用户名: 密码: 验证码:
缓倾滑坡中承压水作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缓倾滑坡是指主滑动面倾角小于20°的一类滑坡,承压水对缓倾滑坡的滑动破坏有重要影响。平推式滑坡是缓倾滑坡的一种特例。本文采用工程地质分析方法、理论分析方法、数值分析方法、物理模型试验方法等手段,综合分析缓倾滑坡中承压水的作用机理,探讨承压水产生的水文地质条件,研究平推式滑坡中承压水作用区间、渗透参数对滑坡稳定性的影响、平推式滑坡启动判据的修正、缓倾滑坡中承压水孔压的时空分布规律和承压水对缓倾滑坡作用的滞后效应。通过以上研究,获得以下主要成果和认识:
     (1)基于对新昌县下山滑坡的工程地质分析,探讨承压水的形成机理及其对该滑坡的作用,通过监测资料分析发现该滑坡体内承压水的作用范围小于底部滑面长度范围。结合下山滑坡的地质环境条件,构建典型平推式滑坡地下水渗流分析模型,提出通过计算承压水作用范围,使边坡稳定计算结果更合理。根据承压水一维稳定渗流理论,推导出承压水作用范围的计算公式;同时计算分析承压水作用范围各影响因素的敏感性。计算结果表明,在一定范围内各影响因素有如下规律:①承压水作用范围随着渗透系数增大而线性减小;②承压水作用范围随渗流量增大而线性增大;③承压水作用范围和透水层厚度呈抛物线关系,且随着透水层厚度的增加呈加速趋势减小。最后分析了承压水作用范围大小对滑坡稳定系数的影响规律,结果表明滑坡稳定性系数随着承压水作用范围增大而线性减小。
     (2)对平推式滑坡启动判据的传统研究往往忽略滑块后缘的静水压力沿滑面法向的分力及承压水作用的具体范围,因而导致计算结果不准确。通过对平推式滑坡进行全面的受力分析,同时引入了承压水作用范围的概念,最终推导出修正后的平推式滑坡启动判据。将所得的修正判据应用于模型试验的结果分析,验证了修正判据的准确性,同时对平推式滑坡启动临界水头的模型试验结果和修正计算值之间的差异进行了机理分析。
     (3)目前滑坡稳定性分析中对承压水作用的模拟过于简化,从而会导致分析方式不当。考虑到部分已有研究对地下水作用的理解比较混乱,提出用滑面附近孔隙水压力指示承压水的作用,分析了承压水孔压的时空变化规律及其对缓倾滑坡稳定性的影响。根据不同渗透条件下边坡稳定性计算结果分析,提出了渗透系数比的概念,分析了随渗透系数比的变化,枯水期孔压在空间维度上的具体分布及其所对应的边坡稳定性变化规律。分析了在丰水期前缘有无堵塞的两种情况下,随降雨时间持续期的变化,滑面附近孔压的时空变化规律,以及其对边坡稳定系数的影响。通过工程实例分析,验证了丰水期降雨及其产生的承压水作用对边坡稳定性的作用规律。
     (4)通过工程实例分析,发现缓倾滑坡变形相对滞后于承压水状态的改变。构建缓倾滑坡物理模型试验,对滑坡施加承压水作用,测量坡体不同层位的体积含水量、坡体变形、坡面变形、坡前推力等特征参量,通过对测量结果进行归一化处理,分析这各参量相对于承压水作用时间的滞后关系。结合模型试验,从应力应变变化规律、坡体蠕变规律、滑带土长期强度、含水量对滑带土强度的影响等几方面,对承压水致滑坡失稳的滞后效应进行机理分析。
Gently inclined landslide is a kind of landslide, sliding surface obliquity of which is less than20degrees. Influence of confined groundwater is very important to sliding damage of gently inclined landslide.Translational landslide is a special case of gently inclined landslide. Methods of engineering geology analysis, theoretical analysis, numerical simulation and physical model test are used to study the influence mechanism of confined groundwater in gently inclined landslide. The hydrogeology condition and the action range of confined groundwater are analyzed. Effect of permeability parameters variation on landslide stability is analyzed. The start-up criterion of translational landslide is modified. The temporal and spatial variation of pore water pressure induced by confined groundwater is analyzed. The hysteresis of confined groundwater effect which acting on gently inclined landslide is analyzed. Finally, the main results and new ideas in this study are as follows:
     (1) Based on engineering geology analysis of Xiashan landslide, formation mechanism and its effect on this landslide are analyzed. Monitoring data shows that the acting of the action range of confined groundwater is less than the length of sliding surface. Combining with geological environmental condition of Xiashan landslide, the typical groundwater seepage model of translational landslide is established, and the result of slope stability calculation becomes more reasonable considering action range of confined water. Based on one-dimensional steady seepage theory, calculation formula of action range caused by confined groundwater is deduced, and then parameter sensitivity of this formula is analyzed. The calculation result shows that action range of confined groundwater follows established law within a certain range of each parameter:①Action range of confined groundwater decreases linearly with the increase of permeability coefficient.②Action range of confined groundwater increases linearly with seepage discharge.③Action range of confined groundwater takes on parabola shape with thickness of permeable layer, and it is accelerated decreasing trend with increase of permeable layer thickness. Calculation result also shows that the stability coefficients of slope decreases linearly with the increase of action range of confined groundwater.
