用户名: 密码: 验证码:
修饰与改性钛氧纳米管的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米Ti02因其无毒、价格低廉、化学稳定性好和优异的催化性能等特点被广泛用作净化环境的光催化材料、光电材料和催化剂载体等。与Ti02纳米颗粒相比,Ti02纳米管具有更大的比表面积,因此更适合做催化剂或催化剂载体。但是,作为光催化剂,由于Ti02具有较大的带隙能,对太阳光的利用率较低;此外,光激发产生的电子-空穴对易复合,导致其光量子效率很低。而作为热催化剂,水热法制备的Ti02纳米管的热稳定性较差。降低Ti02的带隙能、抑制光生电子-空穴对的复合,以及提高TiO2的热稳定性来提高Ti02的催化性能,一直是科研工作者关注的研究课题。针对以上问题,本文采用不同的制备方法,合成了一系列在紫外和可见光区具有高催化活性的修饰Ti02纳米管光催化材料,以及结构性能稳定的热催化剂。在光催化实验中,以甲基橙为目标降解物研究催化剂的光催化性能。本论文的具体研究内容主要包括以下方面:
     以钛酸丁酯为前躯体,廉价易得的蔗糖为碳源,采用溶胶-凝胶法和水热法相结合的方法制备了掺碳量不同的TiO2纳米管光催化剂(C/TiO2NTs)。通过EA、XRD、TEM、UV-vis-DRS等手段对所制备的催化剂进行表征分析。研究了C/TiO2NTs在紫外光及模拟日光条件下光催化降解甲基橙的活性,还讨论了焙烧温度和碳含量对催化性能的影响。结果表明:碳修饰TiO2光催化剂的禁带宽度变窄,在可见光区吸收增强;TiO2在紫外和可见光下的光催化活性明显提高,而且当焙烧温度为400℃、碳含量为0.90wt.%时,C/TiO2NTs样品的光催化活性最好。
     以钛酸纳米管为载体、Ru3(CO)12和C5H5Mn(CO)3为前躯体,采用浸渍-沉积一步法分别制备了Ru-C共修饰和Mn-C共修饰的TiO2光催化剂(Ru-C/TiO2, Mn-C/TiO2NTs)。通过XRD、TEM、UV-vis和XPS对催化剂进行表征,探讨了共修饰元素对提高TiO2光催化活性所起的协同作用。结果表明,在Ru-C/TiO2催化体系中,Ru-C/TiO2催化剂在500℃焙烧时,TiO2纳米管的管状结构被破坏,但锐钛矿型TiO2结晶度增大,且出现了少量的金红石型TiO2,其混晶型结构利于催化活性的提高;在TiO2的表面均匀分布着3-7nm的Ru02纳米颗粒;Ru-C/TiO2催化剂中的碳主要是以活性炭和碳酸盐的形式存在,有利于可见光的吸收,修饰的钉是以RuO2的形式沉积在TiO2的表而,有利于光生电子-空穴对的分离;Ru和C元素共修饰时,两者的协同效应使Ti02的带隙变得更窄,易激发产生更多的光生电子和空穴。而且Ru、C的修饰量、焙烧温度及焙烧气氛对催化剂的光催化活性都有一定的影响。在N2气氛下焙烧温度为500℃, Ru/C摩尔比为1.65的Ru-C/TiO2在紫外光和模拟可见光下的光催化活性最好,且优于P25的活性。
     在Mn-C/TiO2NTs催化体系中,比表面积随着焙烧温度的升高而减小,400℃焙烧的催化剂中,Ti02纳米管多数以管束聚集的状态存在;修饰的碳和锰分别以碳酸盐和MnxOy/Mn的形式存在于TiO2表面;降低了TiO2的带隙能。另外,锰、碳共修饰的协同效应大大提高了TiO2在紫外光和可见光下的催化性能,在N2气氛下焙烧温度为400℃,Mn、C含量分别为0.15wt.%和1.08wt.%时,Mn-C/TiO2NTs在紫外和可见光下的光催化活性最高。所用制备方法比较简单,而且都是在不额外引用碳源的条件下直接利用前躯体来实现金属与碳元素的共修饰,为金属与非金属共修饰TiO2的制备提供了新的思路。
     利用两步溶胶-浸渍法制备了结构稳定的C-Fe共修饰稳定TiO2纳米管催化剂(C-Fe/TiO2NTs)。由TEM图片得知,当焙烧温度达到400℃时TiO2还能保持较好的管状结构。通过XPS数据显示,修饰的碳没有取代TiO2中的晶格氧,大部分是以碳酸盐类物质吸附在TiO2的表面;通过UV-vis分析可知,C-Fe共修饰的协同效应使TiO2纳米管的带隙能降低,提高了对太阳光的利用率。催化性能测定结果表明:C-Fe共修饰稳定TiO2NTs的光催化性能优于纯TiO2NTs、C或Fe单独修饰TiO2NTs的催化性能,当焙烧温度为400℃、碳含量为1.45wt.%时,C-Fe/TiO2NTs具有最佳的光催化活性。
     以稳定TiO2纳米管为载体,IrCl3·3H2O以及蔗糖和IrCl3·3H2O为前躯体,采用一步直接浸渍-沉积法分别得到铱修饰(Ir-TiO2)及碳、铱共修饰的纳米TiO2光催化剂(C-Ir/TiO2)。通过表征、测试分析可知,铱修饰及碳、铱共修饰都拓宽了Ti02在可见光区的响应范围,降低了Ti02的带隙能,而且都提高了Ti02在紫外和可见光下降解甲基橙的催化活性。当焙烧温度为400℃、铱含量为2.77wt.%时,Ir/TiO2的光催化活性最好;碳、铱共修饰的协同效应使其光催化性能优于C或Ir单独修饰TiO2NTs,当焙烧温度为400℃、碳含量为1.24wt.%时,C-Ir/TiO2的光催化活性最好。
     以钛酸纳米管为载体,利用氢氧化铜水溶胶浸渍修饰法制备了结构稳定的CuO修饰Ti02纳米管催化剂(CuO/TiO2NTs)。通过XRD、TEM和XPS等手段对催化剂进行表征。初步探讨了焙烧温度和铜钛不同原子比对催化氧化CO的活性影响。研究表明:铜钛原子比及焙烧温度对催化剂的活性有明显影响,当焙烧温度为300℃、Cu/Ti原子比为1:2时,CuO/TiO2NTs的活性最高。对催化剂活性的其它影响因素及催化原理等还需进一步研究。
Titania (TiO2) has received considerable attention due to its nontoxicity, low cost, high chemical stability and high photoactivity, and was widely used in many applications such as photocatalytic materials, photolectric materials and catalyst support. Compared with TiO22nanoparticles, TiO2nanotubes were more suitable to be utilized as catalyst or catalyst support due to their nanotubular morphologies and higher surface areas. However, wide bandgap, low utilization rate of solar energy, quick recombination of photogenerated electron-hole pairs resulted in low light quantum efficiency of TiO2nanotubes. Moreover, TiO2nanotubes obtained by hydrothermal process had bad structure stability for thermal catalysts. It had been a long-term issue for researchers to improve catalytic performancs of TiO2by reducing the bandgap, inhibiting the recombination of photogenerated electron-hole pairs and increasing the thermal stability of TiO2nanotubes. To overcome the drawbacks of TiO2mentioned above, a series of high catalytic activity and high thermal stability of doped TiO2nanotubes were prepared with different preparation methods in this thesis. The photocatalytic performances of products were evaluated by monitoring their catalytic activities for degradation of methyl orange solution under UV light and simulated sunlight irradiation in the photocatalysis experiments. The primary work was as follows:
     Using tetrabutyl titanate and sucrose as precursors, carbon-modified TiO2nanotubes (C/TiO2NTs) with various carbon contents were prepared by the combination of sol-gel process with hydrothermal treatment. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The influences of calcination temperature and carbon content on catalytic performance of C/TiO2NTs were also discussed. The results indicated that TiO2in the catalysts was anatase. The doped carbon narrowed the band-gap width and increased absorption in the visible range. Compared with pure TiO2nanotubes, C/TiONTs could significantly enhance the photocatalytic efficiency, and the0.90wt.%C/TiO2NTs calcined at400℃exhibited the best photocatalytic activity.
