用户名: 密码: 验证码:
一维TiO_2基紫外光催化剂的制备及降解甲苯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术具有条件温和、不产生二次污染等优点,在环境净化尤其是室内气相污染物去除方面具有极佳的应用前景。TiO2性能优良,性质稳定,价廉易得,是理想的光催化材料。其实际应用中存在着光生电子-空穴复合率高、负载困难等问题。本文以提高TiO2的实用性为目的,针对TiO2紫外光催化剂开发中的结构化、负载化等热点问题,重点开发改进了高性能一维TiO2光催化剂的制备工艺,并探讨了贵金属沉积、原位金属掺杂工艺对一维TiO2光催化剂光催化性能的影响;并针对本文开发的一维TiO2光催化剂,以甲苯为探针污染物进一步研究了TiO2光催化降解甲苯的反应动力学。本文研究为新型高效TiO2基紫外光催化剂的开发提供了理论支持。
     首先,以钛片为原料,采用阳极氧化法制备了直接负载于钛片的TiO2阵列纳米管结构,考察了乙二醇有机电解液体系中氧化电压、氧化时间等制备参数对TiO2阵列纳米管长度、直径等的影响。在此基础上,通过控制氢氟酸及水的浓度,获得了直接负载的TiO2一维线管复合结构。该材料底部为纳米管、顶部为纳米线,直接负载于钛片上,具有良好的光催化性能和负载性能。
     其次,为开发简易、价廉的一维结构TiO2紫外光催化剂制备工艺,通过强碱水热处理工业钛粉的方法制备了一维TiO2纳米管,并采用简单浸渍法对所得一维TiO2纳米管分别进行了银、铂、钯等贵金属的沉积改性。其中,贵金属银和铂具有较好的改性效果,其光催化活性分别为同等测试条件下P25的2.2、2.1倍。为进一步简化TiO2一维结构的制备、改性工艺,本文改进强碱水热工艺,实现了金属原位掺杂一维TiO2纳米管的一步法制备,并系统研究了掺杂源种类、源物质比例等对催化剂活性的影响,研究结果表明,镧、锶原位掺杂的一维TiO2纳米管具有较好的光催化活性。
     强碱水热工业钛粉制备TiO2一维结构的工艺制备高性能紫外光催化剂的过程中需要高温高压的环境,反应条件要求较高。为此,本文进一步开发了超声辅助的强碱氧化工艺。该工艺以工业钛粉为原料,在低温常压条件下即可制备大比表面积的一维介孔TiO2纳米棒。超声辅助的强碱氧化工艺经济成本低,制备过程简单,所得一维TiO2纳米棒的孔结构以介孔为主,光催化活性达商用P25 TiO2的2.8倍。结合强碱水热法制备一维TiO2的机理,提出了以钛粉为原料,超声氧化法制备一维介孔Ti02纳米棒的OSRS机理(即Oxidation-Shaking off-Rolling up-Shrinkage mechanism)。
     最后,以超声氧化法制备的一维介孔Ti02纳米棒为典型催化剂,采用自制连续流反应器对低浓度气相甲苯的降解进行了动力学研究。综合考虑氧气浓度、水蒸气浓度的影响,提出了改进的L-H污染物降解模型,得到了一维介孔Ti02纳米棒光催化降解甲苯的动力学参数。
Photocatalytic reaction has advantages of mild reactive conditions, no secondary pollutants, etc.Photocatalytic technology has broad application prospects in environmental purification, especially in the removal of gas phase pollutants. TiO2 is one of the most promising photocatalytic materials due to its excellent photocatalytic performance, stable chemical property and low cost. However, there are still challenges for inhibiting the recombination of photo-induced hole-electron pairs and improving the coating methods. This paper focuses on improving the synthesis methods of high activity TiO2 photocatalysts, such as one-dimensional TiO2 and mesoporous TiO2 with high surface area. Novel modification process for the parapration of noble metal deposited TiO2 and in-situ metal doped TiO2 are also discussed.The reaction kinetics of one typical TiO2 photocatalyst is studied, using continuous toluene flow as target pollutants.The study provides theoretical supports for the preparation of high performance UV-induced TiO2
     Firstly,TiO2 nanotube arrays are prepared by anodization method in ethylene glycol electrolyte with titanium foils as starting material.The effects of anodic voltage and time on the TiO2 nanotube arrays'morphology and photocatalytic activity are studied. Furthermore, immobilized composite TiO2 nanostructure of nanowires covered nanotubes are synthesized by adjusting the concentration of H2O and HF.The higher activity of this novel catalyst for photocatalytic removal of gaseous toluene is also demonstrated. The reproducible simple synthesis route for efficient immobilized photocatalysts shows great application potential in air purification.
     Secondly, TiO2 nanobubes are synthesized by hydrothermal treating of industrial titanium powder in alkali solution. Then, the TiO2 nanobubes are further modified by Ag, Pt and Pd deposition, which is carried out by a simple dip-coating process. The diameter and length of the Ag-TNTs are about 20 nm and 100 nm, respectively. The porous structure of Ag-TNTs is characterized to be hierarchical micro-meso porous structure. The optimum photocatalytic activities of the samples are 2.2 and 2.1 times that of P25 for Ag-TNTs and Pt-TNTs, respectively. To simplify the preparation and modification process of UV-induced TiO2 a simple one-step hydrothermal method is developed to synthesize In-situ metal doped TiO2 nanotubes.The influences of doping metal type and doping ratio on the photocatalytic activity are studied. The as prepared photocatalysts are tested by the photodegradation of gas phase toluene. It is found that the apparent reaction rates are 1.2 and 1.5 times that of P25,respectively.
