用户名: 密码: 验证码:
纳米氧化物紫外屏蔽性能评价方法和仪器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于森林破坏、环境污染,二氧化碳的排放量剧增,全球气候变暖,臭氧层严重破坏,到达地面的紫外线的强度日益增加,导致各种日光性皮肤病患者人数显著增长。此外,自然界的很多现象也和紫外线的照射密切相关:塑料、合成树脂、橡胶和有机玻璃中高分子链的断裂降解;材料的老化;油漆涂料的粉化、开裂,甚至脱落;纸张的变黄、变脆等。1995年3月,在伦敦召开了紫外线防护国际研讨会,表明在世界范围内紫外线的防护已经引起人们的广泛重视。
     纳米二氧化钛、氧化锌等多种纳米氧化物具有良好的紫外线屏蔽能力,与传统的有机紫外吸收剂相比,具有无毒、无味、热稳定好、不分解、不挥发、容易着色等优点,为此逐渐替代了有机紫外吸收剂得到了广泛的应用。对于纳米氧化物材料紫外屏蔽性能的评估方面,至今还没有完备的分析测试方法以及统一的评价标准。纳米行业的发展和经济建设的需求,都要求我们建立一套切实可行的评价方法与评估标准,开发简便的评估仪器,用于纳米氧化物紫外屏蔽性能的评定。
     本论文以纳米氧化物紫外屏蔽分析仪的研制与开发为重点,从纳米氧化物紫外屏蔽的原理出发,提出了紫外分光光度的评价方法,制定了相应的评价标准,在此基础上研制开发了纳米氧化物紫外屏蔽分析仪,并进行了相关理论和实际应用的研究。论文共分五章:
     第一章 绪论
     本章从纳米材料、纳米氧化物的结构与特性、紫外屏蔽剂的屏蔽原理及其分类、纳米氧化物紫外屏蔽的研究进展四个方面对该领域的发展做了较为全面的概述。
    
    中文摘要
    第二章纳米氧化物紫外屏蔽性能评估方法的研究
     以往的紫外屏蔽性能的评估方法有SPF法和紫外吸光光度法。但是这些方
    法都是建立在有机紫外吸收剂紫外屏蔽性能的评估基础之上,而对纳米氧化物紫
    外屏蔽性能却一直没有统一的评价方法。我们从纳米氧化物紫外屏蔽的机理出
    发,研究了紫外分光光度法用于纳米氧化物粉体紫外屏蔽性能评价的可能性,建
    立了一套简单实用的纳米氧化物紫外屏蔽方法。实验中对不同的分散剂进行了筛
    选,考察了纳米氧化物粉体在不同分散剂中的稳定性,对实验条件进行了优化。
    将该方法用于实际样品的分析,取得了令人满意的效果。
    第三章纳米氧化物紫外屏蔽分析仪的研制
     目前,紫外屏蔽性能的评估仪器多数为国外厂家制造,国内还十分缺乏同类
    仪器。本章在前一章建立了纳米氧化物紫外屏蔽性能评估方法的基础上,研制开
    发了纳米氧化物紫外屏蔽分析仪,并制定了相应的评估标准,填补了国内该领域
    的空白。该仪器具有分析时间短,操作简便,数据重现性和精密度高,方法可靠
    等优点,市场前景广阔。
    第四章纳米二氧化钦薄膜电极的制备及其在纳米氧化物紫外屏蔽性能评估中
     的应用
     溶胶凝胶法制备了纳米TIOZ薄膜电极,AFM和XRD表征的结果说明该电
    极的纳米TIOZ为锐钦矿型。以纳米TIOZ薄膜电极为工作电极考察了该电极对紫
    外光的响应,发现200一380nm的紫外光可以激发该电极TIO:的价带电子,产生
    光电流。在该体系的溶液中,加入纳米氧化物粉体,由于不同的纳米氧化物对紫
    外光的屏蔽作用不同,因此纳米TIOZ薄膜电极上所产生的光电流也不同。由此
    出发,我们利用纳米Tio:薄膜电极上产生的光电流的大小评价了不同纳米氧化
    物材料的紫外屏蔽性能。在对实际样品进行分析时,该方法与紫外分光光度法所
    得的结果完全一致,说明这是一种完全可行的全新的评估方法。
    华东师范大学申请硕士学位论文
    
    中文摘要
    第五章纳米二氧化钦薄膜电极在化学需氧量测定中的应用
     本章将溶胶一凝胶法制备的纳米TIO:薄膜电极用于化学需氧量(COD)的测
    定。实验中,以葡萄糖为响应底物,考察了纳米TIOZ薄膜电极的光催化行为,
    结果发现该电极的光电流信号对溶液COD值在0.5一235m留L范围内具有很好的
    线性响应,相关系数为0.9998。利用该电极测定废水样品的COD值,其结果与
    传统的重铬酸钾法能够较好地吻合。而与之相比,该方法具有测试速度快,不需
    有毒、昂贵试剂,便于实现自动化等优点,具有广阔的应用前景。
    华东师范大学申请硕士学位论文
As the thickness of the ozone layer has decreased during recent decades, people are likely to be exposed to an increasing dose of ultraviolet radiation. This has been correlated with a higher risk of damage to the human body such as premature aging of skin, skin cancer and cataract. Excessive exposure to ultraviolet rays in sunlight can also induce coloring and deterioration in paper, paint, synthetic resins, and so on. The Ultraviolet Protection Conference held in London at 1995 showed that great attention has been paid to shielding from UV irradiation.
