用户名: 密码: 验证码:
纳米TiO_2包覆SiO_2粒子的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用两种工艺制备SiO2/TiO2粒子,方法一为以微乳法制备的SiO2粒子(100℃干燥)为核,在其上包覆TiO2层;方法二为采用溶胶-凝胶法制备的SiO2粒子(凝胶经24h老化)为核,通过溶胶-凝胶过程制备SiO2/TiO2粒子。
    通过对两种制备方法的影响因素的考察,最终得出结论: SiO2/EtOH比影响粒子的分散性,温度影响包覆反应的速度,水溶液pH值影响TBOT水解速率,Ti/Si比影响包覆层厚度,H2O/TBOT比影响包覆效果,分散剂对包覆粒子的分散性影响不显著。另外,方法一所制备的粒子的分散性及粒子的成熟与陈化时间有关,而方法二主要通过凝胶的老化来实现包覆粒子的熟化。
    通过采用X-射线衍射(XRD)、红外分析(IR)、透射电镜(TEM)、紫外吸收(UV-VIS)、X射线光电子能谱(XPS)等分析手段对于所制备的SiO2/TiO2粒子进行了表征。结果表明,550℃煅烧后的包覆粒子TiO2包覆层为锐钛矿型结构,实现了Si-O-Ti键的化学键合,并且在紫外光区包覆粒子表现为极强的光吸收能力。其中,方法一制备的SiO2/TiO2粒子,分散性较好,粒子接近球形,包覆较均匀、包覆层平均厚度为20~40nm。方法二制备的SiO2/TiO2粒子,分散性较差,形状不规则,包覆层厚度不均匀,在20~50nm之间。
    实验得到了制备SiO2/TiO2包覆粒子的最佳反应条件,方法一:温度为20℃;SiO2/EtOH比为2g/L;Ti/Si比(物质的量)为1/4;水溶液pH值为7; H2O/TBOT比(物质的量)为100;陈化时间为24小时;550℃煅烧;方法二:室温下,SiO2核为凝胶经24h老化;TBOT/H2O比(物质的量)为1/4;水溶液pH值为1~2;SiO2/EtOH比为0.1g/L;Si/Ti比(物质的量)为4/1。
    本文对于两种方法制备SiO2/TiO2粒子的包覆机理进行了探讨,认为在反应起始阶段两种方法的作用机制是一致的,都是TBOT的水解产物与SiO2核表面的羟基作用形成包覆层,而在反应后续阶段方法一是通过陈化阶段完成包覆粒子的成熟,方法二是通过凝胶的老化完成包覆粒子的熟化的。
In this paper, two methods for preparation of the SiO2/TiO2 particles were investigated. The first method is microemulsion method, which used SiO2 particles as the corn, and coated nanometer TiO2 phase on it. The second method is sol-gel process, in which titania gels were developed on silica gel particles dried 24 hours.
    The effect factors of those two processes were studied in the text, experimental results show that many process conditions influence the formation of SiO2/TiO2 particles, such as SiO2/EtOH, H2O/TBOT, temperature, pH of solution, Ti/Si, deposited time, dispersant and so on. The ratio of SiO2/EtOH determines disperse of SiO2 particles; temperature effects the formation rate of coated TiO2 layer, PH values of solution influences the hydrolysis of TBOT, the ratio of Ti/Si effects the TiO2-coated thickness on SiO2 particles. The coated layer is also influenced by H2O/TBOT. The dispersant added into solution have not remarkable effect on the dispersion of SiO2 particles. Moreover, deposited time for the first process gives the SiO2/TiO2 particles enough time to disperse and ripen; Coated particles make ripe during gels time from sols to gels in sol-gel process.
     The prepared samples of the SiO2/TiO2 particles have been characterized by powder X-ray diffraction (XRD), FT-IR spectroscopy, TEM, UV-VIS spectroscopy and X-ray photoelectron spectronscopy (XPS). The results show that coated-TiO2 layer could be transformed anatase-phase TiO2 by annealing in air at 550℃, and the Ti-O-Si bond could be formed at the particles interfaces. The nanometer titania-coated silica particles have strong absorption-light ability, especially to UV light. The SiO2/TiO2 particles prepared by the first method are spheric, the coated-TiO2 layers are uniform and homodisperse, the average thickness of TiO2 layers are 20~40nm. The SiO2/TiO2 particles prepared by Sol-Gel method are anomalous, the coated-TiO2 layers are uneven, the average thickness of TiO2 layers are 20~50nm.