     To avoid the high temperature and pressure in the hydrothermal route, a mild template-free sonochemical method is developed to synthesize mesoporous TiO2 nanorods using industrial bulk Ti powder. The sonochemical synthesis process was carried out under normal atmospheric pressure and relative low temperature. The as prepared TiO2 nanorods contain numerous irregular olive-like nanorods aggregates. The photocatalytic degradation of gas phase toluene shows that the activity of the sample is 2.8 times that of P25.Compared with normal hydrothermal technique, this novel sonochemical method is simple and low cost. A mechanism of Oxidation-Shaking off-Rolling up-Shrinkage (OSRS) is proposed to explain the crystal growth.
     Finally, the reaction kinetics of photocatalytic degradation of gas phase toluene is studied in a homemade continuous flow reactor. The sample made by sonochemical oxidation method is chosed as typical photocatalyst. Carefully considering the influnce of humidity and oxygen concentration, a kinetics model with multifactors is built and solved by amending the L-H model.
引文
[1]吴忠标,赵伟荣.室内空气污染及净化技术[M].北京:化学工业出版社,2005
    [2]Green C., Scarpino P. The use of ultraviolet germicidal irradiation (UVGI) in disinfection of airborne bacteria[J].Environmental Engineering and Policy,2002,3(1):101-107
    [3]Saborit J. M. D., Aquilina N. J., Meddings. C., Baker S.,Vardoulakis S.,Harrison R.M. Measurement of personal exposure to volatile organic compounds and particle associated PAH in three UK regions[J].Environmental Science and Technology,2009,43(12):4582-4588
    [4]Mo J.H.,Zhang Y.P. Xu Q.J., Zhu Y.F., Lamson J.J., Zhao R.Y.Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Applied Catalysis B:Environmental,2009,89(3-4):570-576
    [5]Jordan C.,Fitz E.,Hagan T., Sive B.,Frinak E.,Haase K., Cottrell L., Buckley S.,Talbot R. Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences[J].Atmospheric Chemistry and Physics,2009,9(14):4677-4697
    [6]Mohseni M., Zhao J. L. Coupling ultraviolet photolysis and biofiltration for enhanced degradation of aromatic air pollutants[J].Journal of Chemical Technology and Biotechnology, 2006,81(2):146-151
    [7]Yu F. D.,Luo L. A.,Grevillot G.Adsorption isotherms of VOCs onto an activated carbon monolith:Experimental measurement and correlation with different models[J].Journal of Chemical and Engineering Data,2002,47(3):467-473
    [8]Hoffmann M. R., Martin S.T.,Choi W. Y.,Bahnemann D. W. Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95(1):69-96
    [9]熊家林,贡长生,张克立.无机精细化学品的制备和应用[M].北京:化学工业出版社,1999
    [10]申半文,车云霞.无机化学丛书(第八卷,钛分族)[M].北京:科学出版社,1998
    [11]李广勤.二氧化钛光催化材料的可控制备及性能研究[D].博士学位论文,2007
    [12]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002
    [13]Zhang H.J.,Chen G.H., Bahnemann D. W. Photoelectrocatalytic materials for environmental applications[J].Journal of Materials Chemistry,2009,19(29):5089-5121
    [14]Mills A.,Le H. S.An overview of semiconductor photocatalysis[J].Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35
    [15]Carraway E. R.,Hoffman A.J., Hoffmann m. R. Photocatalytic oxidation of organic-acids on quantum-sized semiconductor colloids[J].Environmental Science and Technology,1994, 28(5):786-793
    [16]Anpo M., Shima T., Kodama S.,Kubokawa Y. Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates[J].Journal of Physical Chemistry,1987,91(16):4305-4310
    [17]Bredow T., Jug K. Sindol study of photocatalytic formation and reactions of oh radicals at anatase particles[J].Journal of Physical Chemistry,1995,99(1):285-291
    [18]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002
    [19]Zhao Y. N.,Jin J., Yang X. Q. Hydrothermal synthesis of titanate nanowire arrays[J]. Materials Letters,2007,61(2):384-388
    [20]周幸福,褚道葆,顾家山.纳米Ti02的制备及应用[J].安徽化工,2001(06):29-31
    [21]李丽娜,谷景华,张跃,路浩天.用MOCVD法在玻璃和Si(100)基片上制备Ti02薄膜[J]. 人工晶体学报,2005(05):902-906
    [22]Zhang X, W., Zhou M. H., Lei L. Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD[J].Carbon,2005,43(8):1700-1708
    [23]Evans P., Pemble M. E., Sheel D. W. Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO2 on stainless steel[J].Chemistry of Materials,2006, 18(24):5750-5755
    [24]吴建懿,曹俊,周继承.低温控制中和水解法制备纳米Ti02[J].精细化工中间体,2004(01):46-48
    [25]张青红,高濂,郭景坤.四氯化钛水解法制备纳米氧化钛超细粉体[J].无机材料学报,2000(01):21-25
    [26]刘威,陈爱平,林嘉平,戴智明,邱炜,刘伟,朱孟钦,臼田昭司.均相水解法制备金红石含量可控的纳米Ti02[J].化学学报,2004(12):1148-1152
    [27]丁珂,田进军,王晟,叶庆国.液相沉淀法制备纳米Ti02及其光催化性能的研究[J].工业催化,2004(10):30-33
    [28]Ao Y. H., Xu J. J., Fu D. G.,Yuan C.W. Synthesis of C,N,S-tridoped mesoporous titania with enhanced visible light-induced photocatalytic activity[J].Microporous and Mesoporous Materials,2009,122(1-3):1-6