     (2) The existing research about start-up criterion of translational landslide neglects two aspects:one is the normal component force of hydrostatic pressure at posterior border of slope, which acts on slip surface, the other is the action range of confined water. Therefore the calculation results of start-up criterion of translational landslide are inaccurate. Overall force analysis are exerted on translational landslide, meanwhile the conception of action range of confined water is introduced, then the modified start-up criterion is deduced. The modified start-up criterion is applied to analyze the results of physical simulation, and proved to be accurate. Mechanism analysis is applied on the differences of critical hydraulic between test results and calculation results obtained from the modified start-up criterion of translational landslide.
     (3) The present simulation of confined groundwater effect in slope stability analysis is too simplified to guarantee an appropriate analysis mode. Considering that some existing research has given confusing interpretation about the groundwater effect, this thesis proposes a concept of using pore water pressure near the slip surface to indicate this effect, and then analyzing the temporal and spatial variation laws of pore water pressure induced by confined groundwater and the consequent influence on slope stability caused by this variation. According to the analysis of slope stability results under different permeability conditions, the concept of seepage coefficient ratio is proposed, and the spatial distribution of pore water pressure in dry season with various seepage coefficient ratios is analyzed, and then the variation laws of slope stability corresponding to different seepage coefficient ratios are obtained. Under two conditions including the permeable layer blockage condition and non-block condition at front edge in wet season, the temporal and spatial variation laws of pore water pressure and effect on the slop stability factor caused by the variation with different rainfall duration are analyzed. Through analyzing engineering practice, the effect on slope stability caused by the variation of confined groundwater is verified, and the variation of confined groundwater is induced by the rainfall in wet season.
     (4) Via engineering examples analysis, the hysteresis of gently inclined landslide failure caused by confined groundwater effect is analyzed. A physical slope model including confined groundwater is constructed to measure volume water content, slope body deformation, slope surface deformation and slope thrust in different position of this model. According to the test results which are processed using normalization method, the hysteresis of slope deformation relative to confined groundwater effect is analyzed. The mechanism of slope failure hysteresis caused by confined groundwater is discussed from some aspects, such as stresses and strain redistribution law, slope creeping law, long-term strength of slip soil and impact of water content on the strength of slip soil.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2012[M].北京:中国统计出版社,2012.
    [2]李秀珍,孔纪名,邓红艳等.“5·12”汶川地震滑坡特征及失稳破坏模式分析[J].四川大学学报(工程科学版),2009,41(3):72-77.
    [3]殷跃平,刘传正,陈红旗等.2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J].工程地质学报,2013,21(1):6-15.
    [4]山体滑坡导致沪昆铁路中断[Online]. http://news.xinhuanet.com/2012-06/10/c_1232612 90.htm,2012-6-10.
    [5]刘维.云南大理滑坡堵江形成堰塞湖[Online].http://www.mlr.gov.cn/xwdt/dfdt/201112/t2 01112201047387.htm,2011-12-20.
    [6]D. Petley. Global patterns of loss of life from landslides[J]. Geology,2012,46(10):927-930.
    [7]明海燕,李相崧,张瑞华等.地下水位上升引起斜坡变形的完全耦合分析[J].岩土工程学报,2007,29(4):510-516.
    [8]K. Lee, J. Ho. Prediction of landslide occurrence based on slope-instability analysis and hydrological model simulation[J]. Journal of Hydrology,2009,375(3):489-497.
    [9]L. Cascini, S. Cuomo, M. Pastor, et al. Modeling of rainfall-induced shallow landslides of the flow-type[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,136(1): 85-98.
    [10]刘世凯.地质环境与工程[M].成都:四川科技出版社,1996.
    [11]Q. Xu, R. Q. Huang, T. X. Liu, et al. Study on the formation mechanism and design of control engineering for the super-huge Tiantai landslide, Sichuan province, China[J]. IAEG2006 Engineering Geology for Tomorrow Cities.[S.1.]:[sn],2006,602.
    [12]范宣梅,许强,黄润秋,等.四川宣汉天台特大滑坡的成因机理及排水工程措施研究[J].成都理工大学学报(自然科学版),2006,33(5):448-454.
    [13]张咸恭,王思敬,李智毅.工程地质学概论[M].北京:地震出版社,2005.
    [14]陈祖煜.岩质边坡稳定:原理·方法·程序[M].北京:中国水利水电出版社.
    [15]王启亮,盛海洋.工程地质[M].郑州:黄河水利出版社,2007.
    [16]中国岩石力学与工程学会.2009-2010岩石力学与岩石工程学科发展报告[M].北京:中国科学技术出版社,2010.
    [17]黄昌乾,丁恩保.边坡工程常用稳定性分析方法[J].水电站设计,1999.
    [18]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,2005.
    [19]尚岳全,王清,蒋军,等.地质工程学[M].北京:清华大学出版社,2006.
    [20]张咸恭.工程地质学(下册)[M].北京:地质出版社,1983.
    [21]郭抗美.工程地质学[M].北京:中国建材工业出版社,2006.