     Using TiO2NTs as support, Ru3(CO)12and C5H5Mn(CO)3as modification precursor, Ru-C co-modified TiO2nanotubes (Ru-C/TiO5NT5) and Mn-C co-modified TiO2nanotubes (Mn-C/TiO2NTs) were prepared respectively via impregnation-deposition method. The products were characterized with TEM, XRD, UV-vis and XPS, and the synergistic effect comodification elements how to increase the photocatalytic activities were discussed. In the Ru-C/TiO2catalytic system, the conclusions were listed as follows:XRD results showed that although the tubular structure was destroyed calcined at500±, the crystallinity of anatase phase was increased, and appeared the phase transition of small amount anatase to rutile, which was beneficial to improve the catalytic activity. TEM images revealed RuO2nanoparticles with a diameter of3-7nm were uniformly deposited on the surface of TiO2. XPS results revealed that the carbon in Ru-C/TiO2existed as active carbon and carbonate, which benefit the visible light absorbtion, and ruthenium existed as RuO2, which benefit the photo generation electron-hole pairs separation. To the ruthenium and carbon co-modified TiO2, the Ru-C synergistic effect could largely narrow the band gap of TiO2and easily energize more photogenerated electrons and holes. The influences of calcination temperature, calcination atmosphere and contents of C and Ru on the photocatalytic activity of the samples were investigated. Obtained results showed that Ru-C/TiO2NTs exhibited higher photocatalytic activity than P25under UV or simulated sunlight irradiation when Ru and C mole ratio was1.65and calcinated at500±in N2atmosphere.
     In the Mn-C/TiO2catalytic system, the conclusions were listed as follows:TEM images revealed the specific surface area of TiO2NTs were decreased with the increase of calcinations temperature and exist nanotubes structure with bundles gather state. XPS results revealed that the carbon existed as carbonate, and manganese existed as MnxOy/Mn on the surface of TiO2respectively. UV-vis results revealed that the badgap of TiO2were decreased. To the manganese and carbon co-doped TiO2, the Mn-C synergistic effect could largely enhance the photocatalytic performance under UV light and simulated sunlight irradiation. When the manganese and carbon content were0.15wt.%and1.08wt.%respectively and calcinated at400 ℃, Mn-C/TiO2NTs exhibited the good photocatalytic activities under UV and simulated sunlight irradiation. The preparation method was simple, and achieved the metal and carbon codoping with the modification precursor and without additional carbon source. The method would provide new thought for preparing metal and nonmetal co-modified TiO2.
     The target product C-Fe co-modified TiO2nanotubes (C-Fe/TiO2NTs) with high thermal stability were successfully synthesized via two-step sol-impregnation method. TEM images showed the better tubular structure of TiO2calcinatied at400℃. XPS results revealed that carbon did not substitute oxygen atom in the lattice of anatase TiO2and the most carbon existed as carbonate. The results revealed that the synergistic effect of C and Fe co-modified could not only decrease the band-gap energy of TiO2nanotubes, but also inhibit recombination of photo generation electron-hole pairs. The photocatalyic performance of C-Fe/TiO2NTs was superior to the activities of TiO2NTs, C-TiO2NTs and Fe-TiO2NTs. When the carbon content was1.45wt.%and calcinated at400℃, C-Fe/TiO2NTs exhibited the best photocatalytic activity.
     Using stable TiO2NTs as support, IrCl3·3H2O, sucrose and IrCl3·3H2O as modification precursor, Ir modified TiO2(Ir-TiO2) and C-Ir co-modified TiO2(C-Ir/TiO2NTs) were prepared respectively via impregnation-depbsition.The products were characterized with TEM, XRD, UV-vis and XPS. UV-vis results revealed that Ir modified TiO2and C-Ir comodifed TiO2both could broaden the light response range, reduce the bad gap, and enhance the photacatalytic activities to degrade methyl orange solution under UV light and simulated sunlight irradiation. The2.77wt.%Ir-TiO2NTs calcinated at400℃exhibited the best photocatalytic activity. The photocatalytic performances of C-Ir/TiO2were superior to C-TiO2and Ir-TiO2because of the synergistic effect of carbon and Irdium comodified TiO2. When the carbon content was1.24wt.%and calcinated at400℃, the C-Ir/TiO2NTs exhibited the best photocatalytic activity.
     By using hydrogen titanate nanotubes as support, CuO modified-TiO2nanotubes (CuO/TiO2NTs) with high thermal stability were prepared by impregnation method. The prepared materials were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Their catalytic performances for low-temperature CO oxidation were preliminary discussed. The atomic ratio between Cu and Ti and calcination temperature were also investigated. When the atomic ratio of Cu and Ti was1:2and calcined at300℃, the CuO/TiO2NTs exhibited the best catalytic performance. Other influence factors for catalytic performance and the catalytic principle need to be further researched.
引文
[1]Linsebigler A L, Lu G Q, Yates J T. et al. Photocatalysis on TiOn surfaces:principles, mechanisms and selected results. Chem. Rev.,1995,95(3):735-758
    [2]Chen X B, Mao S S, Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.,2007,107(7):2891-2959
    [3]Minabe T, Tryk D A, Sawunyama P. TiO2-mediated photodegradation of liquid and solid organic compounds. Photochem. Photobio. A.Chem.,2000,137(1):53-62
    [4]Mills A, Davies R H, Worsley D, et al. Water purification by semiconductor photocatalysis. Chem. Soc. Rev.,1993,22:417-425
    [5]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95:69-74
    [6]Mill A, Lehunte S J. An overview of semiconductor photocatalysis. Photochem. Photobiol. A: Chem.,1997,108:1-11
    [7]Nakata K, Fujishima A. TiO2 photocatalysis:design and applications. Photochem. Photobio. C:Photochem. Rev.,2012,13 (3):169-189
    [8]Nakata K, Liu B, Ishikawa Y, et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem. Lett.,2011,40(10):1107-1109
    [9]Chen Y F, Lee C Y, Yeng M Y, et al. Preparing titanium oxide with various morphologies. Mater. Chem. Phys.,2003,81(1):39-44
    [10]Wu Y M, Xing M Y, Zhang J L. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J. Hazard Mater.,2011,192(1):368-373
    [11]Liu S, Yu J, Jaroniec M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed{001} facets. J. Am. Chem. Soc.,2010,132(34): 11914-11916
    [12]Chen J S, Chen C, Liu J, et al. Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chem. Commun.,2011,47(9): 2631-2633.
