用户名: 密码: 验证码:
纳米TiO_2表面改性及其在环境友好型农药制剂中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以钛酸丁酯为原料,采用水解法制备纳米TiO_2。在钛酸丁酯/乙醇为1:5,钛酸丁酯浓度为0.25mol/L,搅拌时间为1h的条件下,水解完后放置1d,65℃在干燥箱中烘干,700℃煅烧1h,制得直径约为20nm的纳米TiO_2。采用TEM、XRD、IR等手段对不同煅烧温度制备的纳米TiO_2进行表征,结果表明800℃以下的不同温度煅烧后的TiO_2分散都很好,颗粒较小,粒度分布较均匀,其光催化活性高。当煅烧温度低于700℃时,TiO_2粉末的晶粒与颗粒增长缓慢。当煅烧温度高于800℃时,TiO_2晶粒迅速增大,且是纯金红石型,晶粒大则比表面积小,导致被降解有机物农药在TiO_2表面吸附量减少,其活性降低。以甲基对硫磷为对象研究用钛酸丁酯水解法制备的纳米TiO_2的光催化活性,研究表明1×10~(-4)mol/L的甲基对硫磷在加入0.2g所制得的纳米TiO_2后,光催化降解1h的降解率为62.3%。
     采用压电石英微天平(QCM)现场技术研究极性和非极性有机物在纳米TiO_2和改性后的纳米TiO_2上的吸附行为。实验研究表明:Ag~+、硅油、硬脂酸、表面活性剂都能提高纳米TiO_2对非极性有机物的吸附,其中硬脂酸和硅油的增强效果最为明显。对农药甲基对硫磷在改性前后的纳米TiO_2上的吸附研究表明,表面亲脂处理后的纳米TiO_2对非极性农药的吸附有明显提高。甲基对硫磷分子在亲脂处理后的纳米TiO_2上的吸附符合Langmuir吸附,最大吸附量Γ_∞为1.4×10~(-3)mol/g,吸附常数k为5.5×10~5(mol/L)~(-1)。研究结果表明亲脂性农药可与脂化后的纳米TiO_2形成稳定的复合体,对于进一步研制复合型可光降解的纳米农药具有重要的指导意义。
     采用三种方案制备环境友好型纳米农药,并对其光催化降解率进行研究。研究表明硬脂酸能通过类似于酸和醇生成酯的反应与纳米TiO_2生成稳定的聚合物,将纳米TiO_2表面由亲水性变为亲油性。但硬脂酸改性的纳米TiO_2农药制剂的光催化降解率低于原位直接法制备的纳米TiO_2农药制剂,而在农药中直接加入纳米TiO_2制备的纳米TiO_2农药制剂的光催化活性最低。田间试验结果表明纳米TiO_2的引入不但不会降低农药的毒力反而能提高其生物毒力。
In this thesis, the preparation of the nanocrystalline TiO2 by Ti(O-Bu)4 hydrolyzing was investigated, and TiO2 particles of samples were characterized using TEM, FT-IR and XRD. The obtained particles were globular in shape and its grain size was about 20nm. The photocatalysis activity of the nanocrystalline TiO2 was evaluated by measuring the degradation rate of methyl parathion. The highest rate of the degradation of methyl paration was 62.3%.
    The surface of the nanocrystalline TiO2 particles was modified with Ag+ ions, clodecyl natrium sulfocalt, stearic acid and silicon oil. The nanocrystalline TiO2 particles modified with stearic acid had higher ability for adsorpting non-polar organic gases in comparing with the original TiO2. The adsorption of methyl parathion on the surface of nanocrystalline TiO2 modified with stearic acid was also studied. The result showed that the amount of the adsorption of methyl parathion on the surface of nanocrystalline TiO2 modified with stearic acid was 1.4 X 10-3mol/g. The adsorption constant is 5.5 X 105 (mol/L)-1.
