用户名: 密码: 验证码:
纳米粒子的制备、表面修饰及PVC、纤维素的改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的工作主要分为四个部分进行:
    第一部分,高分子网络法制备纳米粒子。采用羟丙基甲基纤维素作为空间分散剂制备纳米ZnO,和没加入空间分散剂制备的纳米ZnO相比,粒径小,不易团聚,并且在紫外-可见光范围内有较强的吸收,并还研究了在制备过程中添加不同量的羟丙基甲基纤维素对纳米ZnO粒径的影响。
    
    第二部分,纤维素的接枝共聚物的合成。采用氧化-还原引发体系。引发甲基丙烯酸甲酯和羟丙基甲基纤维素发生接枝共聚反应。研究了接枝物在不同溶剂中溶解能力,同时比较了它们的热性能,发现接枝物的热分解温度比HPMC和PMMA有所提高,本论文还探讨了反应机理。
    
    第三部分,纳米ZnO、TiO2的表面修饰、表征及机理探讨。采用非离子型表面活性剂或复合表面活性剂先对纳米粒子进行表面处理,然后在其表面接枝上MMA或MMA和BA,得到表面具有亲油性的纳米复合粒子。FT-IR和TEM表明在纳米ZnO、TiO2表面有接枝层存在。TG研究了复合粒子的热性能随包覆率的变化,同时还对复合粒子的紫外吸收能力进行了测定,表明复合粒子在紫外-可见区域具有较强的紫外吸收。可应用于涂料、化妆品等领域。运用正交设计法对纳米复合粒子制备过程中的各因素进行了规律性的研究。同时对纳米粒子表面修饰机理进行了探讨。
    
    第四部分,PVC的填充改性。用表面改性的纳米ZnO、TiO2复合粒子填充PVC,使PVC的韧性和强度同时提高,并根据实验数据,建立数学模型,得出了实验最佳条件。
The paper is composed of the following four parts:
    In the first part, nanopaticles were prepared by macromolecule network methods. Utilizing Hydroxypropyl methyl cellulose (HPMC) as steric stabilizer, the reaction precursors [Zn2(OH)2CO3·HPMC] were synthesized. Comparing to ZnO nanoparticles prepared in absence with HPMC, ZnO nanoparticles obtained by calcinating the precursor [Zn2(OH)2CO3·HPMC] have higher dispersibility, smaller size and are more difficult to agglomerate, and ZnO nanoparticles have a strong absorbance of UV wave. In addition, effect of different concentration of HPMC polymer on the nanoparticles diameters was studied during the synthesized procession.
    In the second part, celluloses grafting copolymer were synthesized. Using K2S2O8-NaHSO3 initiation system, the graft copolymerization of methyl methacrylate and HPMC was carried out. Solution power of graft copolymer in the different solvents was studied. By comparing graft copolymer with HPMC and PMMA, graft copolymer decomposition temperature is higher than that of HPMC and PMMA. Reaction mechanisms were yet elucidated in the article.
    In the third part, we investigated the different conditions, characterization and mechanism of nano-ZnO, TiO2 surface modification. First, nanoparticles surface was treated by nonionic surfactant or composite surfactant, and then, MMA or MMA and BA were grafted at the nanoparticle surface. We got hydrophobic property of nanocomposite particles surface. FT-IR spectrum and TEM photograph showed that MMA or MMA and BA had been grafted at the nanoprticle surface. Interrelation between thermal property and coating efficiency of nanocomposite particles were studied by TG, and its’ adsorbing ultraviolet ability detected by UV spectrophotometer showed that nanocomposite particles have a strong absorbance in the UV region. so, it can been applied in the cosmetics,coating, et al. Using orthogonal design method. The effects of different factors on the adsorption efficiency
    
    
    and coating efficiency were studied. At the same time, the surface modification mechanism was preliminarily elucidated.
