用户名: 密码: 验证码:
纳米级金属氧(硫)化物的制备及结构特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先论述了纳米材料与技术的基本内涵与概念、纳米材料的特性和制备
    方法,及国内纳米材料领域取得的进展等。
    本文选择二氧化钛纳米粉体、硫化铋纳米颗粒和纳米棒、硫化镉纳米颗粒和
    纳米棒这些纳米材料为研究对象,准备以新颖的方法完成它们的制备,并用各种
    技术手段对它们进行表征,以便为这些材料提供新的合成方法。
    纳米二氧化钛粉体的制备方法有很多种,为了适合于工业化生产的要求,我
    们选用廉价的表面活性剂,利用它的吸附和包覆作用控制钛酸四丁酯的水解来制
    备二氧化钛纳米粉体。另外讨论了表面活性剂的种类,用量以及 pH 值对制备二
    氧化钛纳米粉体的影响。
    本文选用了一种比较温和的化学合成方法—水热法和溶剂热法来研究硫化
    铋纳米材料的制备。首先利用水热和溶剂热法在不同的反应时间和反应温度下分
    别制备硫化铋纳米颗粒和纳米棒,并讨论了反应机理和纳米棒形成的生长机理以
    及反应配比、反应时间和反应温度对样品的影响;然后利用表面活性剂辅助的溶
    剂热法制备硫化铋纳米棒束,研究了表面活性剂在制备硫化铋纳米棒束过程中所
    起的作用,讨论了表面活性剂的种类对硫化铋形貌的影响,并对硫化铋纳米棒束
    的形成作了解释。
    近几年来,由于纳米级 II-VI 族二元金属氧(硫)化物在光电子领域的巨大
    潜能和多方面应用,这种半导体晶体以及纳米晶体的合成制备取得了快速的进
    步。目前制备这种化合物的方法很多, 但是在应用时还是有一些局限性。现在人
    们正努力简化合成 II-VI 族半导体的方法并尽量避免使用复杂化合物和有毒物
    质。水热合成法是一种高效的方法,可以制备出金属氧(硫)化物。因此本文将
    就利用水热法合成法制备硫化镉(CdS)纳米颗粒和纳米棒进行报道。
The thesis firstly described the basic concept and meaning of nanomaterials and
    nanotechnology, investigated the properties and preparation methods of nanomaterials.
    Additionally, the progress of nanomaterials and nanotechnology in our country in
    recent years were also discussed.
     In this thesis, TiO2 nanopowders,bismuth sulfide(Bi2S3) nano-material and
    cadmium sulfide(CdS) nano-material were selected to find their simple and novelty
    synthesis methods. Thus we may provide executable methods for industry production
    of these materials.
     There have been many methods to prepare TiO2 nanopowders. However, these
    methods have many disadvantages respectively. In order to provide a low-cost method
    to industrialized product TiO2 nanopowders, we selected a surfactant-controlled
    hydrolysis method to prepare TiO2 nanopowders. The experiment results showed that
    the surfactant plays a crucial role in the preparation of TiO2 nanopowders. The
    influences of the kind and amount of surfactant and pH on the preparation of TiO2
    nanopowders were also discussed.
     Hydrothermal and solvothermal synthesis are effective methods to prepare
    nanomaterials under milder conditions. Bi2S3 nanopowders and nanorods were
    prepared with hydrothermal and solvothermal method at different reaction time and
    temperature respectively. The reaction mechanism of Bi2S3 nanopowders and
    formation mechanism of Bi2S3 nanorods, the effects of temperature and time were
    discussed. Bundles of Bi2S3 nanorods were prepared by using surfactant-assisted
    solvothermal method. The results showed that surfactant played an important role in
    controlling the morphology of the product. The influence of the kind of surfactant on
    the bundles of Bi2S3 nanorods was discussed. The possible formation mechanism of
    the bundles of Bi2S3 nanorods was also investigated.