    [22]钱让清.公路工程地质(第2版)[M].合肥:中国科学技术大学出版社,2009.
    [23]中国地质矿产信息研究院.国外政府地质调查研究机构的组织与管理[M].中国地质矿产信息研究院,1993.
    [24]冯夏庭.边坡工程专家系统发展前景[C].//第五届全国岩土力学数值分析与解析方法讨论会论文集.武汉:武汉测绘科技大学出版社,1994:202-207.
    [25]崔政权,李宁.边坡工程:理论与实践最新发展[M].北京:中国水利水电出版社,2004.
    [26]K. Petterson. The early history of circular sliding surface[J]. Geotechnique,1956,5: 210-215.
    [27]王震宇.广渝高等级公路(华蓥~邻水段)边坡稳定性研究及加固防治设计方案[D].成都理工大学,2004.
    [28]W. Fellenius. Calculation of the stability of earth dams[C].//Transactions of the 2nd congress on large dams. Washington, DC.1936.4:445-463.
    [29]A. Bishop. N. Morgenstern. Stability coefficients for earth slopes[J]. Geotechnique,1960, 10(4):129-153.
    [30]N. Janbu. Application of composite slip surfaces for stability analysis[J]. In proceedings of the European conference on the stability of earth slopes, Stockholm, Vol.3:39-43.
    [31]S. Sarma. Stability analysis of embankments and slopes[J]. Geotechnique,1973,23(3): 423-433.
    [32]易朋莹,邓时义,吕涛等.传递系数法中条块间应力的探讨[J].工程地质学报,2012,20(4):478-482.
    [33]N. Morgenstern, V. Price. The analysis of the stability of general slip surfaces[J]. Geotechnique,1965,15(1):79-93.
    [34]E. Spencer. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Geotechnique,1967,17(1):11-26.
    [35]韩颖.岩质边坡楔形体稳定分析[D].杭州:浙江大学,2006.
    [36]卢廷浩.高等土力学[M].北京:机械工业出版社,2005.
    [37]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [38]陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J].清华大学学报(自然科学版),1998,(1):1-4.
    [39]陈祖煜,汪小刚,邢义川,等.边坡稳定分析最大原理的理论分析和试验验证[J].岩土工程学报,2005,27(5):495-499.
    [40]李亮,迟世春,林皋等.利用潘家铮极值原理与和声搜索算法进行土坡稳定分析[J].岩土力学,2007,28(1):157-162.
    [41]《工程地质手册》编委会.工程地质手册[M].北京:中国建筑工业出版社,2006.
    [42]高颂东.土工分析中水土分算、水土合算的概念、原理与应用实例[J].建筑科学,2004,20(4):33-37.
    [43]H. Winterkom, H. Fang. Foundation engineering handbook[M]. Van Nostand.Reinhold Com Publishing,1997.
    [44]R. Peck. Foundation engineering[M]. John Wiley & Sons Publishing,1974.
    [45]R. Whitlow. Soil mechanics(3rd ed)[M]. Lomgman Publishing,1997.
    [46]S. Wright, J. Duncan. An Examination of Slope Stability Computation Procedures for Sudden Drawdown[R]. ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS GEOTECHNICAL LAB,1987.
    [47]T. Miller, J. Hamilton. A new analysis procedure to explain a slope failure at the Martin Lake mine[J]. Geotechnique,1989,39(1):107-123.
    [48]章胜南.刚性围护墙抗倾、抗滑计算的讨论[C].//第二届浙江省岩土力学与工程学术讨论会论文集.1995:176-183.
    [49]李广信.基坑支护结构上水土压力的分算与合算[J].岩土工程学报,2000,22(3): 348-352.
    [50]魏海涛,李远.渗流边坡安全系数计算中的水土分算与水土合算误差分析[J].建筑科学,2011,27(9):4143.
    [51]王洪新.水土压力分算与合算的统一算法[J].岩石力学与工程学报,2011,30(5):1 057-1064.
    [52]王建锋,李世海,燕琳,等.重庆武隆“五一”滑坡成因分析[J].中国工程科学,2002,4(4):22-28.
    [53]P. Gostelow. Rainfall and landslides[J]. Prevention and control of landslides and other mass movements. CEC, Bruxels,1991:139-161.
    [54]张玉,徐卫亚,邹丽芳,等.降雨条件下大型滑坡体渗流稳定性分析[J].岩土力学,2013,34(3):833-841.
    [55]郭红霞.松散堆积体边坡防排水技术研究[J].中外公路,2010,30(5):63-66.
    [56]H. Rahardjo, A. Nio, E. Leong, et al. Effects of groundwater table position and soil properties on stability of slope during rainfall[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(11):1555-1564.
    [57]L. Montrasio, R. Valentino. A model for triggering mechanisms of shallow landslides[J]. Nat Hazards Earth Syst Sci,2008,8(5):1149-1159.
    [58]孙红月,尚岳全,申永江,等.破碎岩质边坡排水隧洞效果监测分析[J].岩石力学与工程学报,2008,27(11):2267-2271.
    [59]王智磊.降雨影响敏感型滑坡变形动态预测方法及排水洞效果研究[D].杭州:浙江大学,2012.