    [29]刘秀华,吴仲成,赵雅文,杨宇川,傅依备.微量铂掺杂对Ti02粉末结构和性能的影响[J].化学学报,2009(06):507-512
    [30]Shi X.L.,Wang S.,Dong X. B.,Zhang Q. X. Enhanced photocatalytic activity of titanium dioxide by nut shell carbon[J].Journal of Hazardous Materials,2009,167(1-3):692-695
    [31]Zhang C. X., Chen R. F., Zhou J., Cheng J. H., Xia Q. Synthesis of TiO2 films on glass slides by the sol-gel method and their photocatalytic activity[J]. Rare Metals,2009,28(4):378-384
    [32]Padmanabhan S.C.,Pillai S. C., Colreavy J., Balakrishnan S.,McCormack D. E.,Perova T. S.,Gun'ko Y., Hinder S. J., Kelly J. M. A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania[J].Chemistry of Materials,2007,19(18): 4474-4481
    [33]Kongsuebchart W., Praserthdam P.,Panpranot J.,Sirisuk A., Supphasrirongjaroen P., Satayaprasert C. Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis[J].Journal of Crystal Growth,2006,297(1):234-238
    [34]Kominami H., Kato J., Murakami S., Ishii Y., Kohno M., Yabutani K., Yamamoto T., Kera Y., Inoue M., Inui T., Ohtani B.Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities[J].Catalysis Today,2003,84(3-4):181-189
    [35]Deorsola F. A.,Vallauri D. Study of the process parameters in the synthesis of TiO2 nanospheres through reactive microemulsion precipitation[J].Powder Technology,2009, 190(3):304-309
    [36]Lu C. H., Wu W. H., Kale R. B. Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders[J].Journal of Hazardous Materials,2008,154(1-3):649-654
    [37]Wang Y. D., Zhou A. N., Yang Z. Y. Preparation of hollow TiO2 microspheres by the reverse microemulsions[J].Materials Letters,2008,62(12-13):1930-1932
    [38]Chavadej S., Phuaphromyod P., Gulari E., Rangsunvigit P., Sreethawong T. Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique[J]. Chemical Engineering Journal,2008,137(3):489-495
    [39]陈静,石晓波,韩冰,巫海苑.掺镧纳米二氧化钛的微乳液法合成[J].河南化工, 2007(01):28-31
    [40]Zhu J. J., Qiu Q. F.,Wang H., Zhang J. R., Zhu J. M., Chen Z. Q. Synthesis of silver nanowires by a sonoelectrochemical method[J].Inorganic Chemistry Communications,2002, 5(4):242-244
    [41]Mayers B.T., Liu K., Sunderland D., Xia Y. N. Sonochemical synthesis of trigonal selenium nanowires[J].Chemistry of Materials,2003,15(20):3852-3858
    [42]Shao M. W.,Wu Z. C., Gao F., Ye Y., Wei X. W. Surfactant-free route to hexagonal CdS nanotubes under ultrasonic irradiation in aqueous solution at room temperature[J].Journal of Crystal Growth,2004,260(1-2):63-66
    [43]Ge J. P.,Li Y. D., Yang G. Q. Mechanism of aqueous ultrasonic reaction:controlled synthesis, luminescence properties of amorphous cluster and nanocrystalline CdSe[J]. Chemical Communications,2002(17):1826-1827
    [44]Zhang L. Z.,Yu J. C.A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity[J].Chemical Communications,2003(16):2078-2079
    [45]Liu Y.C.,Wang C.C.,Juang L. C.Sonoelectrochemical methods of preparing silver-coated TiO2 nanoparticles with extremely high coverage[J].Journal of Electroanalytical Chemistry, 2004,574(1):71-75
    [46]Mohapatra S.K.,Misra M.,Mahajan V. K.,Raja K. S.A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water[J].Journal of Catalysis,2007,246(2):362-369
    [47]Liu Y., Li Y., Wang Y. T., Xie L., Zheng J., Li X. G. Sonochemical synthesis and photocatalytic activity of meso-and macro-porous TiO2 for oxidation of toluene[J].Journal of Hazardous Materials,2008,150(1):153-157
    [48]曹爱红,洪掌珠,蓝心仁.沉淀法制备TiO2纳米粉体和微波干燥的研究[J].河南化工,2002(06):9-11
    [49]种法国,赵景联.微波水热晶化制备纳米二氧化钛光催化剂及其性能研究[J].高校化学工程学报,2006(01):138-141
    [50]Wilson G.J.,Will G.D., Frost R. L., Montgomery S.A.Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids[J].Journal of Materials Chemistry,2002, 12(6):1787-1791
    [51]Jia X. T., He W., Zhang X.D., Zhao H.S.,Li Z. M.,Feng Y. J.Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores[J].Nanotechnology,2007,18(7)
    [52]Zhang P. L., Yin S., Sato T. Synthesis of high-activity TiO2 photocatalyst via environmentally friendly and novel microwave assisted hydrothermal process[J].Applied Catalysis B:Environmental,2009,89(1-2):118-122
    [53]任典君,王荣昌,夏四清.微波辅助液相沉积法制备TiO2薄膜光催化性能[J].稀有金属材料与工程,2008(06):989-994
    [54]Duminica F. D.,Maury F., Senocq F. Atmospheric pressure MOCVD of TiO2 thin films using various reactive gas mixtures[J].Surface and Coatings Technology,2004,188:255-259
    [55]Jiang G. D., Tang H. Q., Zhu L. H.,Zhang J. D.,Lu B.Improving electrochemical properties of liquid phase deposited TiO2 thin films by doping sodium dodecylsulfonate and its application as bioelectrocatalytic sensor for hydrogen peroxide[J].Sensors and Actuators B: Chemical,2009,138(2):607-612