     The preparation and characterization of II-VI nanoscale compound
    semiconductors have caused much attention in the past several years due to their great
    potential in many optoelectronic application. So far, a number of reactions have been
    utilized to prepare II-VI family compounds for quite some time, but there are some
    limitations to their utility. Now, there have been considerable efforts to simplify the
    synthetic route to II-VI semiconductors and avoid the use of complex reactions and
     II
    
    
    摘 要
    toxic reagents. Hydrothermal synthesis is an effective method to prepare metal
    oxide(sulfide). CdS nanopowders and nanorods were prepared with hydrothermal
    method at different reaction time and temperature respectively.
引文
1 张立德,牟季美. 纳米材料和纳米结构. 科学出版社,2001:2~5
    2 张立德. 纳米材料研究及其发展趋势和展望. 高科技与产业化.1994, (4):17~20
    3 苏品书. 超微粒子材料技术. 武汉出版社,1989:56
    4 张立德,牟季美. 开拓原子和物质的中间领域-纳米微粒与纳米固体. 物理.
     1992,21(3):167
    5 尾崎义治,贺集诚一朗. 纳米微粒导论. 赵修建,张联盟译. 武汉工业大学出
     版社,1991:121
    6 王世敏,许祖勋,傅晶. 纳米材料制备技术. 化学工业出版社,2002:7~58
    7 张立德. 超微粉体制备与应用技术. 中国石化出版社,2001:138~173
    8 A. Roosen, H. Hausner. Ceramic Powders. Elservier, 1983: 773
    9 M. Boutonnet, J. Kizling. Determination of Floc Sizes in Kaolin Suspensions
     Dispersed by Sodium Lignosulphonate. Colloids and Surfaces. 1982, 5: 299
    10 P. Lianos, J. K. Thomas. Cadmium Sulfide of Small Dimensions Produced in
     Inverted Micelles. Chem. Phys. Lett. 1986, 125 (3): 299~302
    11 C. J. Brinker, D. E. Clark, D. R. Ulrich, et al. Better Ceramics Through Chemistry.
     Elsevier Science Publishing Co. Inc., 1984: 49
    12 W. Z. Li, S. S. Xie, L. X. Qian, et al. Large-Scale Synthesis of Aligned Carbon
     Nanotubes. Science. 1996, 274 (5293): 1701~1703
    13 W. Q. Han, S. S. Fan, Q. Q. Li, et al. Synthesis of Gallium Nitride Nanorods
     Through a Carbon Nanotube-Confined Reaction. Science. 1997, 277 (5330):
     1287~1289
    14 S. S. Fan, M. G. Chapline, N. R. Franklin, et al. Self-Oriented Regular Arrays of
     Carbon Nanotubes and Their Field Emission Properties. Science. 1999, 283
     (5401): 512~514
    15 Y. D. Li, Y. T. Qian, H. W. Liao, et al. A Reduction-Pyrolysis-Catalysis Synthesis
     of Diamond. Science. 1998, 281 (5374): 246-247
    16 徐国财,张立德. 纳米复合材料. 化学工业出版社,2002:84~85
    17 唐振宁. 钛白粉的生成与环境治理. 化学工业出版社,2000:85
    18 周芝骏,宁崇德. 钛的性质及其应用. 高等教育出版社, 1993:45~78
     54
    
    
    参考文献
    19 张 梅,杨娟,杨绪杰. 硬脂酸凝胶法制备纳米 TiO2 的 XRD 研究. 航天期刊.
