muscle [J]. J Cardiovasc Electrophysiol 2006;(5):567-573.
    [39]Brundel BJ, Van-Gelder IC, Henning RH, et al. Ion channel remodeling is related to intraoperative atrial effective refractoryperiods in patients with paroxysmal and persistent atrial fibrillation[J]. Circulation,2001,103(4):684-690.
    [40]伍伟锋,黄从新,刘唐威,等.心房颤动对心房组织肌浆网钙调控蛋白mRNA 表达的影响[J].武汉大学学报(医学版),2002,23(1):107-109.
    [41]Legato MJ. ULtrastructure of the atrial, ventricular, and Purkinje cell, with special reference to the genesis of arrhythmias[J]. Circulation.1973;47(1):178-189.
    [42]Li D, Fareh S, Leung TK, et al. Promotion of atrial fibrillation by heart failure in dogs:atrial remodeling of a different sort[J]. Circulation.1999; 100(1):87-95.
    [43]Legato MJ, Bull MB, Ferrer MI. Atrial ultrastructure in patients with fixed intra-atrial block[J]. Chest.1974;65(2):252-261.
    [44]Meghji P, Nazir SA, Dick DJ, et al. Regional workload induced changes in electrophysiology and immediate early gene expression in intact in situ porcine heart[J]. J Mol Cell Cardiol.1997;29(23):3147-3155.
    [45]Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress[J]. Annu Rev Physiol.1997;59(3):551-571.
    [46]Kim D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane[J]. Circ Res.1993;72(2):225-231.
    [47]Lader AS, Kwiatkowski DJ, Cantiello HF. Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels[J]. AmPhysiol.1999; 277(8):C1277-C1283.
    [48]Satoh T, Zipes DP. Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation[J]. J Cardiovasc Electrophysiol.1996;7(5):833-842.
    [49]De Bakker JMT, Van Capelle FJL, Janse MJ, et al. Slow conduction in the infarcted human heart:zigzag course of activation [J]. Circulation.1993;88(6):915-926.
    [50]Gaspo R, Bosch RF, Talajic M, et al. Functional mechanisms underlying tachy-cardiainduced sustained atrial fibrillation in a chronic dog model [J]. Circulation. 1997;96(32):4027-4035.
    [51]Hara M, Shvilkin A, Rosen MR, et al. Steady-state and non-steady-state action potentials in fibrillating canine atrium:abnormal rate adaptation and its possible mechanisms [J]. Cardiovasc Res.1999;42(2):455-469.
    [52]Van Wagoner DR, Pond AL, Lamorgese M, et al. Atrial L-type Ca2+currents and human atrial fibrillation[J]. Circ Res.1999;85(2):428-436.
    [53]Van Wagoner DR, Pond AL, McCarthy PM, et al. Outward K+current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res[J]. 1997;80:772-781.
    [54]Benardeau A, Hatem SN, Rucker-Martin C, et al. Contribution of Na+/Ca2+exchange to action potential of human atrial myocytes[J]. Am J Physiol 1996; 27(6)1:H1151-H1161.
    [55]Li GR, Nattel S. Demonstration of an inward Nal-Ca21 exchange current in adult human atrial myocytes[J]. Ann N Y Acad Sci.1996;779(3):525-528.
    [56]Bosch RF, Zeng X, Grammar JB, et al. Ionic mechanisms of electrical remodeling in human atrial fibrillation[J]. Cardiovasc Res.1999;44(1):121-131.
    [57]Nattel S. New ideas about atrial fibrillation 50 years on[J]. Nature 2002;415(2):219-226
    [58]Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation[J]. Cardiovasc Res 2002;54(2):230-246.
    [59]Todd DM, Fynn SP, Walden AP, et al. Repetitive 4-week periods of atrial electrical remode-ling promote stability of atrial fibrillation:time course of a second factor involved in the self-perpetuation of atrial fibrillation[J]. Circulation 2004; 109(6): 1434-1439.
    [60]Tselentakis EV, Woodford E, Chandy J, et al. Inflammation effects on the electrical properties of atrial tissue and inducibility of postoperative atrial fibrillation[J]. J Surg Res 2006;135(1):68-75.
    [61]Gaborit N, Steenman M, Lamirault G, et al. Human atrial ion channel and transpor-ter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation[J]. Circulation,2005,112(2):471-481.
    [62]Brand FN, Abbott RD, Kannel WB, et al. Characteristics and prognosis of lone atrial fibrillation:30-year follow-up in the Framingham Study [J]. JAMA 1985;254(11): 3449-3453.
    [63]Jahangir A, Lee V, Friedman P A, et al. Long-term progression and outcomes with aging inpatients with loneatrial fibrillation a 30-year follow-up study[J]. Circulation. 2007;115(12):3050-3056
    [64]Hayashi H, Wang C, Miyauchi Y, et al. Aging-related increase to inducible atrial fibrillation in the rat model. J Cardiovasc Electrophysiol,2002;13(3):801-8.