    Nano-oxides, such as titanium dioxide and zinc oxide, have characteristics making them ideal for use as broad-spectrum physical sunscreens in personal-care products. They are relatively transparent to visible light, but almost opaque to ultraviolet radiation. Compared to chemical sunscreens, nano-oxides have many advantages, such as none-toxcity, insipidity, chemical and thermally stability. As a good alternative to chemical sunscreens, nano-oxides have been widely used in many fields.
    However, there is no uniform detection method and standard to assess UV-shielding capabilities of nano-oxides now. The goal of our work in this paper was to set up an assessing method and to develop a relative instrument for the evaluation of UV-shielding capacities of nano-oxides.
    Chapter one: Critical reviews
    A critical review of present development in related fields was presented in this part: the summary of nano-materials, structure and characteristics of nano-oxides, mechanism of UV-shielding, and process in the study of UV-shielding characteristics
    
    
    of nano-oxides.
    Chapter two: Studies on the assessing method of UV-shielding capacity of nano-oxides
    SPF and ultraviolet spectrophotometry are two widely used methods in monitoring the UV-shielding capacity of chemical sunscreens, but they cannot be directly used to evaluate the characteristics of nano-oxides, for the dispersity of nano-oxides is different from that of organic sunscreens. In this part, a simple assessing method was introduced which was based on ultraviolet spectrophotometry, and the experiment conditions were optimized. It showed good results when used to evaluate the UV-shielding capacity of real samples.
    Chapter three: Development of the assessing instrument for UV-shielding capacity of nano-oxides
    For the moment, most assessing instruments for UV-shielding are made by foreign factories, which are very expensive. But in our country there are no succedaneous products. Based on the work in Chapter Two, we succeeded in developing an instrument specialized at assessing the UV-shielding capacity of nano-oxides. This instrument possesses many advantages, such as short analysis time, simplicity, good reproducity and high precision, which supplies a gap in this field and has great market potential.
    Chapter four: Preparation of nano titanium dioxide film electrode and its application in UV-shielding Capacity assessment of nano-oxides
    A nano titanium dioxide film electrode was prepared by sol-gel method and applied for assessing the UV-shielding capacity of nano-oxides. The results characterized by AFM and XRD showed that the titanium dioxide electrode was anatase, which could generate photocurrent when illuminated by ultraviolet radiation of 200-3 80nm. The photocurrent decreased differently as different nano-oxides were added in the system. For this reason, we used photocurrents to evaluate UV-shielding
    
    
    capacity of nano-oxides, and got the same results with ultraviolet spectrophotometry. Therefore, it is a new and feasible method for the UV-shielding capacity evaluation of nano-oxides though further researches should be done.