    [56]韦少慧,张冬云,张培新,李静.液相沉积法制备纳米TiO2薄膜及其光催化活性研究[J]. 纳米科技,2008(05):62-67
    [57]Rico V., Romero P., Hueso J. L., Espinos J. P., Gonzalez-Elipe A. R. Wetting angles and photocatalytic activities of illuminated TiO2 thin films[J].Catalysis Today,2009,143(3-4): 347-354
    [58]Meng F. M., Song X. P., Sun Z. Q. Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering[J].Vacuum,2009,83(9):1147-1151
    [59]Acosta D. R., Martinez A.I., Lopez A. A., Magana C. R. Titanium dioxide thin films:the effect of the preparation method in their photocatalytic properties[J].Journal of Molecular Catalysis A:Chemical,2005,228(1-2Sp. Iss. SI):183-188
    [60]陈爱平,卢冠忠,杨阳,刘伟,刘威.Ti02/膨胀珍珠岩漂浮光催化剂的成膜和浮油降解机理[J].华东理工大学学报,2004(01):57-60
    [61]吴玉程,刘晓璐,叶敏,解挺,黄新民.碳纳米管负载纳米Ti02复合材料的制备及其性能[J].物理化学学报,2008(01):97-102
    [62]席北斗,刘纯新,孔欣,周岳溪,刘鸿亮,邱熔处.负载型催化剂光催化氧化五氯苯酚钠的效果[J].环境科学,2001(01):41-44
    [63]Jarernboon W., Pimanpang S., Maensiri S., Swatsitang E.,Amornkitbamrung V. Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application[J].Thin Solid Films,2009,517(16):4663-4667
    [64]Tan W. W.,Yin X.,Zhou X. M.,Zhang J. B.,Xiao X.R., Lin Y. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells[J]. Electrochimica Acta,2009,54(19):4467-4472
    [65]Peng X.S.,Chen A. C.Large-scale synthesis and characterization of TiO2-based nanostructures on Ti substrates[J].Advanced Functional Materials,2006,16(10):1355-1362
    [66]Gong D., Grimes C.A., Varghese O. K., Hu W. C., Singh R. S., Chen Z., Dickey E. C. Titanium oxide nanotube arrays prepared by anodic oxidation[J].Journal of Materials Research,2001,16(12):3331-3334
    [67]Yang Y., Wang X. H., Li L. T. Crystallization and phase transition of titanium oxide nanotube arrays[J].Journal of The American Ceramic Society,2008,91(2):632-635
    [68]Carp O., Huisman C.L., Reller A.Photoinduced reactivity of titanium dioxide[J].Progress in Solid State Chemistry,2004,32(1-2):33-177
    [69]Fujishima A.,Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37
    [70]Dechakiatkrai C., Chen J., Lynam C., Phanichphant S.,Wallace G. G.Photocatalytic oxidation of methanol using titanium dioxide/single-walled carbon nanotube composite[J]. Journal of the Electrochemical Society,2007,154(5):A407-A411
    [71]Wu Z. B., Gu Z. L., Zhao W. R., Wang H.Q. Photocatalytic oxidation of gaseous benzene over nanosized TiO2 prepared by solvothermal method[J].Chinese Science Bulletin,2007,52: 3061-3067
    [72]Hung W. C.,Fu S.H., Tseng J. J., Chu H., Ko T. H. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol-gel method[J].Chemosphere,2007,66(11):2142-2151
    [73]Portela R., Sanchez B., Coronado J. M. Photocatalytic oxidation of H2S on TiO2 and TiO2-ZrO2 thin films[J].Journal of Advanced Oxidation Technologies,2007,10(2):375-380
    [74]Alberici R. M., Canela M. C., Eberlin M. N., Jardim W. F. Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV-VIS[J].Applied Catalysis B:Environmental,2001,30(3-4):389-397
    [75]Wang H. Q., Wu Z. B.,Zhao W. R.,Guan B.H. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric[J].Chemosphere,2007,66(1):185-190
    [76]Ao C. H., Lee S. C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level[J].Applied Catalysis B: Environmental,2003,44(3):191-205
    [77]Zhang Y. P.,Yang R., Zhao R. Y. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds[J].Atmospheric Environment,2003, 37(24):3395-3399
    [78]Yang R., Zhang Y. P.,Zhao R. Y. An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application[J].Journal of The Air and Waste Management Association,2004,54(12): 1516-1524
    [79]Maggos T.,Bartzis J.G., Liakou M.,Gobin C.Photocatalytic degradation of NOx gases using TiO2-containing paint:A real scale study[J].Journal of Hazardous Materials,2007, 146(3):668-673
    [80]Salthammer T.,Fuhrmann F. Photocatalytic surface reactions on indoor wall paint[J]. Environmental Science and Technology,2007,41(18):6573-6578
    [81]Cassar L. Photocatalysis of cementitious materials:Clean buildings and clean air[J].Mrs Bulletin,2004,29(5):328-331
    [82]Matsunaga T.,Tomoda R.,Nakajima T.,Wake H.Photoelectrochemical sterilization of microbial-cells by semiconductor powders[J].Ferns Microbiology Letters,1985,29(1-2): 211-214
    [83]Fujishima A, Hashimoto K, T W. TiO2 Photocatalysis:Fundamentals and Applications[M]. Tokyo:BKC,1999
    [84]Thiel J.,Pakstis L., Buzby S.,Raffi M.,Ni C.,Pochan D. J.,Shah S. I. Antibacterial properties of silver-doped titania[J].Small,2007,3(5):799-803
    [85]Sunada K., Watanabe T., Hashimoto K. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination[J].Environmental Science and Technology,2003, 37(20):4785-4789