    [65]Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle:evidence for electrical uncoupling of side-to-side fiber connections with increasing age[J]. CircRes,1986; 58(2):356-371.
    [66]Franciso G, Palacias J, Vidal JM, et al. Electrophysiological studies in atrial fibrillation. Slow conduction of premature impulses:a possible manifestation of the background for reentry[J]. Am J Cardiol,1983,51(1):122-130.
    [67]郭继红.P波离散度[J].临床心电学杂志,1999,8(3):189
    [68]PapageorgiouP, Monahan K, Neol G, et al. Site-dependent intra-atrial conduction delay[J]. Circulation,1996,94(2):384-389
    [69]Hayashi H, Wang C, Miyauchi Y, et al. Aging-related increase to inducible atrial fibrillation in the rat model[J]. J Cardiovasc Electrophysiol 2002;13(5):801-808.
    [70]Shimizu A, Centurion OA. Electrophysiological properties of the human atrium in atrial fibrillation[J]. Cardiovasc Res 2002;54(2):302-314.
    [71]Kistler PM, Sanders P, Fynn SP, et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age[J]. J Am Coll Cardiol 2004;44: 109-116.
    [72]Cozma D, Kalifa J, L ighezan D, et al. Mechanism of atrial fibrillation:decre-mental conduction, fragmentation, and ectopic activity in patients with drug resistance paroxysmal atrial fibrillation and structurally normal heart[J]. Pacing Clin Electrophysiol,2005,28(Suppl 1):S115.
    [73]Yang Z, ShenW, Rottm an JN, et al. Rapid stimulation causese elctrical remodeling in cultured atrial myocytes[J]. J Mo 1 Cell Card iol,2005,38(2):299.
    [74]Wijffels MC, Kirchhof CJ, Dorland R, et al. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats:roles of neuro humoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation, 1997,96(30):3710-3720.
    [75]Gaspo R, Bosch RF, Talajic M, et al. Functional mechanism underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model[J]. Circulation,1997,96: (29)4027-4035.
    [76]Morillo CA, Klein GJ, Jones DL, et al. Chronic rapid atrial pacing:structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation[J]. Circulation.1995;91(6):1588-1595.
    [77]Rensma PL, Allessie MA, Lammers WJEP, et al. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs[J]. Circ Res. 1988;62(2):395-410.
    [78]Sih HJ, Berbari EJ, Zipes DP. Epicardial maps of atrial fibrillation after linear ablation lesions[J]. J Cardiovasc Electrophysiol.1997;8(5):1046-1054.
    [79]Power JM, Beacom GA, Alferness CA, et al. Susceptibility to atrial fibrillation:a study in an ovine model of pacing-induced early heart failure. J Cardiovasc Electrophysiol[J].1998;9(3):423-435.
    [80]Li H, Hare J, Mughal K, et al. Distribution of atrial electrogram types during atrial fibrillation:effect of rapid atrial pacing and intercaval junction ablation[J]. J Am Coll Cardiol.1996;27(9):1713-1721.
    [82]Boutjdir M, Le Heuzey JY, Lavergne T, et al. Inhomogeneity of celluar refractoriness in human atrium:factor of arrhythmia[J]. Pacing Clin Electrophysiol, 1986,9(8):1095-1100.
    [83]Narayan SM, Bode F, Karasik PL, et al. Alternans of atrial action potentials during atrial flutteras a precursor to atrial fibrillation[J]. Circulation,2002; 106(15):1968-1973.
    [84]Spach MS, Heidlage JF, Dolber PC, et al. Mechanism of origin of Conduction disturbancesin aging human atrial bundles:Experimental and Model Study[J.]. Heart Rhythm. Current Issue.
    [85]Spach MS, Heidlage JF. The stochastic nature of cardiac propagation at a microscopic level. Electrical description of myocardial architecture and its application to conduction[J]. Circ Res 1995;76(3):366-380.
    [86]Nygren A, Fiset C, Firek L, et al. Mathematical model of an adult human atrial cell:the role of K+currents in repolarization[J]. Circ Res 1998;82(1):63-81.
    [87]Chen PS, Wolf PD, Dixon EG, et al. Mechanism ofventricular vulnerability to single premature stimuli in open-chest dogs[J]. Circ Res 1988;62(6):1191-209.
    [88]NiwanoS. The atrial eleetrieal remodeling in atrial fibrillation[J]. NiPPon Rinsho. 2002;60(5):1308-1316.
    [89]Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillationbegets atrial fibrillation. A study in awake chronically in-strumented goats[J]. Circulation 1995; 92(7):1954-1968.
    [90]Brundel BJJM, Van Gelder IC, Henning RH, et al. Ion channel remodeling is related to intra-operative atrial refractory periods in patients with paroxysmal and persistent atrialfibrillation.[J] Circulation 2001;103(2):684-690.
    [91]Ausma J, Wijffels M, Thone F, et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat[J]. Circulation 1997;96(28):3157-3163.