    [13]Sun Y. Kinetics and transport parameters for the fixed-bed catalytic incineration of volatile organic compounds. Environ. Sci. Technol,1995,25:2065-2072
    [14]Tseng I H, Wu J C, Chou H Y. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal.,2004,221 (2):432-440
    [15]Assahane A, Yahia A I, Tahiri H, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.:Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid). Appl. Catal. B:Environ.,2000,24(2):71-87
    [16]Wang J, Li R H, Zhang Z H, et al. Degradation of hazardous dyes in wastewater using nanometer mixed crystal TiO2 powders under visible light irradiation. Water Air Soil Pollut, 2008,189(1-4):225-237
    [17]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor. Nature, 1972,238(5358):37-38
    [18]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol,1976,16(6):697-701
    [19]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc,1977,99(1):303-304
    [20]Frank S N. Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J.Phys.chem.,1977,81(15):1484-1488
    [21]Matsunage T, Tomoda R. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters,1985,29(2):211-221
    [22]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002
    [23]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.,2001,16(12):3331-3334
    [24]Ptail A J, Shinde M H, Potdar H S, et al. Chemical synthesis of titania (TiO2) powder via mixed precursor route for membrane applications. Mater. Chem. Phys.,2001,68(1-3):7-16
    [25]Liu X H, Yang L, Wang J, et al. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Mater. Sci. Engin. A.,2000,289(1-2):241-245
    [26]Zhu Y F, Zhang L, Gao C, et al. The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor. J. Mater. Sci., 2000,35(16):4049-4054
    [27]Tsai C C, Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem. Mater.,2004,16(22):4352-4358
    [28]Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J.,2003,9(10):2229-2238
    [29]Wei Z, Luo X. Fabrication of rutile Sn-doped TiO2 nanocrystals by hydrothermal method. J.Synth Cryst.,2007,36(5):1113-1117
    [30]Kim E J, Hahn S H. Microstructure and photoactivity of titania nanoparticles prepared in nonionic W/O microemulsions. Mater. Sci Eng. A.,2001,303(1-2):24-29
    [31]Lu C H, Wen M C. Synthesis of nanosized TiO2 powders via a hydrothermal microemulsion process. J. Alloys Compd.,2008,448(1-2):153-158
    [32]Zhang X, Zhang F, Chan K Y. The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties. Mater. Chem. Phy.,2006,97(2-3):384-389
    [33]Jiang J, Li L C. Ultrasonic-assisted synthesis of core-shell structure Zn0.5Cr0.5Fe2O4/TiO2 nanocomposites in w/o microemulsion. J. Alloys Compd.,2007,456(1-2):220-223
    [34]Nargiello M, Herz T. Physical-chemical characteristics of P25 making it extremely suited as the catalyst in photodegradation of organic compounds. New York:Elsevier,1993,30: 2969-2976
    [35]Raillard C, Hequet V, Cloirec P L, et al. Mechanistic analysis on the influence of humidity on photocatalytic decomposition of gas-phase chlorobenzene. Water Sci. Tech.,2004,49: 111-114
    [36]Li L, Mizuhata M, Kajinami A, et al. Different effects of alkyl sulfate and alkylbenzene sulfonate surfactants on the synthesis and properties of CuPc/TiO2 composite films by the liquid-phase deposition (LPD) method. Synthetic Metals,2004,146:17-27
    [37]Kim J, Monllor-Satoca D, Choi W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy Environ. Sci.,2012,5:7647-7656
    [38]孙平,陈竟文,杨风林,等.部分水溶性偶氮染料的光催化降解研究.环境化学,1999,18(3):254-257
    [39]余家国,赵修建,陈文梅,等.太阳光TiO2多孔纳米薄膜光催化降解有机磷农药的研究.太阳能学报,2000,21(2):165-170
    [40]Herrmann J M, Guillard C, Pichat P. Heterogeneous photocatalysis:an emerging technology for water treatment. Catalysis Today,1993,17:7-20
    [41]Padikkaparambil S, Zahira Y, Mohd A Y, et al. Visible light active anion codoped sol-gel titania photocatalyst for pollutant degradation. J. Sol-Gel Sci Technol.,2011,59(2):252-259
    [42]Liu T X, Li F B, Li X Z, et al. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase. J. Hazard. Mater.,2008,152(1):347-355
    [43]Noda H, Dikawa K, Kamada H. ESR spin-trapping study of active oxygen radicals from photoexcited semiconductors in aqueous H2O2 solutions. Bull. Chem. Soc. Jpn.,1993,66: 455-458
    [44]Serpone N. Brief introductory remarks on heterogeous photocatalysis. Solar Energy Materials and Solar Cells,1995,38(1-4):369-379
    [45]吴聪萍,周勇,邹志刚.光催化还原CO2的研究现状和发展前景.催化学报,2011,32(10):1565-1572
    [46]Yang C C, Yu Y H, Wu J C S, et al. Artificial photosynthesis over crystalline TiO2-based catalysts:fact or fiction. J. Am. Chem. Soc.,2010,132:8398-8406
    [47]刘亚琴,徐耀,李志杰,等.CO2在纳米SiO2/TiO2悬浮体系中的光催化反应.化学学报,2006,64(6):453-457.
    [48]Zhao Z H, Fan J M, Xie M M, et al. Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. J. Clean. Prod,2009,17(11): 1025-1029
    [49]Roy S C, Varghese O K, Paulose M, et al. Toward solar fuels:photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano,2010,4:1259-1278
    [50]Palmisano G, Garcia-L6pez E, MarciG, Loddo V, et al. Advances in selective conversions by heterogeneous photocatalysis. Chem. Commun.,2010,46:7074-7089
    [51]Hoffmann M R, Moss J A, Baum M M. Artificial photosynthesis:semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. Dalton Trans.,2011,40: 5151-5158
    [52]Lo C C, Hung C H, Yuan C S, et al. Parameter effects and reaction pathways of photoreduction of CO2 over TiO2/SO42-photocatalyst. Chin J Catal,2007,28(6):528-534
    [53]Varghese O K, Paulose M, LaTempa T J, et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett,2009,9(2):731-737
    [54]Madaeni S S, Ghaemi N, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci.,2007,303 (1-2):221-233
    [55]Xu Q C, Wellia D V, Sk M A, et al, Transparent visible light activated C-N-F-codoped TiO2 films for self-cleaning applications. J. Photochem. Photobiol. A.,2010,210 (2-3):181-187
    [56]David M T, Antonella T, Andrijana S, et al. Effects of SiO2 addition on TiO2 crystal structure and photocatalytic activity. J. Eur. Ceram. Soc,2010,30 (12):2481-2490
    [57]Wang C, Shi H S, Li Y. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Appl. Surf. Sci.,2011,257 (15):6873-6877
    [58]Kazuya N, Baoshun L, Yosuke I, et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem. Lett.,2011,40 (10):1107-1109
    [59]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanoerystalline systems. Chem. Rev.,1995,95:49-68
    [60]Leaustic A, Babonneau F, Livage J. Photoreactivity of tungsten trioxide dispersions:spin trapping and electron spin resonance detection of radical intermediates. J. Phys. Chem., 1986,90:4193-4198
    [61]Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J.Catal,1990,122:178-192
    [62]Choi W, Termin A, Hoffillann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamies. J. Phys. Chem.,1994,98(51):13669-13679
    [63]王艳芹,张莉,程虎民,等.掺杂过渡金属离子的Ti02复合纳米粒子光催化剂-罗丹明B的光催化降解.高等学校化学学报,2000,21(6):958-960
    [64]Fuerte A, Hernandez-Alonso M D, Maira A J, et al. Visible light-activated nanosized doped-TiO2 photocatalysts. Chem. Commun.,2001, (24):2718-2719
    [65]An H Q, Li J X, Zhou J, et al. Iron-coated TiO2 nanotubes and their photocatalytic performance. Mater. Chem.,2010,20(3):603-610
    [66]Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal.,2002,207(2):151-157
    [67]Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye degradation.Appl. Catal. B.,2003,46(2):251-259
    [68]Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett.,1986,123:126-128
    [69]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271.