    Chapter five: Application of nano titanium dioxide film electrode in COD detection
    In this work, the nano titanium dioxide film electrode was used for chemical oxygen demand (COD) determination based on the charge transfer on the interface of TiOa film electrode and the passing solution. The photoelectric behavior of the TiO2 film electrode was studied, and the results showed t
引文
[1] 严玉蓉,赵耀明,胡岚,产业用纺织品,2001,8:5-8
    [2] 王兰武,钢铁钒钛,2003,24(2):49-51
    [3] 于网林,杨平,徐秋云等,高等化学学报,1994,15(11):1686-1689
    [4] 徐良,步平,日用化学品科学,1994,2:17-20
    [5] 刘福春,韩恩厚,柯伟,材料研究学报,2003,17(2):138-144
    [6] 张立德,牟季美,纳米材料学,辽宁:辽宁科技出版社,1994
    [7] R.W. Siegel, Nanostructured Materials, 1993, 3:1-18
    [8] Mdleleni, M. M., Hyeon, T. & Suslick, K. S., J. Am. Chem. Soc., 1998, 120: 6189-6190.
    [9] I. Sopyan, M. Watanabe, S. Murasawa, Chem. Lett, 1996, 289 (1): 69-73
    [10] C.T, White, D. H. Robertson, J.W. Mintmire, Phys. Rev. B, 1993, 47:5485
    [11] K. S. Suslick., Science, 1990, 247: 1439.
    [12] 张立德,牟季美,纳米材料科学,辽宁科学技术出版社,1994:19-20
    [13] R.E. Cavicchi, R.H. Silsbee, Phys. Rew. Lett., 1984, 52:1453
    [14] 张立德,纳米材料[M],北京:化学工业出版社,2000
    [15] P. Ball, Li Carwin, Nature, 1992, 355:761
    [16] 苏品书,超微粒子材料技术,复汉出版社,1989
    [17] S. Prochazka, Advance in Ceramics, 1987, 21:311
    
    
    [18] E Matteazzi, Nanostructured Materials, 1993, 2:217
    [19] M. Oehring, Proceeding of the 7th International Conference on Rapid Quenched Materials.. Stockholm, 1991:1330
    [20] 张立德,牟季美,物理,1992,21(3):167
    [21] F. Adil, M. Christian, S. Bernard, Phys. Rev., 1993, 47: 717.
    [22] 唐振宁,钛白粉的生产与管理,北京,化学工业出版社,2000,4
    [23] A.K. See, R.A. Bartynaki, J. Vac. Sci. Technol. A, 1992, 10:2591
    [24] R. Sanjines, H. Tang, H. Berger, J. Appl. Phys. 1994, 75:2945
    [25] I.H. Kinstantin, G. Dimitar, Chemical Society Reviews, 1996:61
    [26] W.H. Strelhow, E.L. Cook, J. Phys. Chem., Ref. Data, 1973, 2:163
    [27] C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol., 1991, 25:494-500
    [28] 张立德,牟秀美,纳米材料和纳米结构,北京:科学出版社,2001
    [29] 都有为,超微粒颗粒的物理特性,材料导报,1992,5:1-5
    [30] Ronni Wolf, Danny Wolf, et al., Clinics in Dermatology, 2001, 19:452-459
    [31] 赵旭,杨少凤,赵敬哲等,高等学校化学学报,2000,21(11):1617-1620
    [32] 罗付生,韩爱军,杨毅,李凤生,日用化学工业,2002,32(2):40-42
    [33] A. heller, Acc. Chem. Res., 1995, 28:503
    [34] E. Pelizzetti, C. Minero, V. Maurino, Adv. Colloid Interface Sci., 1990, 32:271
    [35] 陈秀增,侯文详,谭俊茹,李金声,化学工业与工程,1997,14(4):1-5
    [36] Vesa Pekka judin(凯米拉公司),特种TiO_2的最新进展,钛白情报通讯,1994,6:18-22
    [37] 石原产业株式会社,新产品超细二氧化钛(下)(译文),钛白情报通讯,1996,4:19-29
    [38] 于向阳,程继健,杜永娟,二氧化钛光催化材料,化学世界,2000,11:567-570
    [39] 曹珍元,纳米材料的化工应用与开发,化工新型材料,2000,28(11):3-5
    [40] Ch. Trapalis, J. Mater. Sci., 1993, 28:1276-1282
    [41] A. Fujishima, K. Hashimoto, T. watanabe, BKC, Tokyo, 1999
    [42] A. Fujishima, T.N. Rao, D. tryk, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1: 1-21
    [43] R. Wang, K. Hashimoto, A. fujishima, M. chikuni, et al., Nature, 1997, 233:431-432
    [44] R. Wang, K. hashimoto, A. Fujishima, M. chikuni, et al., Adv. Mater., 1998, 10:135-138
    [45] R. Wang, N. Sakai, A. Fujishima, et al., J. Phys. Chem.. B, 1999, 103:2188-2194
    [46] 张莉,防紫外线纤维的开发和应用,合成纤维,1999,28(5):53-55
    
    
    [47] 浅野纪夫,紫外线热线遮蔽纤维,加工技术,1991,26(10):637-646
    [48] Recommendations for the Integrated Irradiance and the Spectral Distribution of Simulated Solar Radiation for Testing Purposes, CIE Publication, 1998, 20:47
    [49] 顾庆超等,化学用表,南京,江苏科学技术出版社,1997
    [50] L.A. Applegate, E. Frenk, Eur. J. Dermatol., 1995, 5:97-103
    [51] S.-Y., Lin, R.-C. Liang, Biomed. Res., 1994, 15 (1): 9-15.