    [92]Thijssen VLJL, Ausma J, Liu GS, et al. Structural changes of atrial myocardium during chronic atrial fibrillation. Cardiovasc Pathol 2000;9(1):17-28.
    [93]Moe GK, Abildskov JA. Experimental and laboratory reports. Atrialf ibrillation as a self-sustained arrhythmia independent of focal discharge. Am Heart J 1959;58(1): 59-70.
    [94]Spach MS, MillerWT, Dolber PC, et al. The functional role of structural complexi-ties in the propagation of depolarization in the atrium of the dog. Cardiac conduc-tion disturbanees due to discontinuities of effective axial resistivity[J] Circ Res, 1982,50(2):175-191.
    [95]Shimizu A, Fukatani M, Tanigawa M, et al. Intraatrial conduction delay and fragmented atrial activity in patients with paroxysmal atrial fibrillation[J] Jpn Circ J, 1989,53(9):1023-1030.
    [96]Boyett MR, Jewell BR. Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart[J] Prog Biophys Mol Biol 1980;36(5):903-923.
    [97]Yue L, Feng J, Gaspo R, et al. Ionic remodelingunderlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997;81 (3):512-525.
    [98]Yu WC, Chen SA, Lee SH, et al. Tachycardia-induced change of atrial refractory periodin humans. Rate dependency and effects of antiarrhythmic drugs[J]. Circulation 1998;97(9):2331-2337.
    [99]Daoud EG, Knight BP, Weiss R, et al. Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling inhumans[J]. Circulation 1997;96 (7):1542-1550.
    [100]Courtemanche M, Ramirez RF, Nattel S. Ionic mechanisms underlyinghuman atrial action potential properties.insights from a mathematical model [J]. Am J Physiol 1998;275(2):H301-H321.
    [101]Ramirez RJ, Nattel S, Courtemanche M. Mathematical analysis of canine atrial action potentials:rate, regional factors and electrical remodeling[J]. Am J Physiol Heart Circ Physiol 2000;279(8):H1767-H1785
    [100]Elvan A, Wylie K, Zipes DP. Pacing-induced chronic atrial fibrillation impaires sinus node function in dogs:electrophysiological remodeling[J]. Circulation 1996;94(21):2953-2960.
    [102]Gaspo R, Bosch RF, Talajic M, Nattel S. Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model[J]. Circula-tion,1997;96(33):4027-4035.
    [103]Nattel S. Atrial electrophysiological remodeling caused by rapidatrial activation: underlying mechanisms and clinical relevance to atrial fibrillation[J]. Cardiovasc Res 1999;42(3):298-308.
    [104]Yue L, Melnyk P, Gaspo R, et al. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation[J]. Circ Res 1999;84(5):776-784.
    [105]Van Gelder IC, Brundel BJJM, Henning RH, et al. Alterations in gene expression of proteins in the calcium handling in patients with atrial fibrillation[J]. J Cardiovasc Electrophysiol 1999;10(2):552-560
    [106]Van Wagoner DR, Pond AL, Lamorgese M, et al. Atrial L-type Ca currents and human atrial fibrillation[J]. Circ Res 1999;85(2):428-436.
    [107]Oliveira MM, da SilvaN, T imteo AT, et al. Enhanced dispersion of atrial fibrilla-tion in patients with paroxysmal atrial fibrillation[J]. Rev Port Cardiol,2007, 26(7-8):691-702.
    [108]Oliveira M, Silvada MN, Tmoteo AT, et al. Inducibility of atrial fibrillation during electrophysiologic evaluation is associated with increased dispersion of atrial refractoriness[J]. Int J Cardiol,2009,136(2):130-135.
    [109]Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial firbrillation[J]. Am Heart J,1964,67(2):200-220.
    [110]Soylu M, Demir AD, Ozdemir O, et al. Increased dispersion of refractoriness in patients with atrial fibrillation in the ealy post operative period after coronary artery bypass grating[J]. J Cardiovasc Electrophysiol,2003,14(1):28-31.
    [111]Huang CX, Zhao QY, Jiang H. Experimental study of the effect of the vagus nerve on atrial electrical remodeling[J]. J Electrocardiol,2003,36(4):295-300.
    [112]Soylu M, Demir AD, Ozdemir O, et al. Evaluation of atrial refractriness immediately after percutaneous mitral balloon commissurotomy in patients with mitral stenosis and sinus rhythm[J]. Am Heart J,2004,147(4):741-745.
    [113]Sun Q, Tang M, Li N, et al. Age-related changes in dispersion of atrial effective refractory period and its ionic mechanismin canines [J]. Chin Med J(Engl)2007;120(14):2042-2045.
    [114]Niwano S, Kojima J, FukayaH, et a.1 Arrhythmogenic difference between the left and right atria during rapid atrial activation in a canine model of atrial fibrillation [J]. Circ J,2007,71(10):1629-1635.