    According to experimental data, the optimum conditions for
    
    
    synthesis of the SiO2/TiO2 particles are as follows: for the microemulsion method, temperature is at 20℃, SiO2/EtOH is 2g/L, the mole ratio of Ti/Si is 1/4, pH value of solution is 7, the mole ratio of H2O/TBOT is 100, deposited time is 24 h, annealed at 550℃. For the Sol-Gel method, the cores selected are the gels particle of silica dried at room temperature for 24 h; the mole ratio of H2O/TBOT is 1/4, pH value of solution is controll at 1~2, SiO2/EtOH is 0.1g/L, the mole ratio of Si/Ti is 4/1.
    The coating mechanisms of the SiO2/TiO2 particles prepared by two methods were studied in the text. At initiative stage, the reaction principle is the same, which should interact between the hydroysis offspring of TBOT and –OH groups adsorbed on silica core, and format Ti-O-Si chemically bonds. Then at followed stage, deposited time for the first process gives the SiO2/TiO2 enough time to disperse and ripen; and gels time from sols to gels in sol-gel process make particles ripe gradually.
引文
[1] 周少雄,纳米科技——21世纪的机遇与挑战,中国冶金,2003(4):8~11
    [2] 黄惠忠,纳米材料分析,现代仪器,2003(1):5~7
    [3] 江今朝,涂向真,纳米材料的性质和应用,江西化工,2002,(2):17~19
    [4] 光焕竹,郝东凯,王安齐等,纳米材料的研究和进展,哈尔滨商业大学学报:自然科学版,2002,18(4):474~475
    [5] 文自立,新兴纳米功能材料,青海科技,1995,2(4):18~20
    [6] 丁永良,纳米材料与水产养殖,中国渔业经济,2003(2):43~44
    [7] 杨幼坤,徐军,梁义田等,纳米材料的进步与应用,铸造技术,2002,23(6)397~399
    [8] 王帆,宋晓秋,柳翱等,纳米材料的性能及其在化学和医学方面的应用,长春工业大学学报:自然科学版,2003,24(1):7~9
    [9] J.Laperre,钱和生,黎明,纺织品生产中的纳米技术,新纺织,2003(4):5~11
    [10] 刘景春,韩建成,纳米SiO2材料的应用,硅酸盐通报,1998,17(6):52~54
    [11] 刘守新,孙承林,光催化剂TiO2改性的研究进展,东北林业大学学报,2003,31(1):53~56
    [12] Ding, Z; Zhu, H.Y; Lu, G.Q; Greenfield, P.F. Photocatalytic Properties of Titania Pillared Clays by Different Drying Methods, Journal of Colloid and Interface Science, 1999,209(1):193~199
    [13] Tetsu TATSUMA, Yoshihisa OHKO, Akira FUJISHIMA, Mechanism and Applications of Energy Storage Photocatalyst, Journal of The Science Society of Japen, 2003,24(10):13~18
    [14] 赵红雁,张敬畅,曹维良等,纳米TiO2光催化降解苯酚,石油化工,2003,32(3):247~250
    [15] 左开慧,郑志祥,汤文明等,用于环保的功能材料,合肥工业大学学报:自然科学版,2003,26(1):85~91
    [16] 徐炽焕,日本光催化技术的发展,国际化工信息,2003,(4):16~17
    [17] 解宪英,纳米级二氧化钛的制备及其应用进展,上海化工,2001,26(5):16~18
    [18] 廖海达,高旭,胶溶法制备超细二氧化钛,广西民族学院学报:自科版,1999,5(4):22~24
    [19] 林玉龙,魏雨,贾振斌,纳米二氧化钛的液相合成,微纳电子技术,2003,40(3):14~18,22
    [20] 林元华,袁方利,化学沉淀法制备纳米金红石型TiO2粉体及其性能表征,材料科学与工艺,1999,7(2):60~64
    [21] 苗鸿雁,胡秀兰,丁常胜等,光催化TiO2纳米粉体的水热合成,西北轻工业学院学报:自然科学版,2002,20(4):38~40
    
    
    
    [22] 李竟先,吴基球,庄志强,TiO2纳米颗粒水热法制备研究进展及反应机理的初步研究,中国陶瓷工业,2001,8(2):29~33
    [23] 胡娟,邓建刚,刘建宁等,纳米级二氧化钛制备方法的比较研究,材料科学与工程,2001,19(4):71~74
    [24] 杜作娟,古映莹,水热法合成锐钛矿型纳米二氧化钛,精细化工中间体,2002,32(5):24~25
    [25] 李炜,云择拥,纳米二氧化钛的制备与应用,天津化工,2002(2):30~32
    [26] 唐阳清,周馨我,纳米TiO2的制备方法,材料报导,1995,9(3):20~26
    [27] 曹建军,王兰武,郑小敏等,锐钛型纳米二氧化钛的制备与应用,攀钢技术,2002,25(2):15~19
    [28] Hoffman M N, Martin S T, Evironmental Applications of Smeconductor Photocatalysis, Chemical Reviews, 1995,95:69~76