    [86]Mellott N. P.,Durucan C., Pantano C. G.,Guglielmi M. Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses:Photocatalytic performance and chemical durability[J].Thin Solid Films,2006,502(1-2):112-120
    [87]Liu C. X., Nakano K., Obuchi E.,Oike T.,Yukihira N., Hurum D. C.,Gray K. A. Photocatalytic decomposition of formaldehyde using titania coated lime tile[J].Journal of Advanced Oxidation Technologies,2007,10(1):11-16
    [88]Dos S.V., Kondo M. M.TiO2 immobilization onto concrete:Chloroform and phenol photodegradation[J].Quimica Nova,2006,29(2):251-255
    [89]Rachel A.,Subrahmanyam M., Boule P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids[J].Applied Catalysis B:Environmental,2002,37(4):301-308
    [90]Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A.,Shimohigoshi M., Watanabe T. Light-induced amphiphilic surfaces[J].Nature,1997,388(6641):431-432
    [91]Fujishima A.,Rao T. N., Tryk D. A.Titanium dioxide photocatalysis[J].Journal of Photochemistry and Photobiology C,2000,1(1):1-21
    [92]Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T. Photogeneration of highly amphiphilic TiO2 surfaces[J].Advanced Materials, 1998,10(2):135
    [93]Fujishima A.,Zhang X.T. Titanium dioxide photocatalysis:present situation and future approaches[J].Comptes Rendus Chimie,2006,9(5-6):750-760
    [94]Bai C.L. Ascent of nanoscience in China[J].Science,2005,309(5731):61-63
    [95]Frank S. N.,Bard A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous-solutions at semiconductor powders[J].Journal of Physical Chemistry,1977,81(15): 1484-1488
    [96]Hashimoto K., Irie H., Fujishima A.TiO2 photocatalysis:A historical overview and future prospects[J].Japanese Journal of Applied Physics,2005,44(12):8269-8285
    [97]Nazeeruddin M. K., Pechy P., Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex[J]. Chemical Communications,1997(18):1705-1706
    [98]Mor G.K., Shankar K., Paulose M, Varghese O. K., Grimes C. A.Enhanced photocleavage of water using titania nanotube arrays[J]. Nano Letters,2005,5(1):191-195
    [99]Paulose M.,Shankar K., Varghese O. K.,Mor G.K., Grimes C.A.Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells[J].Journal of Physics D:Applied Physics,2006,39(12):2498-2503
    [100]Mohapatra S.K., Misra M., Mahajan V. K., Raja K. S. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting:Application of TiO2.xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode[J]. The Journal of Physical Chemistry C,2007,111(24):8677-8685
    [101]Liu Y. B., Zhou B.X., Bai J., Li J. H.,Zhang J. L., Zheng Q., Zhu X. Y., Cai W. M. Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays[J].Applied Catalysis B:Environmental,2009,89(1-2):142-148
    [102]Ruan C.M., Paulose M.,Varghese O. K., Grimes C. A.Enhanced photo electrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J].Solar Energy Materials and Solar Cells,2006,90(9):1283-1295
    [103]Ruiz A.M., Cornet A., Morante J.R. Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors[J].Sensors and Actuators B: Chemical,2004,100(1-2):256-260
    [104]Varghese O. K., Gong D. W., Paulose M., Ong K. G.,Grimes C. A. Hydrogen sensing using titania nanotubes[J].Sensors and Actuators B:Chemical,2003,93(1-3):338-344
    [105]Mor G. K., Varghese O. K., Paulose M., Ong K. G., Grimes C. A. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements[J].Thin Solid Films,2006,496(1):42-48
    [106]Mor G. K., Carvalho M. A., Varghese O. K.,Pishko M. V., Grimes C. A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J].Journal of Materials Research,2004,19(2):628-634
    [107]Mukherjee T., Hazra S.K., Basu S. Porous titania thin films grown by anodic oxidation for hydrogen sensors[J].Materials and Manufacturing Processes,2006,21(3):247-251
    [108]Zhang Y. Y., Fu W. Y., Yang H. B.,Qi Q., Zeng Y., Zhang T., Ge R. X., Zou G. Synthesis and characterization of TiO2 nanotubes for humidity sensing[J].Applied Surface Science, 2008,254(17):5545-5547
    [109]Zheng Q., Zhou B.X., Bai J., Li L. H., Jin Z.J., Zhang J. L., Li J. H., Liu Y. B.,Cai W. M., Zhu X. Y. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J].Advanced Materials,2008,20(5):1044
    [110]Li H.B.,Duan X. C.,Liu G. C., Liu X. Q. Photochemical synthesis and characterization of Ag/TiO2 nanotube composites[J].Journal of Materials Science,2008,43(5):1669-1676
    [111]Hou X.G.,Huang M. D., Wu X. L.,Liu A.D. Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol-gel method[J].Chemical Engineering Journal,2009, 146(1):42-48
    [112]Paramasivalm I.,Macak J. M., Schmuki P. Photocatalytic activity of TiO2-nanotube layers loaded with Ag and Au nanoparticles[J].Electrochemistry Communications,2008,10(1): 71-75