    [115]Hafid KA, Xin HC, Xi W, et al. Difference between electrical remodeling after pulmonary veins and right atrium appendage pacing[J]. Europace,2007,9(8):608-612.
    [116]Mallat Z, Tedgui A, Fontaliran F, et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med,1996,335(5):1190-1195.
    [117]Temple J, Frias P, Rottman J, et al. Atrial fibrillation in KCNEI-nullmiee.[J]Circ Res,2005,97(1):62-69.
    [118]Harris L, Downar E, Shaikh NA, et al. Antiarrhythmic potential of chloroquine:new use for an old drug[J]. Can J Cardiol,1988,4(6):295-300.
    [119]Fukatani M, Tanigawa M, Mori M, etal. Prediction of a fatal atrial fibrillation in patients with asymptomatic Wolff-Parkinson-White pattern[J]. JPn Circ J,1990 54(10):1331-1339.
    [120]Kistler PM, Sanders P, Fynn SP, et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age[J]. J Am Coll Cardiol,2004,44(1): 109-116.
    [116]Liu XK, Jahangir A, Terzie, et al. Age-and sex-related atria electrophysiologic and structural changes[J]. Am J Cardiol,2004,94(3):373-375.
    [117]Hayashi H, Wang C, MiyauchiY, et al. Aging-related increase to inducibility Atrial fibrillation in the rat model[J]. J Cardiovasc Eleetrophysiol,2002,13(8):801-808.
    [118]Koura T, Hara M, Takeuchi S, et al. Anisotropic conduction Properties in canine atria analyzed by high-resolution optical mapping preferential direetion of conduction block changes from longitudinal to transverse with increasing age[J]. Circulation,2002,105(17):2092-2098.
    [119]Rocken C, Peters B, JuenemannG, et al. Atrial amyloidosis:an arrhythmogenic substrate for persistent atrial fibrillation[J]. Circulation,2002,106(16):2091-2097.
    [120]Bonnemeier H, Richardt G, Potratz J, et al. Circadian profile of cardiac autonomic nervous modulation in healthy subjects:differing effects of aging and gender on heart rate variability [J]. J Cardiovasc Eleetrophysiol,2003,14(8):791-799.
    [121]Yanni J, Tellez JO, Sutyagin PV, et al. Structural remodeling of the sinoatrial node in obese old rats[J]. J Mol Cell Cardiol,2009,48(4):653-662.
    [122]Jones SA, Lancaster MK, Boyett MR. Ageing-related changes of connexins And conduction with in the sinoatrial node[J]. J physiol.2004,560(Pt2):429-437.
    [123]Yue L, Feng J, Li GR, Nattel S. Characterization of an ultra rapiddelayed rectifier potassium channel involved in canine atrial repolarization. J Physiol (Lond), 1996;496(4):647-662.
    [124]Babaev AA, Vloka ME, Sadurski R, et al. Influence of age on atrial activation as measured by the P-wave signal-averaged electrocardiogram. Am J Cardiol 2000;86:692-695.
    [125]Kitzman DW, Edwards WD. Age-related changes in the anatomy of the normal human heart[J]. J Geroniol.1990;45(1):M33-M39.
    [126]Levy S, Sbragia P. Remodelling in atrial fibrillation[J]. Arch Mal Coeur,2005, 98(3):308-312.
    [127]DuBrow W, Fisher EA, Amaty-Leon G, et al. Comparison of cardiac refractory periods in children and adults[J]. Circulation,1975,51(3):485-491.
    [128]Sakabe K, Fukuda N, Nada T, et al. Age-related changes in the Eleetrophysiologic properties of the atrium in patients with no history of atrial fibrillation[J]. J Pn Heart J,2003,44(3):385-393.
    [129]Anyukhovsky EP, Sosunov EA, Plotnikov A, et al. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis[J]. Cardiovasc Res 2002;54(4):462-469.
    [130]Hayashi H, Wang C, Miyauchi Y, et al. Aging-related increase to inducible atrial fibrillation in the rat model[J]. J Cardiovasc Electrophysiol 2002;13(6):801-808.
    [131]Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation[J]. Circulation,2004,109(3):363-368.
    [132]Li D, Shinagawa K, Pang L, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing induced congestive heart failure[J]. Circulation,2001, 104(21):2608-2614.
    [133]Kojodjojo P, Kanagaratnam P, Markides V, et al. Age-related changes in human left and right atrial conduction[J]. J Cardiovasc Electrophysiol,2006,17(2):120-127.
    [134]Boldt A, Wetzel U, Lauschke J, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying miral valve disease[J]. Heart,2004, 90(4):400-405.
    [135]Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation:A study in a wake chronically instrumented goats [J]. Circulation,1995, 92(14):1954-1968.
    [136]Allessie MA, Boyden PA, Camm AJ, et al. Atrial electrical remodeling:another vicious circle? J Cardiovasc Electrophysiol 1998,9(8):1378-1393.