    [60]A. Kelly, E. Sauer, S. Barbour, et al. Deformation of the Deer Creek bridge by an active landslide in clay shale[J]. Canadian Geotechnical Journal,1995,32(4):701-724.
    [61]M. Angeli, J. Buma, P. Gasparetto, et al. A combined hillslope hydrology/stability model for low-gradient clay slopes in the Italian Dolomites[J]. Engineering Geology,1998,49(1):1-13.
    [62]G. Misfeldt, E. Sauer, E. Christiansen. The Hepburn landslide:an interactive slope-stability and seepage analysis[J]. Canadian Geotechnical Journal,1991,28(4):556-573.
    [63]张卫民,陈兰云.地下水位线对土坡稳定的影响分析[J].岩石力学与工程学报,2005, 24(Supp.2):5319-5322.
    [64]周平根.滑坡的地下水作用研究[D].北京:中国科学院地质与地球物理研究所,1997.
    [65]魏丽敏,何群,林镇洪,等.考虑地下水影响的滑坡稳定性分析[J].岩土力学,2004,25(3):422-426.
    [66]D. Miller, J. Sias. Deciphering large landslides:linking hydrological, groundwater and slope stability models through GIS[J]. Hydrological Processes,1998,12(6):923-941.
    [67]张飞,李镜培,唐耀等.考虑水位和孔压影响的基坑抗隆起稳定性上限分析[J].岩土力学,2011,32(12):3653-3659.
    [68]S. Sharma, T. Raghuvanshi, R. Anbalagan. Plane failure analysis of rock slopes[J]. Geotechnical & Geological Engineering,1995,13(2):105-111.
    [69]M. Prudencio, M. Van Sint Jan. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences,2007, 44(6):890-902.
    [70]吴恒滨,何泽平,曹卫文,等.基于不同水压分布的平面滑动边坡稳定性研究[J].岩土力学,2011,32(8):2493-2499.
    [71]J. Kim, R. Salgado, H. Yu. Limit analysis of soil slopes subjected to pore-water pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(1):49-58.
    [72]王均星,李泽.考虑孔隙水压力的土坡稳定性的有限元上限分析[J].岩土力学,2007,28(2):213-218.
    [73]E. Dawson, W. Roth, A. Drescher. Slope stability by strength reduction[J]. Geotechnique, 1999,49(6):835-840.
    [74]A. Bishop. The use of pore-pressure coefficients in practice[J]. Geotechnique,1954,4(4): 148-152.
    [75]R. Michalowski. Slope stability analysis:a kinematical approach[J]. Geotechnique,1995, 45(2):283-293.
    [76]R. Michalowski. Stability of uniformly reinforced slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(6):546-556.
    [77]C. Viratjandr, R. Michalowski. Limit analysis of slope instability caused by partial submergence and rapid drawdown[J]. Canadian Geotechnical Journal,2006.43(8):802-814.
    [78]赵炼恒,罗强,李亮,等.地下水位变化对边坡稳定性影响的上限分析[J].公路交通科技,2010,27(7):1-7.
    [79]尚岳全,周建锋,童文德,等.含碎块石土质边坡的稳定性问题[J].地质灾害与环境保护,2002,13(1):41-43.
    [80]T. Uchida, K. Kosugi, T. Mizuyama. Effects of pipeflow on hydrological process and its relation to landslide:a review of pipeflow studies in forested headwater catchments[J]. Hydrological Processes,2001,15(11):2151-2174.
    [81]王洲平.浙江省地质灾害现状及防治措施[J].灾害学,2001,16(4):63-66.
    [82]尚岳全,孙红月,侯利国,等.管网渗流系统对含碎石粘性土边坡的稳定作用[J].岩石力学与工程学报,2005,24(8):1371-1375.
    [83]朱向东,尚岳全.碎石土边坡破坏机理的敏感性分析[J].防灾减灾工程学报,2007,27(1):86-90.
    [84]朱向东,尚岳全.地下水对碎石土类边坡稳定性影响分析[J].地质灾害与环境保护,2008,19(3):42-46.
    [85]山上拓男,施泽华.渗透力和渗透水压力[J].华水科技情报,1981,(4):97-99.
    [86]沈珠江.莫把虚构当真实-岩土工程界概念混乱现象剖析[J].岩土工程学报,2003,25(6):767-768.
    [87]C. Mao, X. Duan. Seepage force and slope sliding computation[C].//International conference on dam safety management, Nanjing:Nanjing University Press,2008.
    [88]毛昶熙,段祥宝,吴良骥,等.再论渗透力及其应用[J].长江科学院院报,2009,26(z1):1-5.
    [89]方玉树.滑坡与斜坡稳定性一般条分法分析中渗流作用的简化计算[J].中国地质灾害与防治学报,2011,22(3):125-128.
    [90]H. Ghiassian, S. Ghareh. Stability of sandy slopes under seepage conditions[J]. Landslides, 2008,5(4):397-406.
    [91]建筑边坡工程技术规范[S].北京:中国建筑工业出版社,2002.
    [92]刘国彬,王卫东.基坑工程手册(第二版)[M].北京:中国建筑工业出版社,2009.
    [93]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2001.