    [113]Sakthivel S.,Shankar M.V., Palanichamy M.,Arabindoo B.,Bahnemann D. W., Murugesan V. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J].Water Research,2004,38(13): 3001-3008
    [114]Wilke K.,Breuer H. D. The influence of transition metal doping on the physical and photocatalytic properties of titania[J].Journal of Photochemistry and Photobiology A: Chemistry,1999,121(1):49-53
    [115]Choi W. Y., Termin A.,Hoffmann M.R. The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge-carrier recombination dynamics[J]. Journal of Physical Chemistry,1994,98(51):13669-13679
    [116]Dhananjeyan M. R.,Kandavelu V.,Renganathan R. A study on the photocatalytic reactions of TiO2 with certain pyrimidine bases:effects of dopants (Fe3+) and calcination[J]. Journal of Molecular Catalysis A:Chemical,2000,151(1-2):217-223
    [117]Gratzel M.,Howe R. F. Electron-paramagnetic resonance studies of doped tio2 colloids[J]. Journal of Physical Chemistry,1990,94(6):2566-2572
    [118]El-Bahy Z. M.,Ismail A.A.,Mohamed R. M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue)[J].Journal of Hazardous Materials,2009, 166(1):138-143
    [119]Du P., Bueno-Lopez A.,Verbaas M.,Almeida A.R., Makkee M.,Moulijn J. A.,Mul G. The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation[J].Journal of Catalysis,2008,260(1):75-80
    [120]Li F. B.,Li X.Z.,Ao C. H.,Lee S.C.,Hou M. F. Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification[J].Chemosphere,2005,59(6): 787-800
    [121]Nguyen-Phan T. D., Song M. B.,Shin E. W. Removal efficiency of gaseous benzene using lanthanide-doped mesoporous titania[J].Journal of Hazardous Materials,2009,167(1-3): 75-81
    [122]Zhang S. C.,Zheng Z. J., Wang J. H., Chen J. M. Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature[J]. Chemosphere,2006,65(11):2282-2288
    [123]Toma F. L., Bertrand G., Chwa S.0., Klein D., Liao H. L., Meunier C., Coddet C. Microstructure and photocatalytic properties of nanostructured TiO2 and TiO2-Al coatings elaborated by HVOF spraying for the nitrogen oxides removal[J].Materials Science and Engineering A,2006,417:56-62
    [124]Peng S.Q., Li Y. X., Jiang F. Y., Lu G. X., Li S. B.Effect of Be2+ doping TiO2 on its photocatalytic activity[J].Chemical Physics Letters,2004,398(1-3):235-239
    [125]Bessekhouad Y.,Robert D., Weber J. V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions[J].Catalysis Today,2005,101(3-4):315-321
    [126]Vinodgopal K., Kamat P. V. Enhanced rates of photocatalytic degradation of an azo-dye using Sno2/TiO2 coupled semiconductor thin-films[J].Environmental Science and Technology, 1995,29(3):841-845
    [127]Lee M. K., Shih T. H. High photocatalytic activity of nanoscaled heterojunction of ZnS grown on fluorine and nitrogen co-doped TiO2[J].Journal of The Electrochemical Society, 2007,154(4):P49-P51
    [128]Chen Y. S.,Crittenden J. C.,Hackney S., Sutter L., Hand D. W. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst[J].Environmental Science and Technology, 2005,39(5):1201-1208
    [129]Liu Z. Y., Sun D., Guo P., Leckie J. O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J].Nano Letters,2007,7(4):1081-1085
    [130]Wang H., Wu Y., Xu B.Q. Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis[J].Applied Catalysis B:Environmental,2005,59(3-4):139-146
    [131]Takahashi Y., Tatsuma T. Oxidative energy storage ability of a TiO2-NiOH2 bilayer photocatalyst[J].Langmuir,2005,21(26):12357-12361
    [132]Xu J. H., Dai W. L.,Li J., Cao Y., Li H.,Fan K. Novel core-shell structured mesoporous titania microspheres:Preparation, characterization and excellent photocatalytic activity in phenol abatement[J].Journal of Photochemistry and Photobiology A:Chemistry,2008, 195(2-3):284-294
    [133]Lakshminarasimhan N., Bae E., Choi W. Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method:Role of interparticle charge transfer[J]. The Journal of Physical Chemistry C,2007,111(42):15244-15250
    [134]Pan J. H., Lee W. I.Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties[J].Chemistry of Materials,2006,18(3):847-853
    [135]Segura Y.,Chmielarz L., Kustrowski P., Cool P., Dziembaj R., Vansant E. F.Preparation and characterization of vanadium oxide deposited on thermally stable mesoporous titania[J]. The Journal of Physical Chemistry B,2006,110(2):948-955
    [136]Yu J. C.,Zhang L. Z., Zheng Z., Zhao J. C. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry of Materials, 2003,15(11):2280-2286
    [137]Choi H., Kim Y. J., Varma R. S., Dionysiou D. D. Thermally stable nanocrystalline TiO2 photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactant molecules[J].Chemistry of Materials,2006,18(22):5377-5384