    [52] F. Urbach, J. Photochem. Photobiol. 1989, 50:507-513
    [53] A. Green, G. Williams, Ultraviolet radiation and skin cancer: epidemiological data from Australia, in: A.R. Young (Ed.), ultraviolet Radiation and Skin Cancer: Epidemiological Data from Australia, Plenum press, New York, 1993:233-254.
    [54] D.H. Sliney, J. Photochem. Photobiol. B: Biol., 1995, 31:69-77
    [55] United Nations Environment Program, World health organization, International Commission Non-Ionizing Radiation Protection, Environmental health Criteria 160, Ultraviolet Radiation, World Health Organization, Geneva, 1994
    [56] 李发胜等,化妆品化学,科学出版社,2002
    [57] 宋心远,新合纤染整,北京:中国纺织出版社,1997
    [58] 严玉蓉,赵耀明,胡岚,产业用纺织品,2001(8)
    [59] Gerhard J. Nohynek, Hans Schaefer, Regulatory Toxicology and Pharmacology, 2001, 33: 285-299
    [60] Butt S. T., Christensen T., Radiat. Prot. Doslm., 1991, 1-3:283-286
    [61] Frederick Urbach, Journal of Photochemistry and Photobiology B: Biology, 2001, 64:99-104
    [62] 李大成,周大利,刘恒,张萍,张云,四川有色金属,2002,3:12-16
    [63] 李国辉,李春忠,朱以华,化学世界,2000,2:59-63
    [64] 王亚婷,赵凤林,李克安,童沈阳,2000,10:1491-1497
    [65] 李原芳,黄承志,胡小莉,分析化学,1998,12:1508-1515
    [66] 郑忠,胶体科学导论,高等教育出版社,1986:88-122
    [67] 赵凯华,钟锡华,光学(下册),北京大学出版社,1982:249-252
    [68] 蒋治良,罗杨合,刘凤志,刘绍璞,广西师范大学学报(自然科学版),2000,6:52-59
    [69] Rosemary Dunford, Angela Salinaro, Lezhen Cai, et al., FEB S Letters, 1997, 418:87-90
    [70] J. Schulz, H. Hohenberg, et al., Advanced Dryg Delivery Reviews 54 Suppl., 2002, 1:
    
    S157-S163
    [71] Anderson M. W., Hewitt J. P., Spruce S. R., Sunscreens: Development, Evaluation and Regulatory Aspects, Dekker, New York, 1997:353-397
    [72] Lademann J., Weigmann H. J., et al., Skin Pharmacol. Appl. Skin Physiol., 1999, 12:247-256
    [73] Greenoak G., Torkamanzehi A., Neam M. R., Cosmet. Aerosols Toiletries Aust., 1993, 7(4): 12-18
    [74] Suzuki M., Photodermatology, 1987, 4:209-211
    [75] Svetlana Leytner, Joseph T. Hupp, Chemical Physics Letter, 2000, 330:231-236
    [76] K. Stopper, J. K. Dohrmann, Z. Phys. Chem., 1990 (94): 3761
    [77] 杨梁栋,印染,2002,1:37-40
    [78] 市川通夫,UV对应素材,加工技术,1991,26(10):637-641
    [79] 近藤刚,本田贵子,日本:特开平8-143331
    [80] Batdorf, Vernon H, et al. USA, US6, 342, 556, Jan. 29, 2002
    [81] Reynolds, William, et al. USA, US6, 337, 362, June 12, 2000