    [94]T. Soong, R. Koerner. Seepage induced slope instability[J]. Geotextiles and Geomembranes, 1996,14(7):425-445.
    [95]王永平,刘红星.引入渗透力对边坡稳定性的分析[J].人民长江,2002,33(6):19-21.
    [96]B. Collins, D. Znidarcic. Stability analyses of rainfall induced landslides[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(4):362-372.
    [97]邓东平,李亮,赵炼恒,等.稳定渗流条件下土坡稳定性分析的一种新方法[J].工程地质学报,2011,19(1):29-36.
    [98]王思敬,马凤山,杜永廉.水库地区的水岩作用及其地质环境影响[J].工程地质学报,1996,4(3):1-9.
    [99].刘新荣,傅晏,王永新,等.水-岩相互作用对库岸边坡稳定的影响研究[J].岩土力学,2009,30(3):613-616.
    [100]范大波.三峡库区香溪河段滑坡发育特征及水库蓄水对岸坡稳定性的影响研究[D].成都:成都理工大学,2011.
    [101]何忠泽,纪常永.地下水对水库滑坡的作用规律研究[J].中国水运(下半月),2011,11(9):170-171.
    [102]刘礼领.库水位升降对堆积体滑坡稳定性影响的研究[J].西部探矿工程,2011,23(2):35-39,42.
    [103]钟启明,霍家平,刘若星,等.库水位骤降对非饱和坝坡稳定性的影响[J].水利水电科技进展,2012,32(6):84-86.
    [104]D. Fredlund, H. Rahardjo. Soil mechanics for unsaturated soils[M]. Wiley-interscience, 1993.
    [105]A. Bishop, G. Blight. Some aspects of effective stress in saturated and unsaturated soil[J]. Geotechnique,1963,13(3):177-197.
    [106]D. Fredlund, N. Morgenstern, R. Widger. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal,1978,15(3):313-321.
    [107]李荣建,郑文,王莉平,等.非饱和土边坡稳定性分析方法研究进展[J].西北地震学报,2011,33(z1):2-9.
    [108]D. Fredlund. Slope stability analysis incorporating the effect of soil suction[J]. M.G. Anderson, K.S. Richards (Eds.), Slope Stability, Wiley, Chichester(1986):113-145.
    [109]黄润秋,戚国庆.非饱和渗流基质吸力对边坡稳定性的影响[J].工程地质学报,2002,10(4):343-348.
    [110]吴俊杰,王成华,李广信等.非饱和土基质吸力对边坡稳定的影响[J].岩土力学,2004,25(5):732-736,744.
    [111]张鹏程,汤连生,邓钟尉等.非饱和土粒间吸力研究的若干思考和进展[J].水文地质工程地质,2012,39(2):30-36.
    [112]C. Ng, Q. Shi. Influence of rainfall intensity and duration on slope stability in unsaturated soils[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1998, 31(2):105-113.
    [113]S. Cho, S. Lee. Instability of unsaturated soil slopes due to infiltration[J]. Computers and Geotechnics,2001,28(3):185-208.
    [114]姚海林,郑少河,李文斌等.降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J].岩石力学与工程学报,2002,21(7):1034-1039.
    [115]童龙云,简文星.考虑降雨入渗过程的非饱和边坡稳定性分析[J].武汉理工大学学报,2012,34(11):78-83.
    [116]张文杰,詹良通,凌道盛,等.水位升降对库区非饱和土质岸坡稳定性的影响[J].浙江大学学报(工学版),2006,40(8):1365-1370,1428.
    [117]孙冬梅,朱岳明,张明进,等.库水位下降时的岸坡非稳定渗流问题研究[J].岩土力学,2008,29(7):1807-1812.
    [118]刘俊民.工程地质及水文地质[M].北京:中国农业出版社,2004.
    [119]姚爱军,薛廷河.复杂边坡稳定性评价方法与工程实践[M].北京:科学出版社,2008.
    [120]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454.
    [121]J. Jiao. A confined groundwater zone in weathered igneous rocks and its impact on slope stability[C]//International Symposium on Hydrogeology and the Environment,2000.
    [122]J. Jiao, S. Nandy. Confined groundwater zone and slope instability in hillsides of weathered igneous rock in Hong Kong[J]. Hong Kong Geologist,2001,7:31-37.
    [123]J. Jiao. X. Wang, S. Nandy. Confined groundwater zone and slope instability in weathered igneous rocks in Hong Kong[J]. Engineering Geology.2005.80(1):71-92.
    [124]黄春娥,龚晓南.初探承压含水层对基坑边坡稳定性的影响[J].工业建筑,2002,32(3):82-83.
    [125]L. Borgatti, F. Cervi, A. Corsini, et al. Hydro-mechanical mechanisms of landslide reactivation in heterogeneous rock masses of the northern Apennines (Italy)[C]//Proceedings of the First North American Landslide Conference, Landslides and Society:Integrated Science. Engineering.2007.
    [126]Y. Lee. C. Cheuk, M. Bolton. Instability caused by a seepage impediment in layered fill slopes[J]. Canadian Geotechnical Journal,2008,45(10):1410-1425.