    The FT-IR spectra showed that a covalent bond formed between the surface hydroxylic groups and organic long-chain molecules such as stearic acid. Through this kind of chemical reaction, the hydrophilic property of nanocrystalline TiO2 changed into lipophilic property after the nanocrystalline TiO2 particles were modified with stearic acid.. Three methods for the preparation of nanosized TiO2-pesticide complex were investigated. Experimental results showed that the nanosized TiO2-pesticide complex prepared in-situ has highest photodegradation rate. Pesticide residual time in the body of plant was significantly reduced and its biological toxicity increased.
引文
[1] Terzian R, Serpone N, Minero C, et al. Kinetic studies in heterogeneous photocatalysis. 4. The photomineralization of a hydroquinone and a catechol. J. Photochem Photobiol A:Chem., 1990, 55:243~249
    [2] Linsebigler A L, Guangquan L, Yate J T. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and delected results. Chem. Rev., 1995, 95:735~750
    [3] Izumi I, Dunn W W, Wllboum K O, et al. Heterogeneous photocatalytic oxidation of hydrocarbons on platinized TiO_2 powders. J. Phys. Chem., 1980, 84:3207~3210
    [4] Bard A. S.. Photoelectrochemistry and heterogeneous photocatalysis on semiconductors. J. Photochem. 1979, 10:59~75
    [5] Izumi I, Fan F F, Bard A J. Heterogeneous photocatalytic decomposition of benzoic acid and adipic acid on platinized titanium dioxide powder. J. Phys. Chem., 1981, 85:218~223
    [6] 唐振宁.钛白粉的生产与环境管理.北京:化学工业出版社,2000.4~5
    [7] Hsiao C Y, Lee CL, Ollis D F. Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane(CH_2Cl_2),chloroform(CHCl_3),and carbon tetrachloride (CCl_4) with illuminated photocatalyst. J. Catal, 1983, 82:418~423
    [8] 张梅,杨绪杰,陆路德,等.纳米TiO_2——一种性能优良德光催化剂.化工新型材料,2000,28(4):11~13,34
    [9] Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Phys. Chem., 1984, 80:4403~4409
    [10] Brus L E. A simple model for the ionization potential, electron affinity and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys., 1983, 79:5566~5571
    [11] 李玉铭,李山东,林鸿溢.纳米半导体及应用.物理化学学报,1997,13(11):1052~1055
    [12] Morooka S, Yasutakae T, Kobata A, et al. A mechanism for the production of ultrafine particles of by a gas-phase reaction. International Chemical Engineering, 1989, 29(1): 119~126
    [13] 胡黎明,李春忠,姚光辉,等.化学气相沉积反应器忠德超细粒子德形态控制.华东化工学院学报,1992,18(4):417~422
    
    
    [14] Okuyama K, Kousaka Y, Wu Jin Jwang, et al. Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors. AICHE Journal, 1986, 32(12): 2010~2019
    [15] 施利毅,李春忠,房鼎业,等.气相合成二氧化态超细粒子光催化活性艳红X—3B脱色的研究.太阳能学报,2000,21(1):100~105
    [16] 王晓慧,王子忱,李颐,等.胶溶法合成超微粒子.材料科学进展,1992,6(6):533~537
    [17] Harris M T, Byers H. Effect of solvent on the titania by titanium ethaxide hydrolysis. J. Non-Crystalline Solids, 1988, 103:49~64