    In the fourth part, mechanical properties of PVC were changed by filling. Surface modified nano- ZnO, TiO2 composite particles were added into PVC. The results showed that the reinforcing and toughening of PVC had all increased. We established the mathematics model on the basis of experiment data, and then, obtained the best experiment conditions.
引文
[1] 张立德, 牟季美, 纳米材料和纳米结构[M], 北京: 科学出版社, 2001: 16
    [2] Henglein A, Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles, Chem. Rev[J]. 1989, 89: 1861
    [3] 徐国财, 张立德, 纳米复合材料[M], 北京: 化学工业出版社, 2002
    [4] 段波, 赵兴中, 李星国, 等, 超微粉制备技术的现状与展望, 材料导报[J]. 1995,9(3):31-34
    [5] 唐波, 葛介超, 王春先, 等, 金属氧化物纳米材料的制备新近展, 化工进展[J]. 2002. 10: 707
    [6] 王疆瑛, 贾殿赠, 陶明德, 固相配位化学反应法合成ZnO纳米粉体, 功能材料[J]. 1998. 6: 29
    [7] 俞建群, 贾殿赠, 郑毓峰, 纳米氧化镍、氧化锌的合成新方法, 无机化学学报[J]. 1999.1. 95
    [8] 俞建群, 贾殿赠, 张校刚, 等, 纳米PbS的合成新方法——一步室温固相化学反应法, 分子科学学报[J]. 1998. 2: 126
    [9] Tadao Sugimoto, Xingping Zhou Atsushi Muramatsu., Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel-Sel Method 3. Formation Process and Size Control, Colloid and Interface Science[J]. 2003. 259: 43-52.
    [10] Jie He, Xiao-Ning Zhao, Jun-Jie Zhu, et al, Preparation of CdS Nanowires by the Decomposition of the Complex in the Presence of Microwave irradiation, Crystal Growth[J]. 2002. 240: 389-394.
    [11] 李东升, 王文亮等, 纳米MnO2制备与表征, 化学研究与应用[J]. 2002 14(5):583-586
    [12] Fang Zhenyi, Chai Yichao, Hao Yongliang, et al, CVD Growth of Bulk Polycrystalline ZnS and its Optical Properties, Crystal Growth[J]. 2002. 237-239: 1707-1710.
    [13] XiaogangI Peng, Liberato Manna, Weidong Yang Shape control of CdSe nanocrystals, Nature[J]. 2000, 404(6773): 59-61
    [14] Smalley R. E., Yokobson B. I, The Future of the Fullerenes, Solid State Commun[J]. 1998, 107: 597-606
    [15] Eduardo A. Toledo, Yoshitaka Gushiken, Sandra C.de Castro, Antimony(Ⅲ) Oxide Film on a Cellulose Fiber Surface: Preparation and Characterization of the Composite, Colloid and Interface[J]. 2000. 225: 455-459
    [16] 宁桂玲, 常玉芬, 刘延来等, 含羧/酯基有机分子对氧化铝微粒形态调控作用研究, 高等学校化学学报[J]. 2002, 3: 345-348
    [17] Shukla S, Seal S, Vanfleet R, Sol-Gel Synthesis and Phase Evolution Behavior of Sterically Stabilized Nanocrystalline Zirconia, Sol-Gel and Technology[J]. 2003, 27: 119-136
    [18] Zongping Shao,Guoxing Xiong,Yanjine Ren et al, Low temperature synthesis of perovskite
    
    
    oxide using the adsorption properties of cellulose, Material Science[J]. 2000,35: 5639-5644
    [19] Nevell T P, Zeronian S H, Cellulose Chemistry and Its Application. Edited by Nevell T P, Zeronian S H. New York, Wiley and Sons, 1985: 9, 15
    [20] 唐爱民, 梁文芷, 纤维素的功能化, 高分子通报[J]. 2002,4,1~8
    [21] Dawsey T R. McCormick C L., The Lithium Chloride/Dimethylacetamide Solvent for Cellulose: a literature Review, J. Macromol. Sci.-Rev. Macromol. Chem.Phys[J]. 1990, C30(384), 405.