    [127]谭超.地下水对滑坡的力学作用研究[D].成都:成都理工大学,2009.
    [128]孙红月,吴红梅,李焕强等.松散堆积土中的隔水层对边坡稳定性的影响[J].浙江大学学报(工学版),2010,44(10):2016-2020.
    [129]曾耀.水库库岸老滑坡复活过程中地下水作用机制研究[D].武汉:中国地质大学(武汉),2010.
    [130]胡海峰.采动坡体稳定性的有限元数值模拟[J].矿山测量,2000,(2):14-16.
    [131]张生,孙跃选,陈秋然,等.有限元法与条分法相结合分析坝坡稳定[J].海河水利,2007,(1):57-59.
    [132]陈亚丽.基于有限元的桥基岸坡稳定性分析[J].铁道建筑,2010,(11):27-29.
    [133]O. Zienkiewicz, C. Humpheson, R. Lewis. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25(4):671-689.
    [134]I. Donald, Z. Chen. Slope stability analysis by the upper bound approach:fundamentals and methods[J]. Canadian Geotechnical Journal,1997,34(6):853-862.
    [135]连镇营,韩国城,孔宪京,等.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [136]黄茂松,贾苍琴.考虑非饱和非稳定渗流的土坡稳定分析[J].岩土工程学报,2006, 28(2):202-206.
    [137]于玉贞,林鸿州,李荣建,等.非稳定渗流条件下非饱和土边坡稳定分析[J].岩土力学,2008,29(11):2892-2898.
    [138]年廷凯,万少石,蒋景彩,等.库水位下降过程中土坡稳定强度折减有限元分析[J].岩土力学,2010,31(7):2264-2269,2302.
    [139]伍嘉,佘成学.强降雨条件下坝肩边坡抗滑稳定性分析[J].中国农村水利水电,2011,(9):111-114.
    [140]彭凯,朱俊高,王元龙,等.土石坝坝坡稳定三维有限元强度折减法计算分析[J].人民长江,2010,41(3):67-70.
    [141]邓华锋,李建林,王乐华,等.基于强度折减法的库岸滑坡三维有限元分析[J].岩土力学,2010,31(5):1 604-1 608.
    [142]B. Low, R. Gilbert, S. Wright. Slope reliability analysis using generalized method of slices[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(4): 350-362.
    [143]A. Husein Malkawi, W.Hassan, F. Abdulla. Uncertainty and reliability analysis applied to slope stability[J]. Structural Safety,2000,22(2):161-187.
    [144]H. El-Ramly, N. Morgenstern, D. Cruden. Probabilistic slope stability analysis for practice[J]. Canadian Geotechnical Journal,2002,39(3):665-683.
    [145]庞小朝,周小文,温庆博,等.向量随机场模拟及其在岩土工程中的应用[J].清华大学学报(自然科学版),2003,43(5):706-709,714.
    [146]陈立宏,陈祖煜,刘金梅,等.土体抗剪强度指标的概率分布类型研究[J].岩土力学,2005,26(1):37-40,45.
    [147]H. Zhao. Slope reliability analysis using a support vector machine[J]. Computers and Geotechnics,2008,35(3):459-467.
    [148]徐飞,徐卫亚,王珂,等.基于蚁群优化最小二乘支持向量机模型的边坡稳定性分析[J].工程地质学报,2009,17(2):253-257.
    [149]李秀珍,孔纪名,谢建勋,等.水电岩质边坡稳定性预测的支持向量机方法[C].//第十二届全国岩石动力学学术会议暨国际岩石动力学专题研讨会论文集.2011:259-263.
    [150]L. Faravelli. Response-surface approach for reliability analysis[J]. Journal of Engineering Mechanics,1989,115(12):2763-2781.
    [151]G. Schueller, C. Bucher, U. Bourgund, et al. On efficient computational schemes to calculate structural failure probabilities[J]. Probabilistic Engineering Mechanics,1989,4(1): 10-18.
    [152]苏永华,赵明华,蒋德松,等.响应面方法在边坡稳定可靠度分析中的应用[J].岩石力学与工程学报,2006,25(7):1417-1424.
    [153]杨培章,吴震宇,陈建康,等.高堆石坝非线性强度指标坝坡稳定可靠度研究[J].人民黄河,2009,31(9):88-90.
    [154]陈春利,邢鲜丽,李萍,等.甘肃黑方台黄土边坡稳定性的可靠度分析[J].工程地质学报,2011,19(4):550-554.
    [155]陈祖煜,徐佳成,孙平,等.重力坝抗滑稳定可靠度分析:(一)相对安全率方法[J].水力发电学报,2012,31(3):148-159.
    [156]陈祖煜,徐佳成,陈立宏,等.重力坝抗滑稳定可靠度分析:(二)强度指标和分项系数的合理取值研究[J].水力发电学报,2012,31(3):160-167.
    [157]张晓咏,戴自航.应用ABAQUS程序进行渗流作用下边坡稳定分析[J].岩石力学与工程学报,2010,29(z1):2927-2934.
    [158]程曦,王元战,马殿光,等.基于ABAQUS的内河航道岸坡稳定性分析[J].水道港口,2012,33(2):152-158.