    [70]Khan SUM, Shallry M A, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590):2243-2245
    [71]Chen S, Chu W, Huang Y Y, et al. Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities. Mater. Res. Bull.,2012,47(12):4514-4521
    [72]Zhang L, Tse M S, Tan O K, et al. Facile fabrication and characterization of multi-type carbon-doped TiO2 for visible light-activated photocatalytic mineralization of gaseous toluene. J. Mater. Chem.,2013,1(14):4497-4507
    [73]薛晓金,孙琼,王妍,等.氟离子对二氧化钛选择性光催化氧化环己烷的影响.化学学报,2010,(5):471-475
    [74]Yu Y, Wu H H, Zhu B L, et al. Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes. Catal Lett.,2008,121:165-171
    [75]于爱敏,武光军,严晶晶,等.水热法合成可见光响应的B掺杂TiO2及其光催化活性.催化学报,2009,30(2):137-141
    [76]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A.,2004,265(1):115-121
    [77]Katarzyna S, Anna L_O. On stability of iodine doped TiO2 electrodes in pH varied aqueous electrolytes. Solid State Ionics,2011,188 (1):165-169
    [78]Sato S, White J M. Chem. Photodecomposition of water over platinum/titanium dioxide catalysts.Phys. Lett.,1980,72(1):83-86
    [79]Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behavior. Appl. Catal. A.,2000, 200:275-285
    [80]Lin X X, Rong F, Fu D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol.,2012,219:173-178
    [81]Waterhouse G I N, Murdoch M, Lorca J, et al. Ethanol photoreaction to hydrogen over Au/TiO2 catalysts. Investigating the synergistic effect of nanoparticles. Inter. J. Nanotechnol.,2012,9 (1-2):113-120
    [82]An H Q, Zhou J, Li J X, et al. Deposition of Pt on the stable nanotubular TiO2 and its photocatalytic performance. Catal. Commun.,2009,11 (3):175-179
    [83]Bowker M, James D, Stone P, Catalysis at the Metal-Support Interface:Exemplified by the Photocatalytic Reforming of Methanol on Pd/TiO2. J. Catal.,2003,217 (2):427-433
    [84]Khan M A, Han D H, Yang O B. Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl. Surf. Sci.,2009,255 (6):3687-3690
    [85]Zhao Q, Li M, Chu J Y, et al., Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. Appl. Surf. Sci.,2009,255 (6):3773-3778
    [86]Zhu B L, Li K R, Zhou J, et al. The preparation of palladium-modified TiO2 nanofibers and their photocatalytic performance. Catal. Commun.,2008,9(14):2323-2326
    [87]Kim J C, Choi J, Lee Y B.et al. Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem. Commun.,2006, (48):5024-5026
    [88]Zhu B L, Zhao W L, Zeng C J, et al. Preparation and photocatalytic performance of One-dimensional CdS/TiO2. Chin. J. Catal.,2011,32(10):1651-1655
    [89]Yang X L, Dai W L, Guo C W, et al., Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. J. Catal.,2005,234(2):438-450
    [90]Sun J H, Wang Y K, Sun R X, et al. Photodegradation of azo dye Congo Red from aqueous solution by the WO3-TiO2/activated carbon (AC) photocatalyst under the UV irradiation. Mater.Chem. Phys.,2008,115(1):303-308
    [91]Li H, Zhu B L, Feng, Y F, et al. Preparation of TiO2/ZnS core/sheath heterostructure nanotubes via a wet chemical method and their photocatalytic activity. React. Kinet. Catal. Lett.,2007,92(2):239-246
    [92]O'Regan B, Gatzel M. A low-cost, high-effciency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-740
    [93]Wang Z Y, Mao W P, Chen H F, et al. Copper-(Ⅱ) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst:synthesis in situ and photocatalysis under visible light. Catal. Commun.,2006,7(8):518-522
    [94]Shang J, Zhao F W, Zhu T, et al. Photocatalytic degradation of rhodamine B by dye-sensitized TiO2 under visible-light irradiation. Sci China Chem.,2011,54(1):167-172
    [95]Zhao J C, Wu T X, Wu K Q, et al. Photoassisted degradation of dye pollutants V:evidence for the need for substrate adsorption on TiO2 particles. Environ. Sci. Technol.,1998,32: 2394-2400
    [96]Liu H Y, Gao L. (Sulfur, nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst. Am Ceram Soc,2004,87(8):1582-1584
    [97]Wu Y M, Xing M Y, Tian B Z, et al. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. J. Chem. Eng.,2010,162(2):710-717
    [98]Zhou X S, Peng F, Wang H J, et al. Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances. Electrochem Commun,2011,13: 121-124
    [99]Yu C L, Cai D J, Yang K, et al. Sol-gel derived S, I-codoped mesoporousTi02 photocatalyst with high visible-light photocatalytic activity. J. Phys. Chem. Solids.,2010,71:1337-1343
    [100]Yang P, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ ions for photocatalysis. Mater. Lett.,2002,57(4):794-801
    [101]Shi J W, Zheng J T, Hu Y, et al. Influence of Fe3+and Ho3+co-doping on the photocatalytic activity of TiO2. Mater. Chem. Phys.,2007,106(2-3):247-249
    [102]Cong Y, Zhang J L, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron. J.Phys. Chem.C.,2007,111(28):10618-10623
    [103]Ma Y F, Zhang J L, Tian B Z, et al. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J Hazard. Mater.,2010,182(1-3): 386-393
    [104]Huang L H, Sun C, Liu Y L. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Appl. Surf. Sci.,2007,253(17):7029-703
    [105]Zuo F, Wang L, Wu T, Hang Z, et al. Self-doped Ti3+enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc,2010,132(34):11856-11857
    [106]Grimes C A, Gong D W, Varghese O K. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.,2001,16(12):3331-3334
    [107]Roy P, Berger S, Schmuki P. TiO2 nanotubes:synthesis and applications. Angew Chem-Int Edit,2011,50(13):2904-2934
    [108]Nakata K, Liu B, Ishikawa Y, et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem. Lett.2011,40(10):1107-1109
    [109]Michailowski A, Aimawlaw D I, Cheng G S, et al. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem. Phys. Lett.,2001,349:1-5
    [110]Mitchell D T, Lee S B, Trofin L, et al. Smart nanotubes for bioseparations and biocatalysis. J. Am.Chem. Soc.,2002,124:11864-11865
    [111]Jung J H, Kobayashi H, Bommel K J C, et al. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater.,2002, 14:1445.1447
    [112]RattanavoraviPa T, Sagawa T, Yoshikawa S. Photovoltaic performance of hyrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template. Sol. Energ. Mat. Sol. C.,2008,92(11):1445-1449
    [113]Yu B Y, Tsal A, Tsai S Y, et al. Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology,2008,19:255202
    [114]Yang D J, Park H, Kim H G, et al. Fabrication of a patterned TiO2 nanotube arrays in anodic oxidation.J.Electroceram.,2009,23(2):159-163
    [115]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Langmuir, 1998,14(12):3160-3163
    [116]Huang J Q, Cao Y G, Huang Q F, et al. High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires. Cryst. Growth. Des.,2009, 9(8):3632-3637
    [117]Akos K, Maria H, Endre H, et al. Oriented crystal growth model explains the formation of titania nanotubes. J. Phys. Chem. B.,2005,109(38):17781-17783
    [118]Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.,2003,15(5):353-389
    [119]Bavykin D V, Kulak A N, Walsh F C. Control over the hierarchical structure of titanate nanotube agglomerates. Langmuir,2011,27(9):5644-5649
    [120]Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem.-Eur. J.,2003,9(10):2229-2238
    [121]Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett.,2003,82,281-283
    [122]Yang J J, Jin Z S, Wang X D. Study oncomposition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans.,2003,20:3898-3901
    [123]Wang C H, Shao C L, Zhang X T, et al. SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties. Inorg. Chem., 2009,48(15):7261-7268
    [124]Regan B O, Gratzel M. A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2. Nature,1991,353:737-740
    [125]Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye sensitized solar cells. J. Electro. Chem. Soc.,2003,150(8):G488-G493
    [126]Uchida S, Chiba R, Tomiha M, et al. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry,2002,70(6):418-420
    [127]Hippe C, Wark M, Lork E, et al. Platinum-filled oxidic nanotubes. Micropor Mesopor Mat, 1999,31(3):235-239
    [128]Idakiev V, Yuan Z Y, Tabakova T, et al. Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Appl. Catal., B:Gen.,2005, 281(1-2):149-155
    [129]Zhu B L, Guo Q, Wang S R, et al. Synthesis of metal-doped TiO2 nanotubes and their catalytic performance for low-temperature CO oxidation. React Kinet Catal Lett,2006, 88(2):301-308
    [130]Liao Y L, Que W X. Preparation and photocatalytic activity of TiO2 nanotube powders derived by a rapid anodization process. J. Alloy. Compd.,2010,505:243-248
    [1]Linsebigler A L, Lu G Q, Yates J T. et al. Photocatalysis on TiOn surfaces:principles, mechanisms and selected results. Chem. Rev.,1995,95(3):735-758
    [2]Chen X B, Mao S S, Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.,2007,107(7):2891-2959
    [3]Minabe T, Tryk D A, Sawunyama P. TiO2-mediated photodegradation of liquid and solid organic compounds. Photochem. Photobio. A.Chem.,2000,137(1):53-62
    [4]Mills A, Davies R H, Worsley D, et al. Water purification by semiconductor photocatalysis. Chem. Soc. Rev.,1993,22:417-425
    [5]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95:69-74
    [6]Mill A, Lehunte S J. An overview of semiconductor photocatalysis. Photochem. Photobiol. A: Chem.,1997,108:1-11
    [7]Nakata K, Fujishima A. TiO2 photocatalysis:design and applications. Photochem. Photobio. C:Photochem. Rev.,2012,13 (3):169-189
    [8]Nakata K, Liu B, Ishikawa Y, et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem. Lett.,2011,40(10):1107-1109
    [9]Chen Y F, Lee C Y, Yeng M Y, et al. Preparing titanium oxide with various morphologies. Mater. Chem. Phys.,2003,81(1):39-44
    [10]Wu Y M, Xing M Y, Zhang J L. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J. Hazard. Mater.,2011,192(1):368-373
    [11]Liu S, Yu J, Jaroniec M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed{001} facets. J. Am. Chem. Soc.,2010,132(34): 11914-11916
    [12]Chen J S, Chen C, Liu J, et al. Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chem. Commun.,2011,47(9): 2631-2633.