    [29] 沈伟韧,光催化反应及其在废水处理中的应用,化学进展,1998,10(4):354~364
    [30] 刘守新,孙承林,光催化剂TiO2改性的研究进展,东北林业大学学报,2003,31(1):53~56
    [31] 李常雁,武鹏,胡瑞生等,纳米材料在环境保护方面的应用,内蒙古科技与经济,2003(5):74~74
    [32] 郭英凯,刘晓薇,张秀起等,纳米二氧化钛表面改性研究,无机盐工业,2003,35(3):25~26
    [33] 林玉兰,王亭杰,覃操等,硅铝氧化物二元包覆钛白粉颗粒的有机改性,高等学校化学学报,2001,22(1):104~107
    [34] 童忠良,丁浩,纳米SiO2粉体的制备与研究,建筑装饰材料世界,2003(1):44~46
    [35] 谢海安,戴宏程,超细二氧化硅的改性研究及其应用,湖北化工,2001,5:23~25
    [36] 苏学军,郑典模,纳米SiO2的应用研究进展,江西化工,2002,1,6~10
    [37] 纪崇甲,球形微米和纳米级SiO2的生产工艺,中国粉体技术,2003,9(1):36-37
    [38] 许珂敬,杨新春,段贤峰等,多孔纳米SiO2粉体的制备与表征,硅酸盐通报,2001,20(1):58~62
    [39] 王玉琨,钟浩波,吴金桥,微乳液法制备条件对纳米SiO2粒子形貌和粒径分布的影响,精细化工,2002,19(8):466~468,476
    [40] Takeshi OHWAKI, Takeshi MORIKAWA, Koyu AOKI, Ryoji ASAHI, Yasunori TAGA, Noritate ISOMURA, Characterization of Nitrogen-doped Titanium Oxide Photocatalyst Activated by Visible-light, Journal of The Surface Science Society of Japan, 2003,24(1):25~30
    [41] 董文庭,朱从善,表面修饰的CdO纳米粒子的光谱特点,材料研究学报,2000,14(3):303~306
    [42] Vollath D,Szabo DV.Coated nanoparticles:a new way to improved
    
    
    nanocomposites.Journal of Nanoparticles Research.1999,1(2):235
    [43] Li Qunyan, Dong Peng, Preparation of nearly monodisperse multiply coated submicrospheres with a high refractive index, Journal of Colloid and Interface Science, 2003,261(2):325~329
    [44] Quaranta, N.E.;Soria, J.;Corberan, V.Cortes; Fierro, J.L.G. Selective Oxidation of Ethanol to Acetaldehyde on V2O5/TiO2/SiO2 Catalysts, Journal of Catalysis,1997,171(1):1~13
    [45] 王森林,TiO2/SiO2的制备及其光催化性能,华侨大学学报(自然科学版),2002,23(2):129~132
    [46] Fu Xiaoan,Qutubuddin Syed, Synthesis of titania-coated silica nanoparticles using ono-ionic water-in-oil, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,178(1-3): 151-156
    [47] Kim Ki Do,Bae Hyun Joo,Kim Hee Taik,Synthesis and characterization of titania-coated silica fine particles by semi-batch process, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003,224(1-3): 119-126
    [48] Guo Xingcai, Dong Peng, Multistep coating of thick titania layers on monodisperse silica nanospheres, Langmuir, 1999,15(17):5535-5540
    [49] Hanprasopwattana A,Srinivasan S,Sault A.G,Datye A.K, Titania coatings on monodispersesilicaspheres(characterization using 2-propanol dehydration and TEM), Langmuir, 1996,12(13): 3173-3179
    [50] Schrijnemakers K,Impens N.R.E.N,Vansant E.F.Deposition of a titania coating on silica by means of the chemical surface coating,Langmuir,1999,15(18):5807-5813
    [51] Mikrajuddin, F.Iskandar, K.Okuyama and F.G.Shi, J.Appl.Phys, 2001(89):6431~6434
    [52] Ryu DH, Kim SC, Koo SM, Kim DP, Deposition of titania nanoparticles on spherical silica, JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2003,26 (1-3): 489-493
    [53] Hua FJ, Sun J, Hong K, Gao L, Yang YL, Synthesis of nanoscale shell-core titania coated silica particles in the presence of polyether polyamine and the phase transition, CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2002,18 (1): 70-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700