     2001,4:34~38
    20 符春林,魏锡文. 二氧化钛晶型转变研究进展. 材料导报. 1999(3)37~38
    21 范崇政,肖建平,丁延平. 纳米 TiO2 的制备与光催化反应研究进展. 科学通
     报. 2001,46(4):256
    22 R. Revathi, M. Gratzel. Rutile Formation in Hydrothermally Crystallized
     Nanosized Titania. J. Am. Ceram. Soc. 1996, 79 (8): 2185~2189
    23 杜作娟,古映荧. 水热法合成锐钛矿型纳米二氧化钛. 精细化工中间体. 2002,
     32(5):24~25
    24 J. Y. Yang, S. Mei. Hydrothermal Synthesis of TiO2 Nanopowders from
     Tetraalkylanmmonium Hydroxide Peptized Sol. Meterials Science and
     Engineering. 2001, 15: 183~185
    25 Y. Q. Zheng, S. X. Cui, W. J. Li. Hydrothermal Preparation of Nanosized Brockite
     Powdes. J. Am. Ceram. Soc. 2000, 83 (10): 2634~2636
    26 施利毅. 微乳液的结构及其在制备超细颗粒中的应用. 功能材料. 1978,29
     (2):136~139
    27 沈兴海,高家成. 纳米微粒的微乳液制备法.化学通报.1995,(11):6~9
    28 丁延伟,吴缨等. 纳米 TiO2 光催化降解 CH3OH、HCHO 及 HCOOH 反应的
     研究分子催化.2002,16(3):175~180
    29 张青山,宋志慧,张志焜. 纳米二氧化钛光催化作用及其在环境领域中的应
     用. 2002,4:13~17
    30 J. Peral, D. F. Ollis. Heterogeneous Photocatalytic Oxidation of Gas-phase
     Organics for Air purification: Acetone, 1- Butanol, Butyraldehyde Formaldehyde,
     and m- Xylene Oxidation. J. Catal. 1992, 136: 554
    31 于向阳,梁文,杜永娟. 二氧化钛光催化材料的应用进展. 材料导报. 2000,
     14(2):38
    32 陶跃武,赵梦月,陈士夫. 空气中有害物质的光催化去除. 催化学报. 1997,
     18(4):345
    33 高善民,孙树声,刘兆明. 纳米材料在化工生产中的应用,化工行业现状及
     发展动态咨询网
    34 黄军华,高濂,陈锦元. 纳米TiO2粉体制备过程中结晶度的控制. 无机材料
     55
    
    
    北京工业大学工学硕士学位论文
     学报. 1996,11(1):51~57
    35 吴凤清,王永为,张忆华. 硬脂酸凝胶法制备纳米光催化剂TiO2. 功能材料
     增刊. 2001,10:1082~1084
    36 张汝冰,高濂. 以正钛酸为原料制备纳米TiO2光催化剂. 无机材料学报.
     2002,17(2):253~258
    37 周武艺,唐绍裘,魏坤. 影响钛盐水解制备二氧化钛纳米晶粒大小的因素. 应
     用化工. 2002,31(4):1~4
    38 袁军文,段学臣. 纳米二氧化钛粉末的制备. 硬质合金. 2002,19(4):218~
     220
    39 徐如人. 无机合成化学. 高等教育出版社,1991:217~249
    40 徐如人,庞文琴. 无机合成与制备化学. 高等教育出版社,2001:127~162
    41 C. Kaito, Y. Saito, K. Fujita, et al. Studies on the Structure and Morphology of
     Ultrafine Particles of Metallic Sulfides. J. Cryst. Growth. 1989, 94: 967~977
    42 A. Cyganski, J. Kobylecka. Studies on the Thermal Decomposition of Alkali Metal
     Thiosulphatobismuthates(III). Thermochim. Acta. 1981, 45: 65~77
    43 N. S. Yesugade, C. D. Lokhande, C. H. Bhosale, et al. Structural and Optical
     Properties of Electrodeposited Bi2S3, Sb2S3 and As2S3 thin films. Thin Solid Films.
     1995, 263: 145~149
    44 R. D. Engelken, S. Ali, L.N. Chang, et al. Study and Development of a Generic
     Electrochemical Ion-exchange Process to form MxS Optoelectronic Materials
     from ZnS Precursor Films Formed by Chemical-precipitation Solution Deposition.
     Mater. Lett. 1990, 10: 264~274
    45 X. H. Liao, H. Wang, J. J. Zhu, et al. Preparation of Bi2S3 Nanorods by Microwave
     Irradiation. Mater. Res. Bull. 2001, 36: 2339~2346
    46 Q. Li, M. W. Shao, J. Wu, et al. Synthesis of Nano-Fibrillar Bismuth Sulfide by a
     Surfactant-assisted Approach. Inorg. Chem. Commun. 2002, 5: 933
    47 M. W. Shao, M. S. Mo, Y. Cui, et al. The Effect of Agitation States on
     Hydrothermal Synthesisof Bi2S3 Nanorods. J. Cryst Growth 2001, 233: 799~802
    48 S. H. Yu, Y. T. Qian, L. Shu. et al. Solvent Thermal Synthesis and Characterization
     of Ultrafine Powder of Bismuth Sulfide. Mater. Lett. 1999, 14: 4157
    49 W. X. Zhang, Z. H. Yang, X. M. Huang, et al. Low Temperature Growth of
     Bismuth Sulfide Nanorods by a Hydrothermal Method. Solid State Commun.