    [13]Sun Y. Kinetics and transport parameters for the fixed-bed catalytic incineration of volatile organic compounds. Environ. Sci. Technol.,1995,25:2065-2072
    [14]Tseng I H, Wu J C, Chou H Y. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal.,2004,221 (2):432-440
    [15]Assahane A, Yahia A I, Tahiri H, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.:Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid). Appl. Catal. B:Environ.,2000,24(2):71-87
    [16]Wang J, Li R H, Zhang Z H, et al. Degradation of hazardous dyes in wastewater using nanometer mixed crystal TiO2 powders under visible light irradiation. Water Air Soil Pollut, 2008,189(1-4):225-237
    [17]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor. Nature, 1972,238(5358):37-38
    [18]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol,1976,16(6):697-701
    [19]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc,1977,99(1):303-304
    [20]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J.Phys.chem.,1977,81(15):1484-1488
    [21]Matsunage T, Tomoda R. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters,1985,29(2):211-221
    [22]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002
    [23]Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.,2001,16(12):3331-3334
    [24]Ptail A J, Shinde M H, Potdar H S, et al. Chemical synthesis of titania (TiO2) powder via mixed precursor route for membrane applications. Mater. Chem. Phys.,2001,68(1-3):7-16
    [25]Liu X H, Yang L, Wang J, et al. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Mater. Sei. Engin. A.,2000,289(1-2):241-245
    [26]Zhu Y F, Zhang L, Gao C, et al. The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor. J. Mater. Sci.,2000,35(16):4049-4054
    [27]Tsai C C, Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem. Mater.,2004,16(22):4352-4358
    [28]Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J.,2003,9(10):2229-2238
    [29]Wei Z, Luo X. Fabrication of rutile Sn-doped TiO2 nanocrystals by hydrothermal method. J. Synth Cryst.,2007,36(5):1113-1117
    [30]Kim E J, Hahn S H. Microstructure and photoactivity of titania nanoparticles prepared in nonionic W/O microemulsions. Mater. Sci.Eng. A.,2001,303(1-2):24-29
    [31]Lu C H, Wen M C. Synthesis of nanosized TiO2 powders via a hydrothermal microemulsion process. J. Alloys Compd.,2008,448(1-2):153-158
    [32]Zhang X, Zhang F, Chan K Y. The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties. Mater. Chem. Phy.,2006,97(2-3):384-389
    [33]Jiang J, Li L C. Ultrasonic-assisted synthesis of core-shell structure Zn0.5Cr0.5Fe2O4/TiO2 nanocomposites in w/o microemulsion. J. Alloys Compd.,2007,456(1-2):220-223
    [34]Nargiello M, Herz T. Physical-chemical characteristics of P25 making it extremely suited as the catalyst in photodegradation of organic compounds. New York:Elsevier,1993,30: 2969-2976
    [35]Raillard C, Hequet V, Cloirec P L, et al. Mechanistic analysis on the influence of humidity on photocatalytic decomposition of gas-phase chlorobenzene. Water Sci. Tech.,2004,49: 111-114
    [36]Li L, Mizuhata M, Kajinami A, et al. Different effects of alkyl sulfate and alkylbenzene sulfonate surfactants on the synthesis and properties of CuPc/TiO2 composite films by the liquid-phase deposition (LPD) method. Synthetic Metals,2004,146:17-27
    [37]Kim J, Monllor-Satoca D, Choi W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy Environ. Sci.,2012,5:7647-7656
    [38]孙平,陈竟文,杨风林,等.部分水溶性偶氮染料的光催化降解研究.环境化学,1999,18(3):254-257
    [39]余家国,赵修建,陈文梅,等.太阳光TiOz多孔纳米薄膜光催化降解有机磷农药的研究.太阳能学报,2000,21(2):165-170
    [40]Herrmann J M, Guillard C, Pichat P. Heterogeneous photocatalysis:an emerging technology for water treatment. Catalysis Today,1993,17:7-20
    [41]Padikkaparambil S, Zahira Y, Mohd A Y, et al. Visible light active anion codoped sol-gel titania photocatalyst for pollutant degradation. J. Sol-Gel Sci Technol.,2011,59(2):252-259
    [42]Liu T X, Li F B, Li X Z, et al. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase. J. Hazard Mater.,2008,152(1):347-355
    [43]Noda H, Dikawa K, Kamada H. ESR spin-trapping study of active oxygen radicals from photoexcited semiconductors in aqueous H2O2 solutions. Bull. Chem. Soc. Jpn.,1993,66: 455-458
    [44]Serpone N. Brief introductory remarks on heterogeous photocatalysis. Solar Energy Materials and Solar Cells,1995,38(1-4):369-379
    [45]吴聪萍,周勇,邹志刚.光催化还原CO2的研究现状和发展前景.催化笋报,2011,32(10):1565-1572
    [46]Yang C C, Yu Y H, Wu J C S, et al. Artificial photosynthesis oyer crystalline TiO2-based catalysts:fact or fiction. J. Am. Chem. Soc.,2010,132:8398-8406
    [47]刘亚琴,徐耀,李志杰,等.CO2在纳米SiO2/TiO2悬浮体系中的光催化反应.化学学报,2006,64(6):453-457.