    [137]Ausma J, Dispersyn G, Hans D et al. Changes in ultrastructural calcium distribution in goat atria during atrial fibrillation[J]. J Mol Cell cardiol 2000,32(2):355
    [138]Hayashi H, Wang C, MiyauehiY, et al. Aging-related inerease to indueible atrial fibrillation in the rat model[J]. J Cardiovase ElectroPhysiol.2002:13(5):801-808.
    [139]Yue L, Feng J, Gaspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Resl997;81(3):512-525.
    [140]Van Wagoner DR., Pond AL, McCarthy PM, et al. Outward K+current densities and Kv1.5 expression are reduced in chronic human atrialfibrillation. Circ Res 1997;80(5):772-781.
    [141]Dobrev D, Graf E, Wettwer E, et al. Molecular basis of downregulationof G-protein-coupled inward rectifying K(+) current (I(k-ACh) in chronic human atrial fibrillation:decrease in GIRK4 mRNAcorrelates with reduced I(K-ACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 2001;104(20):2551-2557.
    [142]Dobrev D, Friedrich A, Voigt N, et al. The G protein-gated potassium current I(K-ACh) is constitutively active in patients with chronic atrialfibrillation. Circulation 2005;112(27):3697-3706.
    [143]Botto G. L, Luzi M, Sagone A. Atrial fibrillation:the remodelling phenomenon[J]. Eur Heart J,2003,5(Suppl):H1-H7.
    [144]Klein G, Schroder F, Vogler D, et al. Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation. Role of phosphatase-A[J]. Cardiovasc Res,2003,59(1):37-45.
    [145]Nattel S, Shiroshita-Takeshita A, Brundel BJ, et al. Mechanisms of atrial fibrillation:lessons from animal models[J]. Prog Cardiovasc Dis,2005,48(1):9-28.
    [146]Kohlhaas M, Zhang T, Seidler T, et al. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII over expression in isolated rabbit cardiac myocytes[J]. Circ Res,2006,98(2):235-244.
    [147]Pandit SV, Berenfeld O, Anumonwo JMB, Kneller J, Nattel S, Jalife J. Ionic determinants of rotor dynamics during chronic atrial fibrillation in humans:a simulation study[J]. Biophys J,2005,88:(25)3806-3821.
    [148]Koura T, Hara M, Takeuchi S, et al. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping:preferential direction of conduction block changes from longitudinal to transverse with increasing age[J]. Circulation,2002,105(17):2092-2098.
    [149]Shiroshita-Takeshita A, Sakabe M, Haugan K, et al. Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide Rotigaptide(ZP123)on experimental atrial fibrillation in dogs. Circulation,2007,115(2):310-318.
    [150]Gaborit N, Steenman M, Lamirault G, et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation,2005,112(3):471-481.
    [151]Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation,2005,111(18):2025-2032.
    [152]Rosati B, McKinnon D. Regulation of ion channel expression[J]. Circ Res,2004, 94(6):874-883.
    [153]Brundel BJ, Kampinga HH, Henning RH. Calpain in hibition prevents pacing induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation[J]. Cardiovasc Res,2004,62(4),521-528.
    [154]Newmeyer K. Bcl-2 family proteins and the role of mitochondria in apoptosis[J]. Current Opinion Cell Biology,2003,15(4):1.
    [155]Melnyk P, Ehrlich JR, Pourrier M, et al. Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. [J]. Cardiovasc Res,2005,65(1):104-116.
    [156]Nattel S, Opie LH. Controversies in atrial fibrillation[J]. Lancet,2006, 367(2):262-272.
    [157]Lix Y, Peter M, Rania G, et al. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation[J]. Cir Res,1999,84(7):776-784.
    [158]BiancaJ. M, Brundel R, Henning H, et al. Molecular mechanisms of remodeling in human atrial fibrillation. Cardiovascular Research 2002;54(3):315-324
    [160]Brundel B J, Vangelder I C, Henning R H, et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation[J]. Cardiovasc Res,1999,42(2):443-454.
    [161]Stanley N, Brett B, Dobromir D, et al. Atrial Remodeling and Atrial Fibrillation:Mechanisms and Implication[J]. Circ Arrhythmia Electrophysiol. 2008;1(1);62-73
    [162]Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation[J]. Circulation 2005;111(17):2025-2032.
    [163]Allessie MA, Boyden PA, Camm AJ, et al. Atrial electrical remodeling:another vicious circle[J]. J Cardiovase ElectroPhysiol 1998,9(8):1378-1393.
    [164]Hobbs WJC, VanGelder IC, FitzPatriek AP, et al. The role of atrial eleetrieal remodeling in the progression off focal atrial ectopy to persistent atrial fibrillation[J]. J Cardiovase ElectroPhysiol1999;10(4):866-870.
    [165]Hwang C, Wu TJ, Doshi RN, et al. Vein of Marshall cannnulation for the analysis of eleetrieal activity in Patients with focal atrial fibrillation[J]. Circulation 2000, 101(10):1504-1505.