    [159]唐晓松,赵尚毅,郑颖人,等.渗流作用下利用有限元强度折减法的边坡稳定性分析[J].公路交通科技,2007,24(9):6-10.
    [160]P. Lane, D. Griffiths. Assessment of stability of slopes under drawdown conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(5):443-450.
    [161]廖红建,盛谦,高石夯,等.库水位下降对滑坡体稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454-3458.
    [162]周桂云,李同春.饱和-非饱和非稳定渗流作用下岩质边坡稳定性分析[J].水电能源科学,2006,24(5):79-82.
    [163]郑颖人,唐晓松.库水作用下的边(滑)坡稳定性分析[J].岩土工程学报,2007, 29(8):1115-1121.
    [164]谢道在,张海平.水位变化下潜在不稳定坡渗流场及稳定性分析[J].人民黄河,2012,34(10):129-130,133.
    [165]M. Huang, C. Jia. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage[J]. Computers and Geotechnics,2009.36(1):93-101.
    [166]陈勇,刘德富,王世梅,等.三维非饱和土滑坡稳定性影响因素研究[J].岩土工程学报,2010,32(8):1236-1240.
    [167]张久龙,孟繁贺,杨虎锋,等.降雨条件下某堆积体饱和-非饱和渗流及稳定性分析[J].安全与环境工程,2012,19(1):4-8.
    [168]汪斌,唐辉明.含弱透水层岸坡地下水渗流特征的数值分析[C].//2007年地面和地下工程中岩石和岩土力学热点问题研讨会.2007:193-197.
    [169]李焕强.台风暴雨引发公路水毁特征与边坡水毁机理[D].杭州:浙江大学,2008.
    [170]李爱国,岳中琦,谭国焕,等.土体含水率和吸力量测及其对边坡稳定性的影响[J].岩土工程学报,2003,25(3):278-282.
    [171]汤明高,许强,黄润秋,等.滑坡体基质吸力的观测试验及变化特征分析[J].岩石力学与工程学报,2006,25(2):355-362.
    [172]张家俊,龚壁卫,王军,等.降雨入渗下膨胀岩渠坡失稳的原位试验研究[J].长江科学院院报,2010,27(9):47-52,64.
    [173]马显春,郎少林,谷明成,等.易滑超倾坡水力启动滑移破坏的现场模拟试验[J].西安科技大学学报,2013,33(1):91-95.
    [174]罗先启,刘德富,吴剑,等.雨水及库水作用下滑坡稳定模型试验研究[J].岩石力学与工程学报,2005,24(14):2476-2483.
    [175]徐光明,王国利,顾行文,等.雨水入渗与膨胀性土边坡稳定性试验研究[J].岩土工程学报,2006,28(2):270-273.
    [176]H. Ling, M. Wu, D. Leshchinsky, et al. Centrifuge modeling of slope instability[J]. Journal of Geotechnical and Geoenvironmental Engineering , 2009,135(6):758-767.
    [177]李焕强,孙红月,孙新民,等.降雨入渗对边坡性状影响的模型实验研究[J].岩土工程学报,2009,31(4):589-594.
    [178]王伟锋,耿赞,王青振,等.降雨型与地震型滑坡试验研究[J].地震地质,2012,34(4):810-818.
    [179]王飞,仇文革,高新强,等.黏土不透水层确定及水压力分布规律试验研究[C].//2007年地面和地下工程中岩石和岩土力学热点问题研讨会.2007:189-192.
    [180]沈细中,杨文丽,兰雁.小浪底库岸1#滑坡体安全评价[J].岩石力学与工程学报,2011,30(3):589-595.
    [181]宋胜武,向柏宇,杨静熙,等.锦屏一级水电站复杂地质条件下坝肩高陡边坡稳定性分析及其加固设计[J].岩石力学与工程学报,2010,29(3):442-458.
    [182]范宣梅,许强,张倬元,等.平推式滑坡成因机制研究[J].岩石力学与工程学报,2008,27(Supp.2):3753-3759.
    [183]许强,范宣梅,李园,等.板梁状滑坡形成条件、成因机制与防治措施[J].岩石力学与工程学报,2010,29(2):242-250.
    [184]殷坤龙,简文星,周春梅,等.万州区近水平地层滑坡和堆积体成因机制与防治工程研究[R].武汉:中国地质大学,2005.
    [185]范宣梅.平推式滑坡成因机制与防治对策研究[D].成都:成都理工大学,2007.
    [186]孙军杰,王兰民,龙鹏伟,等.地震与降雨耦合作用下区域滑坡灾害评价方法[J].岩石力学与工程学报,2011,30(4):752-760.
    [187]A. Watts. D. Masson. A giant landslide on the north flank of Tenerife, Canary Islands[J]. Journal of Geophysical Research,1995,100(B12):24487-24498.
    [188]M. Floris, F. Bozzano. Evaluation of landslide reactivation:a modified rainfall threshold model based on historical records of rainfall and landslides[J]. Geomorphology,2008, 94(1/2):40-57.
    [189]俞伯汀,孙红月,尚岳全,等.浙江下山滑坡特征及稳定性分析[J].岩石力学与工程学报,2006,25(Supp.1):2875-2881.