    [48]Zhao Z H, Fan J M, Xie M M, et al. Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. J. Clean. Prod.,2009,17(11): 1025-1029
    [49]Roy S C, Varghese O K, Paulose M, et al. Toward solar fuels:photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano,2010,4:1259-1278
    [50]Palmisano G, Garcia-Lopez E, MarciG, Loddo V, et al. Advances in selective conversions by heterogeneous photocatalysis. Chem. Commun.,2010,46:7074-7089
    [51]Hoffmann M R, Moss J A, Baum M M. Artificial photosynthesis:semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. Dalton Trans.,2011,40: 5151-5158
    [52]Lo C C, Hung C H, Yuan C S, et al. Parameter effects and reaction pathways of photoreduction of CO2 over TiO2/SO42-photocatalyst. Chin J Catal,2007,28(6):528-534
    [53]Varghese O K, Paulose M, LaTempa T J, et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Neno Lett,2009,9(2):731-737
    [54]Madaeni S S, Ghaemi N, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci.,2007,303 (1-2):221-233
    [55]Xu Q C, Wellia D V, Sk M A, et al, Transparent visible light activated C-N-F-codoped TiO2 films for self-cleaning applications. J. Photochem. Photobiol. A.,2010,210 (2-3):181-187
    [56]David M T, Antonella T, Andrijana S, et al. Effects of SiO2 addition on TiO2 crystal structure and photocatalytic activity. J. Eur. Ceram, Soc,2010,30 (12):2481-2490
    [57]Wang C, Shi H S, Li Y. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Appl. Surf. Sci.,2011,257 (15):6873-6877
    [58]Kazuya N, Baoshun L, Yosuke I, et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem. Lett.,2011,40 (10):1107-1109
    [59]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanoerystalline systems. Chem. Rev.,1995,95:49-68
    [60]Leaustic A, Babonneau F, Livage J. Photoreactivity of tungsten trioxide dispersions:spin trapping and electron spin resonance detection of radical intermediates. J. Phys. Chem., 1986,90:4193-4198
    [61]Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J.Catal,1990,122:178-192
    [62]Choi W, Termin A, Hoffillann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamies. J. Phys. Chem.,1994,98(51):13669-13679
    [63]王艳芹,张莉,程虎民,等.掺杂过渡金属离子的TiO2复合纳米粒子光催化剂-罗丹明B的光催化降解.高等学校化学学报,2000,21(6):958-960
    [64]Fuerte A, Hemandez-Alonso M D, Maira A J, et al. Visible light-activated nanosized doped-TiO2 photocatalysts. Chem. Commun.,2001, (24):2718-2719
    [65]An H Q, Li J X, Zhou J, et al. Iron-coated TiO2 nanotubes and their photocatalytic performance. Mater. Chem.,2010,20(3):603-610
    [66]Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal.,2002,207(2):151-157
    [67]Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye degradation. Appl. Catal. B.,2003,46(2):251-259
    [68]Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett.,1986,123:126-128
    [69]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271.
    [70]Khan SUM, Shallry M A, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590):2243-2245
    [71]Chen S, Chu W, Huang Y Y, et al. Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities. Mater. Res. Bull.,2012,47(12):4514-4521
    [72]Zhang L, Tse M S, Tan O K, et al. Facile fabrication and characterization of multi-type carbon-doped TiO2 for visible light-activated photocatalytic mineralization of gaseous toluene. J. Mater. Chem.,2013,1(14):4497-4507
    [73]薛晓金,孙琼,王妍,等.氟离子对二氧化钛选择性光催化氧化环己烷的影响.化学学报,2010,(5):471-475
    [74]Yu Y, Wu H H, Zhu B L, et al. Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes. Catal Lett.,2008,121(1-2):165-171
    [75]于爱敏,武光军,严晶晶,等.水热法合成可见光响应的B掺杂Ti02及其光催化活性.催化学报,2009,30(2):137-141
    [76]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A.,2004,265(1):115-121
    [77]Katarzyna S, Anna L O. On stability of iodine doped TiO2 electrodes in pH varied aqueous electrolytes. Solid State Ionics,2011,188 (1):165-169
    [78]Sato S, White J M. Chem. Photodecomposition of water over platinum/titanium dioxide catalysts.Phys. Lett.,1980,72(1):83-86
    [79]Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behavior. Appl. Catal. A.,2000, 200:275-285
    [80]Lin X X, Rong F, Fu D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol.,2012,219:173-178
    [81]Waterhouse G I N, Murdoch M, Lorca J, et al. Ethanol photoreaction to hydrogen over Au/TiO2 catalysts. Investigating the synergistic effect of nanoparticles. Inter. J. Nanotechnol.,2012,9 (1-2):113-120
    [82]An H Q, Zhou J, Li J X, et al. Deposition of Pt on the stable nanotubular TiO2 and its photocatalytic performance. Catal. Commun.,2009,11 (3):175-179
    [83]Bowker M, James D, Stone P, Catalysis at the Metal-Support Interface:Exemplified by the Photocatalytic Reforming of Methanol on Pd/TiO2. J. Catal.,2003,217 (2):427-433
    [84]Khan M A, Han D H, Yang O B. Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl. Surf. Sci.,2009,255 (6):3687-3690
    [85]Zhao Q, Li M, Chu J Y, et al., Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. Appl. Surf. Sci.,2009,255 (6):3773-3778
    [86]Zhu B L, Li K R, Zhou J, et al. The preparation of palladium-modified TiO2 nanofibers and their photocatalytic performance. Catal. Commun.,2008,9(14):2323-2326
    [87]Kim J C, Choi J, Lee Y B.et al. Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem. Commun.,2006, (48):5024-5026
    [88]Zhu B L, Zhao W L, Zeng C J, et al. Preparation and photocatalytic performance of One-dimensional CdS/TiO2. Chin. J. Catal.,2011,32(10):1651-1655
    [89]Yang X L, Dai W L, Guo C W, et al., Synthesis of novel core-shell structured WO/fiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. J. Catal.,2005,234(2):438-450
    [90]Sun J H, Wang Y K, Sun R X, et al. Photodegradation of azo dye Congo Red from aqueous solution by the WO3-TiO2/activated carbon (AC) photocatalyst under the UV irradiation. Mater.Chem. Phys.,2008,115(1):303-308
    [91]Li H, Zhu B L, Feng, Y F, et al. Preparation of TiO2/ZnS core/sheath heterostructure nanotubes via a wet chemical method and their photocatalytic activity. React. Kinet. Catal. Lett,2007,92(2):239-246
    [92]O'Regan B, Gatzel M. A low-cost, high-effciency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-740
    [93]Wang Z Y, Mao W P, Chen H F, et al. Copper (Ⅱ) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst:synthesis in situ and photocatalysis under visible light. Catal. Commun.,2006,7(8):518-522
    [94]Shang J, Zhao F W, Zhu T, et al. Photocatalytic degradation of rhodamine B by dye-sensitized TiO2 under visible-light irradiation. Sci China Chem.,2011,54(1):167-172
    [95]Zhao J C, Wu T X, Wu K Q, et al. Photoassisted degradation of dye pollutants V:evidence for the need for substrate adsorption on TiO2 particles. Environ. Sci. Technol.,1998,32: 2394-2400
    [96]Liu H Y, Gao L. (Sulfur, nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst. Am Ceram Soc,2004,87(8):1582-1584
    [97]Wu Y M, Xing M Y, Tian B Z, et al. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. J. Chem. Eng.,2010,162(2):710-717
    [98]Zhou X S, Peng F, Wang H J, et al. Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances. Electrochem Commun,2011,13: 121-124
    [99]Yu C L, Cai D J, Yang K, et al. Sol-gel derived S, I-codoped mesoporousTiO2 photocatalyst with high visible-light photocatalytic activity. J. Phys. Chem. Solids.,2010,71:1337-1343
    [100]Yang P, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater. Lett.,2002,57(4):794-801
    [101]Shi J W, Zheng J T, Hu Y, et al. Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2. Mater. Chem. Phys.,2007,106(2-3):247-249