    [22] Chandra R, Rustgi R, Prog Polym Sci[J]. 1998, 23, 1273
    [23] Shukia S R, Athalye A R., Graft-Copolymerization of Glycidyl Methacrylate onto Cotton Cellulose, Applied Polymer Science[J]. 1994. 54: 279-288.
    [24] Ott E, Spurlin H M, Mildred W. et al.,Cellulose and Cellulose Derivatives, Parts 1-2, Vol. 5 of High Polymers,2nd ed., Interscience Publishers. Inc., New York, 1995
    [25] 高洁, 汤烈贵主编, 纤维素科学[M]. 北京: 科学出版社, 1996年第一版: 41
    [26] Takshashi A. Sugahara Y, Hirano Y. J Polym Sci, Part A: Polym Chem[J]. 1989. 27: 3817
    [27] Luna-Xavier. J. L., Bourgeat-Lami. E., Guyot A. Hybrid Silica/Polymer Nanoparticles through Emulsion Polymerization, Materials Research Society [J]. 2001. 628: 947
    [28] Jaroslav Stejskal, Pavel Kratochvil, Stevern P, et al, Polyaniline Dispersions. 6. Stabilization by Colloided Silica Particles, Macromolecules[J]. 1996, 29: 6814-6819
    [29] Haoying Li, Yunfa Chen, Chengxiang Ruan, et al, Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gol routes, Nanoparticle Research[J]. 2001. 3: 157-160.
    [30] Elodie Bourgeat-Lami, Jacques Lang, Encapsulation of Inorganic Particles on the by Dispersion Polymerization in Polar Media, Colloid and Interface Science[J]. 1999. 210: 281-289.
    [31] Junge Lu, Jnda Fan, Ruisong Xu, et al, Synthesis of Alkyl Sulfonate/Alcohol-Protected γ-Fe2O3 Nanocrystals with narrow size distributions, Colloid and Interface Science[J]. 2003. 258: 427-431.
    [32] Kislenko V N, Verlinskaya R M, Adsorption of Polyacrylic Acid and Its Copolymers with Acrylonitrile on Zinc Oxide Particles, Colloid and Interface Science[J]. 2002. 250: 478-483.
    [33] 丁延伟, 范崇正, 纳米二氧化钛表面包覆的研究, 现代化工[J]. 2001, 21: 18-22
    [34] 毋伟, 陈建锋, 卢寿慈, 力化学法钛白聚苯乙烯固相接枝改性机理研究, 高分子材料科学与工程[J]. 2002. 18: 30-34
    [35] Haiyin Yu, Jiashan Gu, Mingyun Guan, et al, Surface Modification of Nano-SiO2 by Grafting PMMA/PBA, Chinese Journal of Chemistry[J]. 2003. 21: 1297-1299.
    [36] Xuedong Wu, Dapu Wang, Shengrong Yang, Preparation and Characterization of
    
    
    Stearate-Capped Titanium Dioxide Nanoparticles, Colloid and Interface Science[J]. 2000. 222: 37-40.
    [37] Bourgeat-Lami E, Espiard Ph, Guyot A, Polu(ethyl acrylate) Latexes Encapsulating Nanoparticles of Silica: 1. Functionalization and Dispersion of Silica, Polymer[J]. 1995. 36: 4385-4389.
    [38] Espiard Ph, Guyot A, Polu(ethyl acrylate) Latexes Encapsulating Nanoparticles of Silica: Grafting Process onto Silica, Polymer[J]. 1995. 36: 4392-4395.
    [39] Jose-Luiz Luna-Xavier, Alain Guyot, Elodie Bourgeat-Lami.,Synthesis and Characterization of Silica/Poly(Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator, Colloid and Interface Science[J]. 2002. 250: 82-92.