    [82] 柯博,黄志杰等,涂料工业,1998,12:29-30
    [83] 刘华,吴文启,钛白粉的生产和应用,北京科学技术出版社,1992:7
    [84] L. H. Kaminester, Arch. Dermatol., 1981, 117:66
    [85] 朱林摘译,化妆品与微粒,日用化学品化学,1996,4:67~70
    [86] Vesa Pekka Judin, Virpi Saloren, Bruce Manderson, Nano Particulates, 1994, 94:1-10
    [87] 王训,祖庸,李晓娥,化工进展,2000,1:67~70
    [88] 林元华,袁方利,黄淑兰等,功能材料,1999,30(5):507-508
    [89] Wedler M, Hirthe B., Chemical Fibers International, 1999, 49 (6): 528
    [90] 李晓娥,樊安,王训,祖庸,涂料工业,2000,9:3-5
    [91] 蒋子铎,吴壁耀,刘安华,现代化工,1991,5(5):14-18
    [92] 李晓娥,邓红等,西北大学学报(自然科学版),2002,32(5):523-525
    [93] 张智宏,沈钟,邵长生,日用化学工业,1997,5:13-15
    [94] 谈定生,二氧化钛表面微胶化包覆,华东理工大学,1993:2-3
    [95] Robert J.D., Liu Z.F., Chem. Mater., 1997, 9:2311-2317
    [96] Delattre L.,Bzbonneau F., Chem. Mater., 1997, 9:2385-2389
    [97] 赵旭,杨少凤,赵敬哲,高等学校化学学报,2000,11:1617-1620
    
    
    [98] 崛野政章,长谷川幸夫,化妆料,JP:09248716,1996
    [99] 黑田章裕,有机相分散体及化妆料,JP:082119832,1994
    [100] 苏瑾,上海预防医学杂志,2001,5:207-210
    [101] 倪建华,周华,戴修道,中国公共卫生,2000,16(4):373-374
    [102] 张延坤,刘国忠,日用化学工业,1997,4:40-43
    [103] 徐朴,叶亦梁,棉纺织技术,1999,37(7):5-10
    [104] 杜小豪,徐卫,日用化学工业,1986,3:43-46
    [105] 许慧慧,苏瑾,宋伟民等,上海预防医学杂志,2002,14(7):315
    [106] Sayre R.M., Aginn P.E, Le Vee GT, et al., Photochemistry and Photobiology, 1979, 29: 559-566
    [107] 周秀会,曹晓英,国外纺织技术,2000,2:30-33
    [108] Diffey B. L., et al., J. Soc. Cosmet Chem., 1989, 40:127
    [109] Sandra Davis M. Sc., et al., IFAI 论文集, 1995:71-80
    [110] 杜华,粉类防晒原料及防晒化妆品的防晒功能评估,北京:中国香料香精化妆品协会,1998:145
    [111] Labsphere Co., Sphere systems and Instrumentation, Catalog Ⅱ, 1996-1997
    [112] 李平,王煜,抗紫外织物测试结果的统计分析,2001,5:44-46
    [113] Gies H.P., et al., Ultraviolet protection factor for clothing, Health Phys., 1994, 67:131-139
    [114] Standards Australia/Standards New Zealand., Sun protective clothing-Evaluation and classfication, AS/NZS4399:1996
    [115] Pren 13578, Textiles-Solar UV protective properties-Part Ⅰ: Method of test for apparel fabrics, 1999
    [116] 涂国荣,王武尚,张利兴,精细化工,2001,7:379-381
    [117] 杜小豪等,日用化学工业,2002,1:68-71
    [118] 光井武夫,新化妆品学,北京:中国轻工业出版社,1996:30-32
    [119] 澳大利亚1983、1986年的国家标准
    [120] 叶亦梁,徐朴,纺织标准与质量,2000,5:20-2
    [121] 李昕,染整科技,2003,4:4-11
    [122] 常薇,环境与健康杂志,2001,6:416-417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700