    [102]Cong Y, Zhang J L, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron. J.Phys. Chem.C.,2007,111(28):10618-10623
    [103]Ma Y F, Zhang J L, Tian B Z, et al. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J Hazard Mater,2010,182(1-3): 386-393
    [104]Huang L H, Sun C, Liu Y L. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Appl. Surf. Sci.,2007,253(17):7029-703
    [105]Zuo F, Wang L, Wu T, Hang Z, et al. Self-doped Ti3+enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc,2010,132(34):11856-11857
    [106]Grimes C A, Gong D W, Varghese O K. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.,2001,16(12):3331-3334
    [107]Roy P, Berger S, Schmuki P. TiO2 nanotubes:synthesis and applications. Angew Chem-Int Edit,2011,50(13):2904-2934
    [108]Nakata K, Liu B, Ishikawa Y, et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem. Lett.,2011,40(10):1107-1109
    [109]Michailowski A, Aimawlaw D I, Cheng G S, et al. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem. Phys. Lett.,2001,349:1-5
    [110]Mitchell D T, Lee S B, Trofin L, et al. Smart nanotubes for bioseparations and biocatalysis. J. Am.Chem. Soc.,2002,124:11864-11865
    [111]Jung J H, Kobayashi H, Bommel K J C, et al. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater,2002, 14:1445-1447
    [112]Rattanavoravipa T, Sagawa T, Yoshikawa S. Photovoltaic performance of hyrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template. Sol. Energ. Mat. Sol. C.,2008,92(11):1445-1449
    [113]Yu B Y, Tsal A, Tsai S Y, et al. Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology,2008,19:255202
    [114]Yang D J, Park H, Kim H G, et al. Fabrication of a patterned TiO2 nanotube arrays in anodic oxidation. J. Electroceram.,2009,23(2):159-163
    [115]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Langmuir, 1998,14(12):3160-3163
    [116]Huang J Q, Cao Y G, Huang Q F, et al. High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires. Cryst. Growth. Des.,2009, 9(8):3632-3637
    [117]Akos K, Maria H, Endre H, et al. Oriented crystal growth model explains the formation of titania nanotubes. J. Phys. Chem.B.,2005,109(38):17781-17783
    [118]Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.,2003,15(5):353-389
    [119]Bavykin D V, Kulak A N, Walsh F C. Control over the hierarchical structure of titanate nanotube agglomerates. Langmuir,2011,27(9):5644-5649
    [120]Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem.-Eur. J.,2003,9(10):2229-2238
    [121]Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett.,2003,82,281-283
    [122]Yang J J, Jin Z S, Wang X D. Study on composition, structure and formation process of nanotube Na2Ti204(OH)2. Dalton Trans.,2003,20:3898-3901
    [123]Wang C H, Shao C L, Zhang X T, et al. SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties. Inorg. Chem., 2009,48(15):7261-7268
    [124]Regan B O, Gratzel M. A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2. Nature,1991,353:737-740
    [125]Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye sensitized solar cells. J. Electro. Chem. Soc.,2003,150(8):G488-G493
    [126]Uchida S, Chiba R, Tomiha M, et al. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry,2002,70(6):418-420
    [127]Hippe C, Wark M, Lork E, et al. Platinum-filled oxidic nanotubes. Micropor Mesopor Mat, 1999,31(3):235-239
    [128]Idakiev V, Yuan Z Y, Tabakova T, et al. Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Appl. Catal, B:Gen.,2005, 281(1-2):149-155
    [129]Zhu B L, Guo Q, Wang S R, et al. Synthesis of metal-doped TiO2 nanotubes and their catalytic performance for low-temperature CO oxidation. React Kinet Catal Lett,2006, 88(2):301-308
    [130]Liao Y L, Que W X. Preparation and photocatalytic activity of TiO2 nanotube powders derived by a rapid anodization process. J. Alloy. Compd.,2010,505:243-248
    [131]王幸宜.催化剂表征.上海:华东理工大学出版社,2008.
    [132]朱永法.纳米材料的表征与测试技术.北京:化学工业出版社,2006.
    [133]张锐.现代材料分析方法.北京:化学工业出版社,2007.
    [134]王中林.纳米材料表征(曹茂盛,李金刚译).北京:化学工业出版社,2005.
    [135]Yang H, Pan C X. Synthesis of carbon-modified TiO2 nanotube arrays for enhancing the photocatalytic activity under the visible light. J. Alloy. Compd.,2010,501 (1):L8-L11
    [136]Wu G S, Nishikawa T, Ohtani B, et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response. Chim. Mater.,2007,19 (18): 4530-4537
    [137]Zhang S M, Chen Y Y, Yu Y, et al. Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J. Nanopart. Res.,2008,10 (5):871-875
    [138]朱宝林,赵伟玲,曾晨婕,等.一维CdS/TiO2纳米材料的制备及其光催化性能.催化学报,2011,32(10):1651-1655
    [139]肖尧明,吴季怀,岳根田,等.单晶二氧化钛纳米线的制备及其在柔性染料敏化太阳 能电池中的应用.物理化学学报,2012,28(3):578-584
    [140]Hahn R, Ghicov A, Salonen J, et al. Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnology,2007,18 (10):105604
    [141]Matsunaga T; Inagaki M. Carbon-coated anatase for oxidation of methylene blue and NO. Appl Catal B:Environ A,2006,64 (1-2):9-12
    [142]Ye C, Feng C, Zhang J L, et al. Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem. Lett.,2006,35 (7):800-801
    [143]Shu Y, Masakazu K, Zhang Q W, et al. Synthesis of visible-light responsive nitrogen/carbon doped titania photocatalyst by mechanochemical doping. J. Mater. Sci., 2007,42 (7):2399-2404
    [144]Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts.1. synthesis by spray pyrolysis and surface characterization. Chem. Mater.,2005,17 (10): 2588-2595
    [145]Sakatani Y, Nunoshige J, Ando H, et al. Metal ion and N co-doped TiO2 as a visible-light. Chem. Lett.,2003,32:1156-1157
    [146]Amama P B, Itoh K, Murabayashi M. Effect of RuO2 deposition on the activity of TiO2: photocatalytic oxidation in aqueous phase. J. Mater. Sci.,2004,39:4349-4351
    [147]Rizzi G A, Magrin A, Granozzi G. Preparation of epitaxial ultrathin RuO2-TiO2 (110) films by decomposition of Ru3(CO)12. Surf. Sci.,1999,443:277-286
    [148]Zhu B L, Zhang X X, Wang S R, et al. Synthesis and catalytic performance of TiO2 nanotubes-supported copper oxide for low-temperature CO oxidation. Micropor. Mesopor. Mat,2007,102:333-336
    [149]Yang Y, Zhong H, Tian C X, Jiang Z G. Single-step preparation, characterization and photocatalytic mechanism of mesoporous Fe-doped sulfated titania. Surf. Sci.,2011,605: 1281-1286
    [150]Hurum D C, Agrios A G, K. Gray A, et al. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B.,2003,107(19): 4545.4549
    [151]Kortuem G. Reflectance spectroscopy:principles, methods and applications. Springer-Verlag, New York,1969
    [152]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed,2003,42:4908-4911
    [153]Ismail A A, Robben L, Bahnemann D W. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. Chemphyschem,2011,12(5):982-991
    [154]Zhao X Y, Hrbek J, Rodriguez J A. The decomposition and chemistry of Ru3(CO)12 on TiO2(110) studied with X-ray photoelectron spectroscopy and temperature programmed desorption. Surf. Sci.,2005,575:115-124
    [155]Sun H, Bai Y, Cheng Y, et al. Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photocatalysts. Ind. Eng. Chem. Res.,2006,45:4971-4976
    [156]Chen D M, Jiang Z Y, Geng J G, et al. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res.,2007,46:2741-2746
    [157]Papirer E, Lacroix R, Donnet J B, et al. XPS study of the halogenation of carbon black-Part 2. chlorination. Carbon,1995,33(1):63-72
    [158]Osmana J R, Crayston J A, Pratt A, et al. RuO2-TiO2 mixed oxides prepared from the hydrolysis of the metal alkoxides.Mater. Chem. Phys.,2008,110:256-262
    [159]Zhang M, Jin Z S, Zhang J W, et al. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti204(OH)2. J. Mol. Catal. A. Chem., 2004,217(1-2):203-210