    [40] 张桂云, 张联, 李静, 等, 共混改性聚氯乙烯的研究状况, 高分子材料科学与工程[J]. 1998. 3: 4
    [41] 赵磊, 梁国正, 秦华玉, 等, 我国聚氯乙烯增韧改性研究的最新进展, 中国塑料[J]. 2000. 14(1): 8
    [42] 黄兴, 国内硬质PVC共混增韧改性研究现状, 塑料科技[J]. 1999. 2: 32
    [43] 张大雷, 硬聚氯乙烯制品的增韧改性研究, 聚氯乙烯[J]. 1994. 3: 20-24
    [44] kurauchi T, Ohto T, Energy, Absorption in Blends of Polycarbonate with ABS and SAN, Mater Sci[J]. 1984. 19(5): 1699-1709
    [45] Bela Pukanszky, Frans H J, Maurer J W, Boode J W, Impact Testing of Polypropylene Blends and Composite, Polym Eng Sci[J]. 1986. 26(11): 760-767
    [46] Jancar J, Dibenedetto A T, Dianselmo A, Effect of Adhesion on the Fracture Toughness of Calcium Carbonate-Filled Polypropylene, Polym Eng Sci[J]. 1993. 33(8): 559-563
    [47] Liu Z, Zhu X, Li Q, et al, Effect of Morphology on the Brittle Ductile Transition of Ploymer Blends: 5. the role of CaCO3 Particle Size Distribution in HDPE/CaCO3 Composite, Polymer[J]. 1998. 39(10): 1863-1868
    [48] 李东明, 漆宗能, 碳酸钙增强聚丙稀复合材料的断裂韧性, 高分子材料科学与工程[J]. 1991. 7(2): 18-25
    [49] 胡圣飞, 徐声钧, 李纯青, 等. 纳米(nm)级无机粒子对塑料增韧增强研究进展, 塑料[J]. 1998. 27(4): 14
    [50] 陈中华, 黄承亚, 龚克成, 聚氯乙烯/聚丙烯酸酯改性白泥纳米复合材料的制备及力学性能 塑料工业[J]. 2000. 28(1): 22-24
    [51] 曾晓飞, 陈建峰, 王国全, 纳米CaCO3/PVC复合材料结构形态与冲击性能, 高校化学工程学报[J]. 2002. 16(4): 203-206
    [52] 祖庸, 雷闫盈, 王训, 等, 纳米ZnO的奇妙用途, 化工新型材料[J]. 1999. 27(3): 14-16
    
    [53] 陈国新, 赵石林, 纳米紫外屏蔽透明涂料, 化工新型材料[J]. 2003. 31: 24-26
    [54] Shr-Nan Bai, Jen-Shame Shieh, Tseung-Yuen Tseng, Characteristic Analysis of ZnO Varistors Made with Spherical Precipitation Powders, Materials Chemistry and Physics[J]. 1995. 41: 104-109.
    [55] Shukla S, Seal S, Vij R, et al, Effect of HPC and Water Concentration on the Evolution of Size,Aggregation and Crystallization of Sol-gol nano Zirconia, J Nanoparticle Research[J]. 2002, 4: 553-559.
    [56] Kun–Yuan Chen, Yu–Wen Chen, Synthesis of SpHerical Titanium Dioxide Particles by Homogeneous Precipitation in Acetone Solution, J Sol-Gol Science and Technology[J]. 2003. 27: 111-117.
    [57] Antonis Avranas, Panagiotis Iliou. Interaction between HPMC and the Anionic Surfactants Hexane-,Octane-, and Decanesulfonic acid Sodium salts, as Studied by Dynamic Surface Tension Measurements, J Colloid and Intterface Science[J]. 2003. 258: 102-109.
    [58] 宋贤良, 温其标, 郭桦, 以纤维素为基础的功能材料, 高分子通报[J]. 2002. 4: 47-52
    [59] 刘引烽, 桑问斌, 钱永彪, 等, 聚合物在纳米微粒制备中的应用, 高分子通报[J]. 1998. 1: 11-16.
    [60] Chandramalar A V M, Kua S K, Chan C Y, et al, Flow Behaviour of Titanium Dioxide Dispersions in the Presence of 2-Hydroxyethyl cellulose, J Colloid Polym Sci[J]. 2000. 278: 485-489.