    [18] Kominami H, Jun-ichi K, Shin-ya M, et al. Synthesis of titanium (Ⅳ) oxide of ultra-high photocatalytic activity: high-temperature hdrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols. J. Mole Cata, 1999, 26: 1247~1254
    [19] Gao Y M, Lee W, Trehan R, et al. Improvement of photocatalytic activity of titanium (Ⅳ) oxide by dispersion of Au on TiO_2. Mat. Res. Bull, 1991,26:1247~1254
    [20] Wang Ch-M, Heller A, Gerischer H. Palladium catalysis of O_2 reduction by electrons accumulated on TiO_2 particles during photoassisted oxidation of organic compounds. J. Am. Chem. Soc., 1992, 114:5230~5234
    [21] 姚晓斌,马颖,姚建年.贵金属对TiO_2悬浮液光照过程中H_2O_2形成的促进作用.感光科学与光化学,1999,17(2):159~162
    [22] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98:13669~13679
    [23] 岳林海.稀土元素掺杂二氧化钛催化剂光降解久效磷的研究.上海环境科学,1998,17(9):17~19
    [24] Palmisano L, Augugliaro V, Sclafani A, et al. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem., 1998, 92:6710~6713
    [25] 张彭义,余刚,蒋展鹏.半导体光催化剂及其改型技术进展.环境科学进展,1997,5(3):1~10
    [26] Jimmy C Y, Lin Jun, Kwok R W M, Enhanced photocatalytic activity of solid solution on the degradation of acetone. J. Photochem. Photobiol. A:Chem 1997, 111: 199~203
    [27] Jimmy C Y, Lin Jun, Raymund W M K. Ti_(1-x)Zr_xO_2 solid solutions for the
    
    photocatalytic degradation of acetone in air. J. Phys. Chem., 1998, 102:5094~5098
    [28] 岳林海.锌铜复合氧化物光催化降解甲基对硫磷.上海环境科学,1999,18(6):277~279,282
    [29] Sclafani A., Herrmann J. M. Comparison of the photoelectronic and photocatalytic activity of various anatase and rutile forms of titania in pure liquid organic phase and in aqueous solutions. J. Phys. Chem., 1996, 100:13655~13661
    [30] 韩英哲,文学洙,朱在京,等.用WO_3为基质的催化剂处理含Cr_2O_7~(2-)离子废水的研究.环境科学,1984,5:20~22
    [31] Vogel R, Hoyer P, Weller H. Quantum-sized PbS,CdS,Ag_2S,Sb_2S_3 and Bi_2S_3, particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem., 1994, 98:3183~3189
    [32] Idriss B, Prashant V K. Capped semiconductor colloids: synthesis and photoelectrochemical behavior of TiO_2-capped SnO_2 namocrustallites. J. Phys. Chem., 1995, 99:9182~9188
    [33] Chen Feng. Preparation and photocatalytic properties of a navel kind of loaded photocatalyst of TiO_2/SiO_2/γ-Fe_2O_3. J. Catal. Lett, 1999, 58(4): 245~247
    [34] 李田,严熙世,黄伟星.固定膜光催化氧化反应器深度净化自来水研究.中国给水排水,1996,12(3):7~10
    [35] 陈士夫,梁新,陶跃武,等.空心玻璃微球TiO_2光催化降解有机磷农药.感光科学与光化学,1999,17(1):85~91
    [36] Modestov A, Glezer V, Marjasin I, et al.. Photocatalytic degradation of chlorinated phenoxyacetic acids by a new buoyant titania-exfoliated graphite composite photocatalyst. J. Phys. Chem., 1997, 101:4623~4629
    [37] Nicola J P, Hoffmann M R. Development and optimization of a TiO_2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environ. Sci. Technol., 1995, 29:2974~2981
    [38] Nicola J P, Hoffmann M R.. Chemical and physical characterization of a TiO_2-coated fibeer-optic cable reactor. Environ. Sci. Technol., 1996, 30:2806~2812.