    [190]俞伯汀.浙江省玄武岩台地区滑坡的成因机理及防治对策[D].杭州:浙江大学,2006.
    [191]俞伯汀,孙红月,尚岳全,等.玄武岩台地区滑坡典型特征及防治对策[J].中国地质灾害与防治学报,2007,18(2):17-21.
    [192]L. Cascini, M. Calvello, G. Grimaldi. Groundwater modeling for the analysis of active slow-moving landslides[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010,136(9):1220-1230.
    [193]张强.金沙江观音岩电站红层钙质砂岩类岩溶发育特征及渗透稳定性研究[D].成都:成都理工大学,2010.
    [194]J. Du, K. Yin. Study on risk assessment for an individual landslide[C]//Proceedings of Georisk 2011:Risk Assessment and Management(GSP 224). [S.1.]:[s.n.],2011:812-819.
    [195]崔杰,王兰生,徐进,等.金沙江中游滑坡堵江事件及古滑坡体稳定性分析[J].工程地质学报,2008,16(1):6-10.
    [196]黄润秋,赵松江,宋肖冰,等.四川省宣汉县天台乡滑坡形成过程和机理分析[J].水文地质工程地质,2005,32(1):13-15.
    [197]M. Mikos, M. Cetina, M. Brilly. Hydrologic conditions responsible for triggering the Stoze landslide, Slovenia[J]. Engineering Geology,2004,73(3-4):193-213.
    [198]赵勇,许模,赵红梅.平推式滑坡后缘启动水头探讨[J].人民长江,2011,42(17):32-36.
    [199]赵权利,孙红月,王智磊,尚岳全.承压水对平推式滑坡的作用分析[J].岩石力学与工程学报,2012,31(4):762-769.
    [200]刘特洪,林天键.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [201]贺可强,阳吉宝,王思敬.堆积层滑坡位移动力学理论及其应用:三峡库区典型堆积层滑坡例析[M].北京:科学出版社:2007.
    [202]张鹏.岩土边坡刚体极限平衡法的误差根源与范围研究[D].西安:西安理工大学,2003.
    [203]王智磊,孙红月,尚岳全.基于地下水位变化的滑坡预测时序分析[J].岩石力学与工程学报,2011,30(11):2276-2284.
    [204]贾官伟,詹良通,陈云敏.水位骤降对边坡稳定性影响的模型试验研究[J].岩石力学与工程学报,2009,28(9):1798-1803.
    [205]D. Montgomery, W. Dietrich, J. Heffner. Piezometric response in shallow bedrock at CB1:implications for runoff generation and landsliding [J]. Water Resources Research,2002, 38(2):1011-1018.
    [206]J. Zhang, J. Jiao, J. Yang. In situ rainfall infiltration studies at a hillside in Hubei Province, China [J]. Engineering Geology,2000,57(1):31-38.
    [207]伍四明,李日国.万县滑坡群形成机制的数值模拟研究[J].水文地质工程地质,1994,21(6):14-17.
    [208]李晓军,马惠民,吴红刚.复杂含水条件下滑坡的稳定性分析及治理措施[J].工程地质学报,2010,18(1):60-65.
    [209]T. Lambe, R. Whitman. Soil mechanics[M]. New York:Wiley,1969:251-265.
    [210]陈祖煜.土质边坡稳定分析——原理·方法·程序[M].北京:中国水利水电出版社,2003:33-35.
    [211]尹小涛,冉昌国,王水林,等.降雨条件下滴水崖Ⅰ号滑坡瞬态稳定性分析[J].岩土力学,2008,29(2):501-506.
    [212]蒋中明,曾铃,付宏渊,等.降雨条件下厚覆盖层边坡的渗流特性[J].中南大学学报(自然科学版),2012,43(7):2782-2788.
    [213]詹良通,李鹤,陈云敏,等.东南沿海残积土地区降雨诱发型滑坡预报雨强-历时曲线的影响因素分析[J].岩土力学,2012,33(3):872-880,886.
    [214]何玉琼,徐则民,张勇,等.斜坡失稳的降雨阈值模型及其应用[J].岩石力学与工程学报,2012,31(7):1484-1490.
    [215]孙红月,尚岳全.浙江上三公路6#滑坡的地下水作用与控制[J].岩石力学与工程学报,2006,25(3):505-510.
    [216]贺可强,王荣鲁,李新志,等.堆积层滑坡的地下水加卸载动力作用规律及其位移动力学预测——以三峡库区八字门滑坡分析为例[J].岩石力学与工程学报,2008,27(8):1644-1651.
    [217]袁从华,吴振君.平缓反倾红砂岩高陡切坡的稳定性分析[J].岩土力学,2012,33(3):805-811.
    [218]张光辉.区域地下水功能可持续性评价理论与方法研究[M].北京:地质出版社,2008.
    [219]A. Puzrin. A. Schmid. Evolution of stabilised creeping landslides[J]. Geotechnique, 2012,62(6):491-501.
    [220]唐大雄.工程岩土学(第2版)[M].北京:地质出版社,2007.
    [221]肖治宇,陈昌富,杨剑祥,等.非饱和残坡积土强度随含水量变化试验研究[J].湖南大学学报(自然科学版),2010,37(10):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700