用户名: 密码: 验证码:
沉淀转化法制备纳米氧化镁及表面改性工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文简要介绍了纳米氧化镁的性质、用途及国内外研究现状。重点讨论了沉淀转化法制备纳米氧化镁工艺过程的防团聚机理和表面改性的理论基础。提供了一套制备无团聚纳米氧化镁的工艺技术。论文首先对沉淀转化法制备纳米氧化镁的工艺作了进一步研究,然后进行了纳米氧化镁表面改性技术的研究。在制备工艺研究中,重点研究了液相反应过程和干燥过程。在表面改性技术研究中,采用不同改性剂对纳米氧化镁进行了无机和有机改性;通过单因素试验和正交试验,分别筛选出了优化的改性工艺条件;制备了一系列亲水型和亲油型的纳米氧化镁粉体。
     结果表明:
     (1)以聚乙烯醇(PVA)为分散剂,氯化镁和碳酸钠为原料,对沉淀转化法制备纳米氧化镁进一步优化的工艺路线是可行的。优化后的工艺条件为:分散剂PVA的加入量为10~13mL;水洗加醇洗洗涤,洗涤液PVA浓度为3‰~5‰;加料方式为优化加料方式;微波干燥;煅烧温度550℃;煅烧时间150min。在此工艺条件下所得氧化镁粒子的平均粒径为7.5nm。
     (2)以氯化铝为改性剂对纳米氧化镁进行无机改性后,其在水和乙醇介质中的分散性和稳定性较未改性为好,屏蔽紫外线的能力大大提高。
     (3)纳米氧化镁经硬酯酸钠改性后可得表面亲油化的粒子。适宜的工艺条件为:改性剂用量18%;改性温度50℃;改性pH值10.6;改性时间35min。在此条件下改性产品亲油化度值为0.492。
     (4)用钛酸酯偶联剂对纳米氧化镁分别进行了干法改性和湿法改性,改性后纳米氧化镁都呈亲油性。干法改性较佳的工艺条件为:改性剂用量3%~5%;改性时间2h;球磨转速240~300r/min。湿法改性工艺条件为:反应时间30min;改性剂用量10mL,反应温度50℃。钛酸酯偶联剂与氧化镁之间发生了化学键合。
The properties, applications and research situation at home and abroad of nanometer magnesia have been presented in this thesis. The theoretical analysis of preventing agglomeration mechanism in the process of preparing nanometer magnesia particle using precipitation-transforming-method (PTM) and the theoretical foundation for surface modification of nanometer MgO are mainly discussed. A set of craft for preparation of free-agglomeration nanometer MgO particle has been provided. In this thesis, the technology of preparing nanometer magnesia in PTM was further studied, and then surface modification of nanometer magnesia particle was discussed. Hydraulic reaction and drying process were focused on in the preparation process. Both inorganic and organic surface modifications for nanometer MgO were carried out using different modifiers, and the optimal process conditions have been selected by mono-factor and multi-factor orthogonal experiments respectively. A series of hydrophilic and hydrophobic nanometer magnesia particles have been fabricated.
    The experimental results are shown as follows:
    (1) It is possible that a further optimization for preparation of nanometer MgO in PTM with magnesium chloride and sodium carbonate as materials and PVA as the disperser. The optimal process conditions are: the amount of PVA added into the reactants is 10~13mL, the precipitant is washed by PVA distilled water(3%~5%wt PVA) and ethanol, the mixing order is optimal style, the drying time is 10min in microwave oven, the calcination is at 550C for 160min. Under these conditions, the
    
    
    