    [160]Huang Y, Ho W K, Lee S C, et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir,2008,24:3510-3516
    [161]Tennakone K, Bandara J. Multiphoton semiconductor photocatalysis. Sol. Energy Mater Sol. Cells.,2000,60:361-365
    [162]Anpo M. Photocatalysis on titanium oxide catalysts:ap-proaches in achieving highly efficient reactions and realizing the use of visible light. Catal. Surv. Jpn.,1997,1 (2): 169-179
    [163]Song J J, Zhu B L, Zhao W L, et al. Characterization and photocatalytic properties of Ru, C co-modified one-dimensional TiO2-based composites prepared via a single precursor approach. J. Nanopart. Res.,2013,15 (5):1494
    [164]乐伶聪,马新国,唐豪,等.过渡金属掺杂钛酸纳米管的电子结构和光学性质研究.物理学报,2010,59(2):1314-1320
    [165]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271
    [166]Binas V D, Sambani K, Maggos T, et al. Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl. Catal. B: Environ.,2012,113-114:79-86
    [167]Cachoa C, Geissa O, Barrero-Morenoa J, et al. Studies on photo-induced NO removal by Mn-doped TiO2 under indoor-like illumination conditions. J. Photochem. Photobiol. A: Chem.,2011,222:304-306
    [168]Feng H J, Zhang M H, Yu L E. Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2. Appl. Catal. A:Gen.,2012,413-414:238-244
    [169]Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett.,2003,32(8):772-773
    [170]Zhao B L, Chen X F, Wang X C, et al. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv. Mater.,2010,22, 3317-3321
    [171]Kang I, Zhang Q, Yin S, et al. Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl. Catal. B: Environ.,2008,80 (1-2):81-87
    [172]张学军,柳清菊,邓曙光.Mn-N共掺杂对锐钛矿相Ti02微观结构和性能的影响.物理学报,2011,60(8):087103-1-10
    [173]龚倩,胡芸,韦朝海,等.不同煅烧温度制备的Mn、N掺杂Ti02光催化性能研究.环境群学学报,2012,32(4):802-807
    [174]Wang H, Lewis J P. Effects of dopant states on photoactivity in carbon-doped TiO2. J. Phys. Condens. Mater.,2005,17:L209-L213
    [175]Geng J Q, Jiang Z Y, Wang Y B, et al. Carbon-modified TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method. Scripta Materialia, 2008,59:352-355
    [176]Nagaveni K. Hegde M S. Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir,2004,20(7): 2900-2907
    [177]Erdem B. Hunsicker R A. Simmons G W, et al. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir.,2001,17(9):2664-2669
    [178]Serpone N, Lawless D, Khairutdinov R, et al. Subnanosecond relaxation dynamics in TiO2 colloidal sols:relevance to heterogeneous photocatalysis. J. Phys. Chem.,1995,99: 16655-16661
    [179]Yu J C, Ho W K, Yu J G, et al. Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films. Langmuir,2003, 19(9):3889-3896
    [180]Klissurdki D, Choisnet J, Abadzhieva N, et al. X-Ray photoelectron spectroscopy, temperature-programmed desorption and temperature-programmed reduction study of LaNiO3 and La2NiO4+δ catalysts for methanol oxidation. J. Chem. Soc, Faraday Trans. 1994,90(13):1987-1991
    [181]Yang X X, Cao C D, Hohn K, et al. Highly visible-light active C-and V-doped TiO2 for degradation of acetaldehyde. J. Catal.,2007,252:296-302
    [182]Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B: Environ.,2001,32(4):215-227
    [183]Chang S-L, Anderegg J W, Thiel P A. Surface oxidation of an Al Pd Mn quasicrystal, characterized by X-ray photoelectron spectroscopy. J. Non-cryst. Solids.,1996,195(1-2): 95-101
    [184]Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3:catalytic evaluation and characterizations. J. Catal.,2012,288:74-83
    [185]Deng Q R, Xia X H, Guo M L, et al. Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity. Mater. Lett.,2011,65:2051-2054
    [186]Mohapatra S K, Banerjee S, Misra M. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe. Nanotechnology,2008,19:315601
    [187]Mozia S, Heciak A, Morawski A W. Preparation of Fe-modified photocatalysts and their application for generation of useful hydrocarbons during photocatalytic decomposition of acetic acid. J. Photochem. Photobiol. A:Chem.,2010,216:275-282
    [188]An H Q, Zhu B L, Li J X, et al. Synthesis and characterization of thermally stable nanotubular TiO2 and its photocatalytic activity. J. Phys. Chem. C,2008,112: 18772-18775
    [189]Khana M A, Woob S I, Yang O B. Hydrothermally stabilized Fe (Ⅲ) dopedtiatnia active under visible light for water splitting reaction. Int. J. Hydrogen Energy,2008,33: 5345-5351
    [190]Tong T Z, Zhang J L, Tian B Z, et al. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard Mater.,2008,155 (3):572-579
    [191]Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing. Adv. Mater.,1999,11(15):1307-1311
    [192]Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett.,2003,82(2):281-283
    [193]Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem.,2004,14(22):3370-3377
    [194]Treschev S Y, Chou P W, Tseng Y H, et al. Photoactivities of the visible-light-activated mixed-phase carbon-containing titanium dioxide:the effect of carbon incorporation. Appl. Catal. B:Environ.,2008,79 (1-2):8-16
    [195]Wu Y M, Zhang J L, Xiao L, et al. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl. Surf. Sci.,2010,256:4260-4268
    [196]Yang J J, Jin Z S, Wang X D, et al. Study on composition, structure and formation process of nanotube Na2Ti204(OH)2. Dalton Trans,2003,20:3898-3901
    [197]Kobayashi S, Hamasaki N, Suzuki M, et al. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J. Am. Chem. Soc,2002,124(23): 6550-6551
    [198]Sander M S, Cote M J, Gu W, et al. Template-assisted fabrication of dense aligned arrays of titania nanotubes with well-controlled dimension on substrates. Adv. Mater.,2004,16: 2052-2057
    [199]Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett.,2002,81(3):454-456
    [200]Nishijima K, Fujisawa Y, Murakami N, et al. Development of an S-doped titania nanotube (TNT) site-selectively loaded with iron (Ⅲ) oxide and its photocatalytic activities. Appl. Catal. B:Environ.,2008,84(3-4):584-590
    [201]Huang L H, Sun C, Liu Y L. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Appl. Surf. Sci.,2007,253:7029-7035
    [202]Sakatani Y. Nunoshige J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+and N co-doped TiO2. Chem. Lett.,2003,32(12): 1156-1157
    [203]Chen P, Lu J Q, Xie G Q. Characterizations of Ir/TiO2 catalysts with different Ir contents for selective hydrogenation of crotonaldehyde. Reac kinet mech catal, 2012,106(2):419-434
    [204]Reyes P, Aguirre M C, Pecchia G, et al. Crotonaldehyde hydrogenation on Ir supported catalysts. J. Mol. Catal. A:Chem.,2000,164:245-251
    [205]Chen P, Lu J Q, Xie G Q. Effect of reduction temperature on selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Appl Catal. A:Gen.,2012,433:236-242
    [206]Branislav Z, Nikolic V V, Panic A B. Intrinsic potential-dependent performances of a sol-gel-prepared electrocatalytic IrO2-TiO2 coating of dimensionally stable anodes. Electrocatalysis,2012,3(3-4):360-368
    [207]Zhou M H, Yu J G. Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders. J. Hazard. Mater.,2008,152(3):1229-1236
    [208]Ren W J, Ai Z H, Jia F L, et al. Low temperature preparation and visible light photocatalytic activity of mesoprous carbon-doped crystalline TiO2. Appl. Catal. B: Environ.,2007,69(3-4):138-144
    [209]Sun H Q, Bai Y, Cheng Y P, et al. Preparation and characterization of visible-light-driven carbon-sulfur-codoped TiO2 photocatalysts. Ind. Eng. Chem. Res.,2006,45(14): 4971-4976
    [210]Chapelle A, Yaacob M H, Pasquet I, et al. Structural and gas-sensing properties of CuO-CuxFe3-xO4 nanostructured thin films. Sensor. Actuat. B:Chem.,2011,153:117-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700