    [61] Jun Zhang, Lingdong Sun, Chunsheng Liao, et al, A simple Route towards Tubular ZnO, Chem Comm[J]. 2002. 10: 262-263.
    [62] 张宪玺, 王晓娟, 翟冠杰, 等, 碱式碳酸锌煅烧制备纳米氧化锌, 无机化学学报[J]. 2002. 18: 1037-1041
    [63] 丁士文, 张绍岩, 刘淑娟, 等, 直接沉淀法制备纳米ZnO及光催化性能, 无机化学学报[J]. 2002. 18: 1015-1019
    [64] Hebeish A, Waly A, Abdel-Mohdy F A, et al, Synthesis and Characterization of Cellulose Ion Exchangers, Applied Polymer Science[J]. 1997. 66: 1029-1037.
    [65] Zheng B, Zhang Charles L, Mccormick., Graft Coolymerization of Cellulose with Structopendant Unsaturated Ester Moieties in Homogeneous Solution, Applied Polymer Science[J]. 1997. 66: 307-317.
    [66] Gulten Gurdag, Muzaffer Yasar, M.. All Gurkaynak. Graft Copolymerization of Acrylic on Cellulose: Reaction Kinetics of Copolymerization, Applied Polymer Science[J].1997. 66: 929-934.
    [67] Yebang Tan, Liming Zhang, Zhuomei Li, Synthesis and Characterization of New Amphoteric Graft Copolymer of Sodium Carboxymeathyl Cellulose With Acrylamide and
    
    
    Dimethylaminoethyl Methyacrylate, Applied Polymer Science[J]. 1998. 69: 879-885
    [68] Xiaoyan Yuan, Jing Sheng, Fei He, et al, Surface Modification of Acrylonitrile Copolymer Membranes by Grafting Acrylamide. Ⅰ. Initiation by Ceric Ions, Applied Polymer Science[J]. 1997. 66: 1521-1529.
    [69] Gupta K C, Sujata Sahoo, Grafting of Acrylonitrile and Methyl Methacrylate from their Binary Mixture on Cellulose Using Ceric Ions, Applied Polymer Science[J]. 2001. 79: 767-778.
    [70] Tian B-C, Gao J-P, Yu J-G, et al, Graft Copolymerization of Butyl Acrylate onto Pullulan Using Manganic Pyrophosphate as Initiator, Applied Polymer Science[J]. 1992. 45: 591-595.
    [71] Ghodalo C, Eromosele, Theophilus J, et al, Graft Copolymerization of Methylmethacrylate onto Caesarweed Fibers by the Potassium Permanganate-Toluene edox System, Applied Polymer Science[J]. 1993. 50: 645-649.
    [72] 北京大学化学系胶体化学教研室. 胶体与界面化学实验[M]. 北京. 北京大学出版社. 1993. 7
    [73] 沈钟, 王果庭, 胶体与表面化学[M]. 北京. 北京大学出版社. 2001.
    [74] Petrella A.; Cozzoli P D.; Curri M L, et al, Photoelectrochemical Study on Photosynthetic Pigments-Sensitized Nanocrystalline ZnO, Bioelectrochemistry[J]. 2004. 63: 99-106
    [75] 酒金婷, 李春霞, 王彩风, 纳米氧化锌在水中的分散行为及应用, 印染[J]. 2002. 28(1): 1-4.
    [76] 宇海银, 吴正翠, 关明云, 超细SiO2表面高分子化及其在PVC复合材料中的应用, 应用化学[J]. 2003. 20: 946-950.
    [77] Susan Kapsabelis, Clive A. Prestidge, Adosorption of Ethyl(hydroxyethyl)cellulose onto Silica Particles: The Role of Surface Chemistry and Temperature, Colloid and Interface Science[J]. 2000. 228: 297-305.