    [138]Cassiers K., Linssen T., Mathieu M., Bai Y. Q., Zhu H. Y., Cool P., Vansant E. F. Surfactant-directed synthesis of mesoporous titania with nanocrystalline anatase walls and remarkable thermal stability[J].The Journal of Physical Chemistry B,2004,108(12): 3713-3721
    [139]Xiong C.R., Kim M. J., Balkus K. J. TiO2 nanofibers and core-shell structures prepared using mesoporous molecular sieves as templates[J].Small,2006,2(1):52-55
    [140]Jitputti J., Suzuki Y., Yoshikawa S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution[J].Catalysis Communications,2008,9(6):1265-1271
    [141]Wang D. A.,Zhou F., Wang C.W., Liu W. M. Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts[J].Microporous and Mesoporous Materials, 2008,116(1-3):658-664
    [142]Gao Y., Luo H., Mizusugi S.,Nagai M.Surfactant-free synthesis of anatase TiO2 nanorods in an aqueous peroxotitanate solution[J].Crystal Growth and Design,2008,8(6):1804-1807
    [143]Ho W.,Yu J. C.,Lee S.Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity[J]. Chemical Communications,2006(10):1115-1117
    [144]Kasuga T., Hiramatsu M.,Hoson A.,Sekino T., Niihara K. Titania nanotubes prepared by chemical processing[J].Advanced Materials,1999,11(15):1307
    [145]Quan X.,Yang S. G.,Ruan X.L., Zhao H. M. Preparation of titania nanotubes and their environmental applications as electrode[J].Environmental Science and Technology,2005, 39(10):3770-3775
    [146]Tachikawa T.,Tojo S.,Fujitsuka M.,Sekino T., Majima T. Photoinduced charge separation in titania nanotubes[J].The Journal of Physical Chemistry B,2006,110(29):14055-14059
    [147]Liu G.,Li F., Wang D. W., Tang D. M.,Liu C.,Ma X.L., Lu G.Q.,Cheng H.M.Electron field emission of a nitrogen-doped TiO2 nanotube array[J].Nanotechnology,2008, 19(0256062)
    [148]Dong F., Zhao W. R., Wu Z. B.Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect[J]. Nanotechnology,2008,19(36560736)
    [149]Ohsaki Y., Masaki N., Kitamura T.,Wada Y., Okamoto T.,Sekino T.,Niihara K.,Yanagida S.Dye-sensitized TiO2 nanotube solar cells:fabrication and electronic characterization[J]. Physical Chemistry Chemical Physics,2005,7(24):4157-4163
    [150]Lakshmi B.B., Patrissi C.J.,Martin C.R. Sol-gel template synthesis of semiconductor oxide micro-and nanostructures[J].Chemistry of Materials,1997,9(11):2544-2550
    [151]Michailowski A.,AlMawlawi D.,Cheng G.S.,Moskovits M.Highly regular anatase nanotubule arrays fabricated in porous anodic templates[J].Chemical Physics Letters,2001, 349(1-2):1-5
    [152]Lee J. H., Leu I. C.,Hsu M. C.,Chung Y. W., Hon M.H. Fabrication of aligned TiO2 nanostructured arrays using a one-step templating solution approach[J].The Journal of Physical Chemistry B,2005,109(27):13056-13059
    [153]Peng T. Y., Hasegawa A.,Qiu J. R., Hirao K. Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method[J].Chemistry of Materials,2003,15(10):2011-2016
    [154]Shen Q., Sato T., Hashimoto M., Chen C. C.,Toyoda T. Photoacoustic and photo electrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires[J].Thin Solid Films,2006,499(1-2):299-305
    [155]Shin H. J., Jeong D. K., Lee J. G., Sung M. M., Kim J. Y. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness[J]. Advanced Materials,2004,16(14):1197
    [156]Yoshida R., Suzuki Y., Yoshikawa S. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes[J].Materials Chemistry and Physics, 2005,91(2-3):409-416
    [157]Penga H. R., Lia G. C.,Zhang Z. K. Synthesis of bundle-like structure of titania nanotubes[J]. Materials Letters,2005,59(10):1142-1145
    [158]Yu J. G., Yu H. G., Cheng B.,Trapalis C. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes[J].Journal of Molecular Catalysis A:Chemical,2006,249(1-2):135-142
    [159]Yuan Z. Y., Su B.L. Titanium oxide nanotubes, nanofibers and nanowires[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241(1-3):173-183
    [160]Bavykin D. V., Parmon V. N., Lapkin A.A.,Walsh F. C.The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2004,14(22):3370-3377
    [161]Du G.H.,Chen Q., Che R. C.,Yuan Z. Y., Peng L. M.Preparation and structure analysis of titanium oxide nanotubes[J].Applied Physics Letters,2001,79(22):3702-3704
    [162]Yao B.D., Chan Y. F., Zhang X. Y., Zhang W. F., Yang Z. Y.,Wang N.Formation mechanism of TiO2 nanotubes[J].Applied Physics Letters,2003,82(2):281-283
    [163]Tsai C.C.,Teng H. S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments[J].Chemistry of Materials,2006,18(2):367-373
    [164]Yu J.G.,Yu H. G.,Cheng B.,Trapalis C. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes[J].Journal of Molecular Catalysis A:Chemical,2006,249(1-2):135-142