    [166]Morillo CA, K lein GJ, Jones DL, et al. Chronic rapid pacing:structural functiona and electrophysiological characteristics of new model of sustained atrial fibrillation[J]. Circulation,1995,91(10):1588
    [167]Leistad E, Verburg E, Christensen G. Cytosolic calcium overload, not atrial ischemia, accounts for post-fibrillation atrial dysfunction[J]. Circulation,1994, 90(Supple 1)1-492
    [168]Ferrari AU. Modifications of the cardiovascular system with agnig[J]. Am J Geriatr Cardiol,2002:11(1):30-33
    [169]Cheitlin MD. Cardiovaseular Physiology-changes with aging[J]. Am J Geriatric Cardiol 2003:12(1):9-13
    [170]李岚,马红梅,方文莉年龄对大鼠左室心肌单相动作电位的影响[J].中国老年学杂志,2005;25(8)682-684
    [171]丁文茂,黄从新,赵冬冬,等.大鼠心房肌电生理特性的增龄性变化[J].中华老年医学杂志,2005,24(9):697-700
    [172]Liu SJ, Wyethl RP, Metchertl RB, et al. Aging-associated changes in whole cell K+ and L-type Ca2+currents in rat ventricular myocytes[J]. Am J Physiol Heart Circ Physiol,2000;279(5):H889-900
    [173]Lai LP, Su MJ, L n JL, et al. Down regulation of L-type calcium channel and sarcopasmic reticular Ca2+-ATPase mRNA in human atrial fibrillation without significant change in them RNA of ryanodine receptor, calsequestrin and phospholamban an insight into the mechanism of atrial remodeling[J]. JAAC,1999, 33(8):1231-1237
    [174]Kurita Y, M itamuraH, Shiroshita TA. Daily oral verapamil before but not after rapid atrial excitation prevents electrical remodeling. Cardiovasc Res,2002, 54(2):47-455
    [175]Brundel BJ, AusmaJ, Vail Gelder IC, et al. Activation of protrolysis by calpains and structural changes in human paroxysmal and perisistent atrial fibrillation[J]. Cardiovasc Res,2002,54(3)380-389
    [176]Kim S J, Kudej R K, Yatani A, et al. A novel mechanism for myocardial stunning involving impaired Ca2+handing [J]. Circ Res,2001,89(9):831-837.
    [177]Nasu T.Zinc ions block the intracellular calcium release induced by caffeine in guinea-pig taenia caec [J].Experientia,1995,51 (2):113-116.
    [178]Dun W, Yagi T, Rosen MR, et al. Calcium and potassium currents in cells from adult and aged canine right atria[J]. Cardiovasc Res,2003;58(3):526-534
    [179]Josephson IR, Guia A, Stern MD, et al Alterations in properties of L-type Ca2+channels in aging rat heart[J]. Cardiology,2002;34(3):297-308
    [180]宋建国,侯月梅豚鼠心肌细胞分离方法及电生理特性的观察[J].新疆医科大学学报,2007,30(5):452
    [181]Brundel BJ, vanGelder IC, HenningRH, et al. Ion channel remodeling is related to intraoperative atrial refractory periods in patients with paroxysmal and persistent atrial fibrillation[J]. Circulation,2001,103(5):684.
    [182]Polontchouk L, Hbelt B. Effects of chronic atrial fibrillation on gap junction in distribution in human and rat atria[J]. J Am Coll Cardlio,12001,38(3):383-391.
    [183]Yue L, Feng J, Caspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation[J]. Circ Res,1997,81(4):512-525.
    [184]Armouche A, Bokinik P, Eschenagen T, et al. Molecular determinants of altered Ca2+handling in human chronic atrial fibrillation[J]. Circulation,2006, 15(7):670-680.
    [185]Schotten U, Hasse H, Frechen D, The L-type calcium channel subunites and are not downregulated in atrial myocardium of patients with chronic atrial fibrillation[J]. J Moll Cell Cardiol,2003,35(3):437-443
    [186]Avila Gmedina IM, Jimenez E, et al, Traansforming growth factor-beta decresses cardiac muscle L-type Ca2+current and charge movement by acting the CaV 1.2 mRNA[J]. Am J Physil Heart Circ Physiol 2007,292(5):622-631
    [187]Zhang H, Garratt CJ, Holden A, et al. Role of up-regulation of Ikl in action potential shorting associated with atrial in humans[J]. Cardiovascres,2005, 66(3):493-502
    [188]Hona B, Gabor M, Sheryl E K, et al. The L-type calcium channel in the heart:the beats goes on.[J]Clin Invest,2005,115(32):3307-3317.
    [189]Christ T, Boknik P, Wohrl S, et al. L-type Ca2+current down-regulation in chronic human atrial fibrillation is associated with increased actiyity of protein phosphatases[J]Circulation,2004,110(26).2651-2657
    [190]Kostin S, Klein G, Szalay Z, et al. Sruuctural correlate of atrial fibrillation in human patients[J], Cardioves Res 2002,54(2):361-379
    [191]Morillo CA, KleinGJ, JonesDL, et al. Chronic rapid atrial pacing:structural functional and electrophysiological characteristics ofa newmodel of sustained atrial fibrillation[J]. Circulation,1995,91(12):1588.