    [39] 李卫华,郝彦忠,乔学斌,等.纳米结构ZnO/染料/聚吡咯光阳极的光电化学性质.物理化学学报,1999,15(10):905~909
    [40] 平贵辰,曹立新,王丽颖,等.CdS半导体纳米微粒的复合与组装.化学通报,2000,2:32~36
    [41] Chung S. Kim, Robert J. Lad, Carl P. Tripp. Interaction of organophorous compounds with TiO_2 and WO_3 surfaces probed by vibrational spectroscopy. Sensors and Actuators, B, 2001, 76:442~448
    
    
    [42] 李卫华,郝彦忠,王艳芹,等.PbS/Ru(Ⅱ)配合物敏化Cd(Ⅱ)掺杂TiO_2纳米晶电极的光电化学.应用化学,1999,16(1):6~9
    [43] Karaktisou K E, Verykios X E. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO_2/TiO_2 catalysts. J. Catal., 1995, 152(2): 360~367
    [44] 王怡中.二氧化钛悬浆体系中八种燃料的太阳光催化氧化降解.催化学报,2000,21(4):327~330
    [45] 杨金水,凌艳.光催化法处理活性绿燃料废水.湖北化工,1997,(1):53~54
    [46] 杨晶,施利毅.活性艳红X-13氧化脱色研究.上海大学学报,1998,4(5):586~590
    [47] 尹晓红.4BS 燃料催化降解动力学的研究.工业水处理,2000,(增刊):67~69
    [48] 颜秀茹.用光催化剂降解2,2—二氯乙烯基二甲基磷酸酯的研究.化学工业与工程,1998,15(4):17~21
    [49] 陈士夫,赵梦月,陶跃武.光催化降解有机磷的研究.郑州工业大学学报,1996,17(4):44~48
    [50] 张心荣,杨平.玻璃微球负载复合催化剂降解有机磷农药.郑州工业大学学报,1999,20(1),39~47
    [51] 岳林海,周永秋.Ag/ZnO光催化降解甲基对硫磷研究.环境污染与防治,1998,20(3):5~8
    [52] 赵进才.二氧化钛微粒存在下表面活性剂光催化分解机理研究.感光科学与化学,1996,14(3):289~293
    [53] 肖邦定.非离子表面活性剂在人工光源下的光催化降解.中国环境科学,1999,19(1):9~13
    [54] Pruden A L, Ollis D F. Degradation on chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide. Environ. Sci. Techol., 1983, 17(10): 628~631
    [55] Pruden A L, Ollis D F. Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water. J. of Catal., 1983, 82(2): 404~417
    [56] Ollis D F, Pelizzetti E. Heterogeneous photoassisted catalysis:conversion of perchloroethylene, dichloroethane, chloroacetic acids and chlorobenzenes. J. of Catal., 1984, 88(1): 89~96
    [57] Matthews R W. Photooxidation of organic material in aqueous suspensions of titanium dioxide. Wat. Res., 1986, 20(5): 569~578
    [58] Matthews R W. Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide. J. of Catal., 1986, 92(2): 565~569
    
    
    [59] Matthews R W. Solar-electric water purification using photocatalytic oxidation with as a stationary phase. Solar Energy, 1987, 30(6): 405-417
    [60] Macieh Hamerski, Joanna Grzechulska, Antoni Waldemar Morawski. Photocatalytic purification of soil contaminated with oil using modified TiO_2 powders. Solar Energy, 1998, 66(6): 395~399
    [61] 方佑龄,赵文宽,尹少华,等.纳米在空心陶瓷微球上的固定化及催化分解辛烷.应用化学,1997,14(2):81~83
    [62] 李庆霖,席婵娟,金振声.多相光催化的一个分支——气固相光催化及其在环境治理方面的应用.太阳能学报,1994,15(3):279~282
    [63] 高濂,陈锦元,黄军华,等.醇盐水解法制备二氧化钛纳米粉体.无机材料学报,1995,10(4):423~427
    [64] 黄军华,高濂,陈锦元,等.纳米粉体制备过程中结晶度的控制.无机材料学报,1996,11(1):51~57
    [65] 李芳柏.改性二氧化钛的制备、表征及光催化处理染料废水中的应用.华南理工大学博士学位论文,1998.28~29
    [66] Sun Yin, Yuichi I, Uchida S, et al. Crystallization of titania in liquid media and photochemical properties of crystallized titania. J. Mater Res., 1998, 13(4): 844~847
    [67] Iwasaki M, Hara M, Ito S. The facile synthesis of nanocrystalline anatase particles from titanylsulfate. J. Mater Sci. Lett., 1998, 17:1769~1771