    [78] Fakhrul-razi A, Isam Y M, Qudsieh, et al.,Graft Copolymerization of Methyl Methacrylate onto Sago Starch Using Ceric Ammonium Nitrate and Potassium Persulfate as Redox Initiator Systems, Applied Polymer Science[J]. 2001. 82: 1375-1381.
    [79] Mahamuni S, Bendre B S, Leppert V J, et al, ZnO Nanoparticles Embedded in Polymeric Matrices, Nanostrured Materials[J]. 1996. 7(6): 659-666.
    [80] Haoying Li, Yunfa Chen, Chengxiang Ruan, et al., Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel routes, Nanoparticles Research[J]. 2001. 3: 157-160.
    [81] 陈爽, 李楠, 刘维民, 油酸修饰PbO纳米微粒的合成及结构表征, 化学研究[J]. 2002. 13: 5-8.
    [82] 高俊刚, 李源勋, 高分子材料[M]. 北京. 化学工业出版社. 2002.
    [83] Hergeth W D, Steinau U J,Bittrich H J,et al.Polymerization in the Presence of Seeds.Part
    
    
    IV:Emulsion Polymers Containing Inorganic Filler Particles, Polymer [J]. 1989. 30(2): 254-258.
    [84] Kim J -W, Shim J –W, Bae J –H, et al. Titanium Dioxide/poly (methyl methacrylate)Composite Microspheres Prepared by in Situ Suspension Polymerization and Their Ability to Protect against UV rays, Colloid Polym Sci[J]. 2002. 280: 584-588.
    [85] Caris C H M, Van Elven L P M, Van Herk A M, et al.Polymerization of MMA(methyl methacrylate) at the Surface of Inorganic Submicron Particles, Br Polym[J]. 1989. 21(2): 133-140.
    [86] Stephen M, Connor O, Stevin H, et al.Synthesis and Characterization of Thermally-Responsive Hydroxypropyl Methylcellulose Gel Beads, Journal of Applied Polymer Science[J]. 1997. 66: 1279.
    [87] Chandramalar A V M,.Kua S K,.Chan C Y, et al. Flow Behaviour of Titanium Dioxide Dispersions in the Presence of 2-hydroxyethyl cellulose, Colloid Polym Sci[J]. 2000. 278: 485-489.
    [88] Antonis Avranas, Panagiotis Iliou., Interaction between Hydroxypropylmethylcellulose and the Anionic Surfactants Hexane-, Octane-, and decanesulfonic Acid Sodium Salts,as Studied by Dynamic Surface Tension Measurements, Colloid and Interface Science[J]. 2003. 258: 102-109.
    [89] Jiang W H, Han S J, Viscosity of Nonionic Polymer/Anionic Surfactant Complexes in Water, Colloid and Interface Science[J]. 2000. 229: 1-5.
    [90] 邹玲, 乌学东. 陈海刚,等, 表面修饰二氧化钛纳米粒子的结构表征及形成机理, 物理化学学报[J]. 2001. 17(4): 305-309.
    [91] Jin-Woong Kim, Jong-Won Shim, Ji-Hyun Bae., Titanium Dioxide/Poly(methyl methacrylate) Composite Microspheres Prepared by in Situ Suspension Polymerization and their Ability to Protect against UV Rays, Colloid Polym Sci[J]. 2002. 280: 584-588.
    [92] 覃兆海, 陈馥衡, 谢毓元, 化学进展[J]. 1998. 1: 63.
    [93] Gulten Gurdac, Muzaffer Yasar, Graft Copolymerization of Acrylic Axid on Cellulose Reaction Kinetics of Copolymerization, Applied Polymer Science[J]. 1997. 66: 929-934.
    [94] 付东声, 朱光明, PVC的共混改性研究进展, 塑料[J]. 2003. 3: 60-64
    [95] 游长江, 石小华, 溶解度参数预测共混物的相容性, 高分子材料科学与工程[J]. 2001. 17(1): 162-165
    [96] 王培铭, 无机非金属材料学[M], 上海; 同济大学出版社, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700