    [192]Bosch RF, Scherer CR, Rub N, et al. Molecular mechanisms of early electrical remodeling transcriptional down regulation of ion channel subunits reduces Ica-L and ioin rapid atrial pacing in rabbits[J]. JAm Coll Cardiol,2003,41(5):858.
    [193]Dun W, Yagi T, Rosen MR.et al.Calcium and potassium currents in cells from adult and aged canine right atria[J]. Cardiovasc Res,2003;58(3):526-534
    [193]Brundel BJ, vanGelder IC, Henning RH, et al Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation:Differential regulation of protein and mRNA levels for K+channels[J]. J Am Coll Cardiol,2001,37(3):926.
    [194]David R. Van Wagoner, Amber L. et al. Atrial L-Type Ca2+Currents and Human Atrial Fibrillation[J]. Circ. Res.1999;85;(14)428-436
    [195]Le Grand B, Hatem S, Deroubaix E, et al. Depressed transient outward and calcium currents in dilated human atria[J]. Cardiovasc Res.1994;28(4):548-556.
    [196]Yue L, Feng J, Gaspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation[J]. Circ Res.1997;81(4):512-525.
    [197]Van Wagoner DR, Pond AL, Lamorgese M, et al Atrial L-type Ca2+currents and human atrial fibrillation[J]. Circ Res 1999;85(3):428-436.
    [198]Schotten U, Haase H, Frechen D, et al. The L-type Ca2+-channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation[J]. J Mol Cell Cardiol 2003;35(3):437-443.
    [199]Gaborit N, Steenman M, Lamirault G, et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation[J]. Circulation 2005; 112(3):471-481.
    [200]Ono K, Fozzard HA. Phosphorylation restores activity of L-type calcium channels after rundown in inside-out patches from rabbit cardiac cells. J Physiol 1992; 454(5):673-688.
    [201]Bean BP, Nowycky MC, Tsien RW. Beta-adrenergic modulation of calcium channels in frog ventricular heart cells[J]. Nature 1984;307:(3)371-375.
    [202]Blayney L M, Lai F A. Ryanodine receptor-mediated arrhythmias and sudden cardiac death[J]. Pharmacol Ther,2009,123(2):151-177.
    [203]Wijffels MC, Kirchhof CJ, Dorland R, et al. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats:Roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation[J]. Circulation,1997,96(10):3710.
    [204]Zhu Y, Nosek T. Inositol trisphosphate enhance Ca2+oscillations but not Ca2+- induced Ca2+release from cardiac sarcoplasmic reticulum[J]. P flugers Arch,1991, 418(1):1-6
    [205]Yoshida Y, Imai S. Structure and function of inositoll,4,5-trisphosphate receptor[J]. Jpn J Pharmacol,1997,74(2):125-137.
    [206]Yamada J, Ohkusa T, Nao T, et al. Upregulation of inosistol 1,4,5-trisphos-phate receptor expression in atrial tissue in patientswith chronic atrial fibrilla-tion[J]. J Cardiol,2002,39(1):57-58.
    [207]Li D, Melnyk P, Feng JL, et al. Effects of experimental heart failure on atrial cellular and ionic electrophysiology[J]. Circulation,2000,101:2631.
    [208]SchottenU, Haase H, Frechen D, et al. The L-type Ca2+-channel subunits alc and β2 are not down regulated in atrial myocardium of patients with chronic atrial fibrillation[J]. J Am Coll Cardiol,2003,35(5):437.
    [209]Lai LP, Su M J, Lin J, et al. Down-regulation of L-type calcium channel and sarcoplas Mic reticular Ca2+-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor calsequestrin and phospholamban:an insight into the mechanism of atrial electrical remodeling[J]. J Am Coll Cardiol 1999;33(13):1231-1237
    [210]李妙龄,曾晓荣,杨艳,等.持续性心房颤动患者心房肌细胞L-型钙通道电流变化研究[J].中华心血管病杂志,
    [211]Li GR, Nattel S. Properties ofhuman atrial lca atphysiological temperatures and revelance to action potential[J]. Am J Physiol,1997,272(2):H227.
    [212]Goette A, Lendeckel U, Dobrev D, et al. Morphological remodeling in atrial fibrillation[J], Herz,2006,31(1):101-107
    [213]Van Gelder IC, Brundel BJJM, Henning RH, et al. Alterations in gene expression of proteins in the calcium handling in patients with atrial fibrillation[J]. J Cardiovasc Electrophysiol 1999; 10:552-560
    [214]Lopez-Lopez JR, Shacklock PS, Balke CW, et al. Local, stochastic release of Ca2+ in voltage-clamped rat heart cells:visualization with confocamicroscopy[J]. Physiol. 1994;480(1):21-29.