    [68] Gopal M, Moblely Chan W J, De Jongle L C. Room temperature synthesis of crystalline metal oxides. J. Mater Sci., 1997, 32:6001~6008
    [69] Cao Huizheng, Ruckeustein F. A new type of hydrous titanium oxide adsorbent. J. Colloid and Interface Science, 1991, 145(2): 581~591
    [70] 沈钟,王果庭.胶体与表面化学.北京:化学工业出版社,1989.203~204
    [71] 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.36~37
    [72] Hagfeldt A, Gratzel M. Light-induced redox reaction in nanocrystalline systems. J. Chem. Rev., 1995, 95(1): 49~68
    [73] Kurtz R L, Stockbauer R, Madey T E, et al. Synchrotron radiation studies of H2O adsorption on TiO_2 (110). Surf. Sci., 1989, 218:178~200
    [74] Beck D D. White J M, Racliffe C T. Catalytic reduction of CO with hydrogen sulfide. 3.Study of adsorption of O_2, CO and CO coadsorbed with H_2S on anatase and rutile using auger electron spectroscopy and temperature-programmed desorption. J. Phys. Chem., 1986, 90:3132~3136
    
    
    [75] Martin S T, Kesselman J M. Perk D S, et al. Surface structures of 4-chlorocatechol adsorbed on titanium dioxide. Environ Sci Technol, 1996, 30: 2536~2542
    [76] 董庆华,董玉琳.半导体悬浮体系光催化分解有机磷化合物.感光化学与光化学,1992,10(1):71~76
    [77] Carole K G, Marie J, Michael G. Decomposition of organophosphorus compounds on photoactivated TiO_2 surfaces. J. Mole Cata., 1990, 60:375~387
    [78] Herrmann J M, Guillard C, Arguello M et al. Photocatalytic degradation of pesticide pirimiphosmethyl determination of the reaction pathway and identification of intermediate products by various analytical methods. Catalysis today, 1999, 54: 353~367
    [79] 胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践.环境科学进展,1995,3(1):55~64
    [80] 姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社,1997.40~90
    [81] R. Morand, K. Noworyta, J. Augustynski. Probing interactions between photocatalyst and adsorbing species using quartz crystal microbalance. Chem. Phys. Letters, 2002, 364:244~250
    [82] 司士辉,陈寒芳,陈昕.抗体固栽于电聚合物膜的压电免疫型细菌传感器.分析测试学报,2002,21(5):33~36
    [83] 楚霞,林朝晖,沈国励,等.甲胎蛋白压电免疫传感器的研究.高等学校化学学报,1996,17(6):870~873
    [84] Li Han, David R.Daniel, Mathew M.Maye, et al. Core-shell namostructured namoparticle films as chemically sensitive interfaces. Anal. Chem., 2001(73): 4441~4449
    [85] 徐存英,段云彪,张鹏翔,等.纳米二氧化钛的表面改性研究.云南化工,2000,27(5):6~7
    [86] 胡笑形.我国农药工业的现状与发展方向.农药,1998,37(6):7~10
    [87] 沈阳化工研究院环保室.农药废水处理.北京:化学工业出版社,2000.55~56
    [88] 范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展.科学通报,2001,46(4):265~271
    [89] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95:69~96
    [90] 余家国,赵修建,陈文梅,等.太阳光TiO_2多孔纳米薄膜光催化降解有机
    
    磷农药的研究.太阳能学报,2000,21(2):165~170
    [91] 沈国清,杨代凤,郁伟,等.宁虫素对蔬菜、水稻害虫的毒力及药效特性研究.华东昆虫学报,2003,12(1):87~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700