    average diameter of nanometer magnesia particles is about 7.5nm.
    (2) After inorganic modification with aluminum chloride, the dispersity and stability of nanometer magnesia particles in both the distilled water and ethanol become better, and the ability of UV shielding is greatly improved.
    (3) Nanometer magnesia is turned to hydrophobic after surface modification with sodium stearate. The feasible conditions are: the dosage of modifier reagent is 18%, the modification temperature is 50C, the time is 35min, pH is 10.6, and the hydrophobic value is 0.492.
    (4) Nanometer magnesia modified with titanatic coupling agent by wet method and dry method is hydrophilic. The optimum conditions of the dry-way modification are : the content of modifier is 3%-5%, the modifying time is 2h, the rotating speed of ball milling is 240~300rpm. The optimal conditions of the wet-way modification are: the reaction time is 30min, the modifier addition is 10mL, the temperature is 50C. The chemical bond occurred between the modifier and nanometer magnesia particles.
    Jiang Hongmei
    (College of chemical engineering) (Directed by Prof. Guo Renmin)
引文
[1] 张立德,牟季美.纳米材料学[M].沈阳:辽宁科技出版社,1994.
    [2] 林鸿溢.新的推动力—纳米技术最新进展[M].北京:中国青年出版社,2002.
    [3] 刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002.
    [4] 张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [5] 朱屯,王福明,王习东等.国外纳米材料技术进展与应用[M].北京:化学工业出版社,2002.
    [6] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [7] 张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.
    [8] 天津化工研究院编.无机盐工业手册(上册)[M].北京:化学工业出版社,1999.
    [9] 王训.纳米氧化镁制备工艺研究[D].西北大学化工系.2001
    [10] Z.H.He,X.M.Xiong,Y.S.Lai.Introduction of the Ultrafine MgO to the high Tc melt-texture Yba_2Cu_3O_(7-δ)[J]. Physica C282-287(1997)547-548.
    [11] 郑海涛,张娟.超细氧化镁催化合成乙酰丙酮的研究[J].辽宁化工,2002,31(1):1~3.
    [12] 涂忠亮,李丹,杨绪杰.纳米MgO催化双马来酰亚胺聚合研究[J].上海化工,2001(6).
    [13] 廖莉玲,刘吉平.固相法合成纳米氧化镁[J].精细化工,2001,18(12):696~697.
    [14] 王志奎,杨荣臻.超细粉体氧化镁的合成[J].功能材料,1990,30(5):557~558.
    [15] 张近.均匀沉淀法制备纳米氧化镁的研究[J].功能材料,1999,30(2):193~194.
    [16] 蒋红梅,赵晓玲,郭人民.纳米氧化镁的合成技术进展[J].西北大学学报,2002(增刊),144~146.
    [17] 郭人民,王训,赵晓玲.沉淀转化法制备纳米氧化镁沉淀过程的研究[J].化学工程,2002(增刊),292~294.
    [18] 陈改荣,徐绍红,杨军.硬脂酸溶胶凝胶法制备氧化镁纳米微粒的研究[J].功能材料,2002,33(5):521~523.
    [19] 杨荣臻.纳米级氧化镁团聚和解团聚行为的研究[J].陕西师范大学学报(自然科学版),2002,30(1):83~85.
    [20] 符晓荣,武光明,宋志棠等.新型溶胶-凝胶法制备纳米MgO薄膜的研究[J].无机材料学报,1999,14(6):828~832。
    [21] Yoon J G.J.Korean.Phys.Soc., 1996,29:Ps648~651.
    
    
    [22]BingZhao, Xianggong Wan, Wenhai Song.Nano-MgO particle addition in silver-sheathed(Bi,Pb)_2Sr_2Ca_2Cu_3Ox tapes[J]. Physica C 2000(337):138~144.
    [23]朱亚先,曾人杰,刘新锦等.MgO纳米粉制备及表征[J].厦门大学学报(自然科学版),2001,40(6):1256~1258.
    [24]武光明,符晓荣,宋世庚等.用喷雾热分解法制备MgO薄膜[J].材料研究学报,2000,14(1):72~75.
    [25]刘志强,李小斌,彭志宏等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化学通报,1999(7):54~57.
    [26]黄浪欢,曾令可,罗民华.湿化学法制备纳米粉体时团聚现象的探讨[J].佛山陶瓷,2001(10):11~13.
    [27]杨咏来,宁桂玲,吕秉玲.液相法制备纳米粉体时防团聚方法概述[J].材料导报,1998,12(2):11~13.
    [28]郭小龙,陈沙鸥,戚凭等.纳米陶瓷粉末分散的微观过程和机理[J].青岛大学学报,2002,15(1):78~78.
    [29]Z.S.Hu,J.X.Dong,G.X.Chen.Preparation of nanometer titanium oxide with n-butanol supercritical drying[J].Powder Techonlogy, 1999,101:205~210.
    [30]马亚鲁,张彦军,孙小兵.BaTiO_3超细粉体的溶胶—沉淀法制备及其表征[J].硅酸盐通报,2002(1):25~28。
    [31]邢欣,谢凯,盘毅等.纳米陶瓷微粉的表面性能研究进展[J].材料导报,2000,14(8):41~43.
    [32]杨林宏,张建成,沈悦.分散剂对纳米相二氧化锡制备的影响[J].上海大学学报(自然科学版),2002,8(3):209~212.
    [33]李强,高濂,栾伟玲等.纳米ZnO制备工艺中毛电位与分散性的影响[J].无机材料学报,1999,14(5):813~817.
    [34]唐芳琼,侯莉萍,郭广生.单分散纳米二氧化钛的研制[J].无机材料学报,2001,16(4):615~619.
    [35]酒金婷,李春霞,王彩凤等.纳米氧化锌在水中的分散行为及其应用[J].印染,2002(1):1~3.
    [36]酒金婷,葛钥,张树戎等.无团聚纳米氧化锆的制备及应用[J].无机材料学
    