    [215]Hool L C. Hypoxia Alters the Sensitivity of the L-type Ca+Channel to alpha-adrenergic receptor stimulation inthe presence of beta-adrenergic receptor stimulation[J]. Circ Res,2001,88(10):1036-1043.
    [216]Tsuchida K, Watajima H. Cyclic AMP-mediated increase in L-type calcium current(Ica-L)by nitroglycerin in guinea-pig ventricular myocytes[J]. Cell Mol Biol(Noisyle-grand),2002,48(2):179-185.
    [217]Fung ML, Li H Y, Wong TM. et al. Fails to activate L-type calcium current in hypertrophied cardiomyocytes of chronically hypoxic rats[J]. Life Sci,2002 70(15):1801-1809.
    [218]杨大春,杨永健,张鑫等.心房颤动病人心房肌肌浆网Ca2+泵和Ca2+释放通道的变化[J].岭南心血管病杂志,2007,13(5):324-326.
    [219]Yano M, Yamamoto T, Ikemoto N, et al. Abnormal ryanodine receptor function in heart failure[J. PharmacolTher,2005,107(3):377-391.
    [220]Reiken S, Gaburjakova M, Guatimosim S, et al. Protein kinase A phosphorylation of the cardiac calcium releasechannel(ryanodine receptor)in normal and failing hearts. Role of phosphatases and response to isoprotereno[J]. JBiol Chem,2003, 278(1):444-453.
    [221]夏小杰,曹克将,黄元铸等.房颤病人心房肌浆网钙调控基因mRNA表达变化的研究[J],中华内科杂志,2001,40(7):483
    [222]Brundel B, Ausma J, van Gelder IC, et al. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation[J]. Cardiovasc Res,2002,54(2):380
    [223]Sood S, Chelu MG, Oort RJ, et al. Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation[J]. Heart Rhythm. 2008;5(6):1047-1050
    [1]Shiroshita TA, Sakabe M, Haugan K, et al. Model-dependent effects of the gap junction conduction-enhancing anti arrhythmic peptide Rotigaptide(ZP123)on experimental atrial fibrillation in dogs. Circulation,2007,115:310-318.
    [2]Gaborit N, Steenman M, Lamirault G, et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation,2005,112:471-481.
    [3]Deroubaix E, Folliguet T, Rucker M C, et al. Moderate and chronic hemodynamic over load of sheep atria induces reversible cellul are electrophysiologic abnormalities and atrial vulnerability. J Am Coll Cardio 12004;44:1918-1926
    [4]Van DR, Pond A L, Lamorgese M, et al. L-type Ca currents and human atrial fibrillation. Circ Res 1999;85:428-436
    [5]BiancaJ. M, Brundel R, Henning Het al. Molecular mechanisms of remodeling in human atrial fibrillation. Cardiovascular Research 2002;54:315-324
    [6]Van G, Brundel B, Henning R H, et al. Alterations in gene expression of proteins involved in the calcium handling in patients with atrial fibrillation. J Cardiovasc Electrophysiol 1999; 10:552-560
    [7]Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tieleman RG, Grandjean JG, Van Gilst WH, Crijns HJGM. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res 1999;42:443-454
    [8]Lai LP, Su M J, Lin J, et al. Down-regulation of L-type calcium channel and sarcoplasMic reticular Ca ATPase mRNA in human atrial fibrillatio without significant change in the mRNA of ryanodine receptor calsequestrin and phosphol-amban:an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol 1999;33:1231-1237
    [9]Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrialfibrillation. Circulation 2005;111:2025-2032.
    [10]Hove-Madsen L, Llach A, Bayes-Genis A, et al. Atrial fibrillation is associated with increasedspontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation2004;110:1358"C1363.
    [11]Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization- induced triggered activity. Circulation 2003;107:2355-2360.
    [12]Patterson E, Lazzara R, Szabo B, et al. Sodium-calciumexchange initiated by the Ca2+transient:an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol 2006;47:1196-1206.
    [13]Wit AL, Cranefield PF Triggered and automatic activity in the canine coronary sinus. Circ Res 1977;41:434-445.
    [14]Honjo H, Boyett MR, Niwa R, et al. Pacing-induced spontaneous activity in myocardial sleeves of pulmonary veins aftertreatment with ryanodine. Circulation 2003;107:1937-1943.
    [15]Sood S, Chelu MG, Oort RJ, et al. Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation. Heart Rhythm. 2008;5:1047-1050
    [16]Xiong, ZL, Nicholas S, Amyand C. Changes in calcium channel current densities in rat colonic smooth muscle cells during development and aging. Am. J. Physiol. 1993;265(Cell Physiol.34):C617-C625.
    [17]Stanley N, Brett B, Dobromir D, et al. Atrial Remodeling and Atrial Fibrillation: Mechanisms and Implication. Circ Arrhythmia Electrophysiol.2008; 1; 62-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700