     56
    
    
    参考文献
     2001, 119: 143
    50 D. B. Wang, M. W. Shao, D. B. Yu, et al. Polyol-mediated Preparation of Bi2S3
     Nanorods. J. Cryst Growth. 2002, 243: 331~335
    51 Z. C. Lin, C. D. Eads. Langmuir. 1997, 13: 2647
    52 张鹏,高濂. 水热微乳液法合成硫化镉纳米棒晶. 无机材料学报. 2003,18(4):
     772~776
    53 廖学红,杨水彬,陈年友. CdS 纳米粒子的合成方法. 微纳电子技术. 2003,
     9:44~46
    54 陈友存,叶信宇. 纳米 CdS 微粒的制备、表征及光催化性质的研究. 安庆师
     范学院学报(自然科学版). 2003,9(2):1~3
    55 陈德文,王素华. 纳米级 CdS 粒子尺寸量子化的化学效应研究. 中国科学(B
     辑). 1996,26(3):262~268
    56 舒磊,俞书宏,钱逸泰. 半导体硫化物纳米微粒的制备. 无机化学学报. 1999,
     15(1):1~7
    57 黄福志,李彦,张庆敏等. CH3CSNH2和 CdCl2水溶液均相体系制备 CdS 纳米粒
     子. 北京大学学报(自然科学版). 2000,36(6),748~752
    58 A. Fojtik, H. Weller, U. Koch et al. Photophysics of Extremely Small Cadmium
     Sulfide Particles: Q-State Cadmium Sulfide and Magic Agglomeration Numbers.
     Ber Bursen-Ges Phys Chem.1984, 88: 969~977
    59 张宇,付德刚,蔡建东等. CdS 纳米粒子的表面修饰及其对光学性质的影响.
     物理化学学报. 2000,16(5):431~436
    60 C. Wang,W. X. Zhang,X. F. Qian,et al. An Aqueous Approach to ZnSe and CdSe
     Semiconductor Nanocrystals. Chem. Mater. 1999, 60: 99~102
    61 张海明,元金山,阎圣刚等. CdS 纳米粒子的制备方法. 化工新型材料. 2001,
     28(11):16~19
    62 李文戈,戴洁,卞国庆等. 合成 CdS 纳米材料的新方法. 化学世界. 2002,1:
     13~15
    63 S. Shanthi, C. Subramanaian, P. Ramasamy. Influence of Growth Temperature on
     Morphology and Optical Studies of InP/CdS Heterostructures. Chem. Mater. 1999,
     58: 44~50
    64 Y. D. Li, H. M. Liao, Y. Fan, et al. A Solvothermal Synthetic Route to CdE( E=S,
     57
    
    
    北京工业大学工学硕士学位论文
     Se) Semicontuctor Nanocrystalline. Chem. Mater. 1999, 58: 87~89
    65 S. H. Yu, L. Shu, J. Yang, et al. Benzene-Thermal Synthesis and Optical Properties
     of CdS Nanocrystalline. NanoStructured Materials, Elsevier, 1998, 10(8):
     1307~1316
    66 李启厚,何显达,陈松等. 溶剂热处理对 ZnS 和 CdS 超细粉末结构形貌的影
     响. 中国有色金属学报. 2003,13(4):1026~1030
    67 程光伟,陈邦林,韩庆平. 凝胶网格法制备 CdS 超细颗粒. 华东师范大学学
     报(自然科学版). 1999,(4):57~62
    68 Y. T. Chen, J. B. Ding, Y. Guo, et al. A Facile Route to Preparation of CdS
     Nanorods. Chem. Mater. 2002, 77: 734~737

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700