    报,2001,33(4):398~400.
    [37]李国军,黄校先,郭景坤等.醇—水法制备纳米晶NiO粉体[J].功能材料,2002,33(4):398~400.
    [38]陈宗淇.胶体与界面化学[M].北京:高等教育出版社,2001.
    [39]白鸽玲.纳米级活性碳酸钙的制备[D].中南大学,2002.
    [40]郭小龙.纳米SiC颗粒复合Al_2O_3—ZrO_2陶瓷材料的强韧化机理的研究[D].青岛大学,2001.
    [41]朱国亮.纳米粉体/聚丙烯复合材料的制备及力学性能研究[D],浙江大学,2002.
    [42]Ding XingZhao,Qi ZhenZhong.Effect of hydrolysis water on the preparation of nano-crystalline titania powder via a sol-gel process[J].Mater Sci.Let, 1995,14:21~23.
    [43]张清辉.超细氧化铁红颜料粉体的表面改性研究[D].北京工业大学,2002.
    [44]郑水林.粉体表面改性[M].北京:中国建材工业出版社,1995.
    [45]吴崇浩,王世敏.纳米微粒表面修饰的研究进展[J].化工新型材料,2002,30(7):1~5.
    [46]何益艳,杜世国.无机填料的改性及其在复合材料中的应用[J].化工新型材料,2001,29(21):14~17.
    [47]郑水林.2000~2001年中国粉体表面改性技术研究进展[J].非金属矿,2002,25(增刊):3~7.
    [48]谷元.粉粒体表面改性技术及其应用[J].1994(1):33~40.
    [49]Chen.Y, Williams J S,Campbell S J.Increasal dissolution of ilmeniter induced by high-energy ball milling[J].Materials Science and Engineering, 1999,A271:485~490.
    [50]钱海燕,叶旭初,张少明.重质碳酸钙表面改性研究[J].非金属矿,2001,24(4):36~46.
    [51]Roy Goodman. Surface modification of minerals fillers.Industrial Mineral, 1995,3:49.
    [52]艳娥.纳米TiO_2的表面处理方法及改性效果表征[J].河北工业科技,2001,18(2):7~10.
    [53]鄢程,李竟先,潘志东.纳米TiO_2颗粒的表面改性研究进展[J].陶瓷学报,2002,23(1):62~66.
    [54]李艳,苏宜.纳米ZrO_2超细粉的制备及表面改性[J].安徽建筑工业学院学报(自然科学版),1999,7(2):57~59.
    [55]李晓娥,邓红,张粉艳等.纳米二氧化钛有机化改性工艺研究[J].无机盐工业,2001,33(4):5~7.
    [56]You,Kyu Jae,et al.Process for Producing ultrafine particles of colloidal calcium
    
    carbonate [P].US:5750086,1998-05-12.
    [57]周吉高,李包顺,黄校先等.纳米氧化锆粉体的表面改性研究[J].无机材料学报,1996,11(2):237~240.
    [58]任欢鱼,庄虹,刘永键.Fe_3O_4纳米颗粒的表面改性[J].化学研究,2003,14(1):11~13.
    [59]陈忠伟,余爱萍,罗美芳等.抗紫外纳米ZnO粉体的表面改性与脂肪酸改性机理探讨[J].化学世界,2002,15(11):227~230.
    [60]严玉蓉,赵耀明,汤京龙.超微细ZnO表面改性及PP/ZnO共混体系流变性能[J].中国塑料,2001,15(11):57~59.
    [61]林玉兰,王亭杰,覃操等.钛酸酯偶联剂对包硅铝钛白粉表面的有机改性[J].物理化学学报,2001,17(2):169~172.
    [62]Shi K,Tian LY.China Plastics, 1994,4(1):35.
    [63]千叶直树.通过钛酸酯类偶联剂进行的表面改性[J].橡胶参考资料,1993:22~26.
    [64]杜仕国.钛酸酯偶联剂在塑料中的应用[J].化工新型材料,1994(1):12~14.
    [65]张东兴,黄龙南,王荣国等.钛酸酯偶联剂对碳酸钙表面改性效果的研究[J].纤维复合材料,2000(1):70~80.
    [66]陆锦成.钛酸酯偶联剂[J].涂料工业,1994(16):42~45.
    [67]Egon Matijevic.Preparation and Characterization of well Defined powers and their Applications in Technology[J].Journal of the European Ceramic Society, 1998,18:1357~1364.
    [68]李正民,虞伟均.微粒大小及分布的电镜图像分析测定法[J].中国粉体技术,2000,6(3).
    [69]赵晓玲.纳米氧化铝的制备及改性工艺研究[D].西北大学.2003.
    [70]苏永天,王宇飞,杨晓军等.微波辐照下非晶态ZnO超细粉末的制备[J].云南化工,1994(4):3~5.
    [71]胡建人.微波快速烘干硅胶的生产工艺研究[J].包装工程,1999,20(1):14~18.
    [72]戴长虹,张显鹏,张劲松等.微波法合成AIN纳米微粉.1996,32(11):1221~1225.
    [73]崔爱丽,王亭杰,金涌等.TiO_2表面包覆Al_2O_3的机理和结构分析[J].高等学校化学学报,1998,19(11):1727~1729.
    [74]丁延伟,范崇政。纳米二氧化钛表面包覆的研究[J].现代化工,2001,21(7):18~22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700