    [165]Mao Y. B.,Wong S.S. Size-and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures[J].Journal of the American Chemical Society,2006, 128(25):8217-8226
    [166]Macak J. M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J].Angewandte Chemie International Edition,2005,44(14):2100-2102
    [167]Shankar K., Mor G. K., Prakasam H. E., Yoriya S.,Paulose M., Varghese O. K.,Grimes C. A. Highly-ordered TiO2 nanotube arrays up to 220μm in length:Use in water photoelectrolysis and dye-sensitized solar cells[J].Nanotechnology,2007,18(6)
    [168]Paulose M., Prakasam H. E., Varghese O. K., Peng L., Popat K. C., Mor G. K., Desai T. A., Grimes C. A. TiO2 nanotube arrays of 1000μm length by anodization of titanium foil:Phenol red diffusion[J].The Journal of Physical Chemistry C,2007,111(41):14992-14997
    [169]Ghicov A., Tsuchiya H., Macak J. M., Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes[J].Electrochemistry Communications,2005,7(5):505-509
    [170]Liu Z., Zhang X., Nishimoto S., Jin M., Tryk D. A., Murakami T., Fujishima A. Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol[J].The Journal of Physical Chemistry C,2008,112(1):253-259
    [171]Varghese O. K., Paulose M., Shankar K., Mor G. K., Grimes C. A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays[J].Journal of Nanoscience and Nanotechnology,2005,5(7):1158-1165
    [172]唐玉朝,胡春,王怡中.TiO2光催化反应机理及动力学研究进展[J].化学进展, 2002(03):192-199
    [173]Liu Z. Y., Zhang X. T.,Nishimoto S., Murakami T.,Fujishima A. Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays[J]. Environmental Science and Technology,2008,42(22):8547-8551
    [174]Jitputti J., Suzuki Y.,Yoshikawa S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution[J].Catalysis Communications,2008,9(6):1265-1271
    [175]Liu B.,Boercker J. E., Aydil E. S.Oriented single crystalline titanium dioxide nanowires[J]. Nanotechnology,2008,19(50560450)
    [176]Zhang X. W., Pan J.H., Du A. J.,Fu W.J.,Sun D. D., Leckie J. O. Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment[J].Water Research,2009,43(5):1179-1186
    [177]Tsuchiya H.,Macak J.M., Taveira L.,Balaur E.,Ghicov A.,Sirotna K.,Schmuki P. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J].Electrochemistry Communications,2005,7(6):576-580
    [178]Beranek R., Hildebrand H.,Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes[J].Electrochemical and Solid State Letters,2003,6(3):B12-B14
    [179]Liang H.C., Li X.Z. Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution[J].Journal of Hazardous Materials,2009,162(2-3):1415-1422
    [180]Chang H.T., Wu N.M., Zhu F. Q. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst[J].Water Research,2000,34(2):407-416
    [181]Zhao J.L., Wang X.H.,Chen R. Z., Li L. T. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J].Solid State Communications,2005,134(10):705-710
    [182]Bauer S.,Kleber S.,Schmuki P. TiO2 nanotubes:Tailoring the geometry in H3PO4/HF electrolytes[J].Electrochemistry Communications,2006,8(8):1321-1325
    [183]Wu Z. B.,Guo S.,Wang H.Q., Liu Y. Synthesis of immobilized TiO2 nanowires by anodic oxidation and their gas phase photocatalytic properties[J].Electrochemistry Communications, 2009,11(8):1692-1695
    [184]Zhao J.L.,Wang X. H., Sun T. Y.,Li L. T. In situ templated synthesis of anatase single-crystal nanotube arrays[J].Nanotechnology,2005,16(10):2450-2454
    [185]Zhang Z. H., Yuan Y., Shi G. Y., Fang Y. J., Liang L. H., Ding H. C., Jin L. T. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation[J].Environmental Science and Technology,2007,41(17):6259-6263
    [186]Yamashita H., Ichihashi Y., Zhang S.G.,Matsumura Y., Souma Y.,Tatsumi T., Anpo M. Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework[J].Applied Surface Science,1997,121:305-309
    [187]Fujihara K.,Izumi S.,Ohno T., Matsumura M. Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions[J].Journal of Photochemistry and Photobiology A:Chemistry,2000,132(1-2):99-104
    [188]范能全,俞卫华,范永仙,周春晖,罗锡平,葛忠华,李小年.二氧化钛基光催化剂的开发与应用[J].浙江工业大学学报,2007(06)
    [189]Yun H.J., Lee H.,Kim N. D., Yi J. Characterization of photocatalytic performance of silver deposited TiO2 nanorods[J].Electrochemistry Communications,2009,11(2):363-366
    [190]Jin M.,Zhang X.T.,Nishimoto S.,Liu Z. Y., Tryk D. A.,Emeline A.V., Murakami T., Fujishima A. Light-stimulated composition conversion in TiO2-based nanofibers[J].The Journal of Physical Chemistry C,2007,111(2):658-665
    [191]李海龙,罗武林,田文宇,陈涛,黎春,孙茂,朱地,刘冉冉,赵宇亮,刘春立.镶嵌Pt的二氧化钛纳米管的合成及其光催化性能研究[J].光谱学与光谱分析,2009(06):1623-1626
    [192]Zhu B.L., Li K. R., Zhou J., Wang S.R., Zhang S. M., Wu S. H., Huang W. P. The preparation of palladium-modified TiO2 nanofibers and their photocatalytic performance[J]. Catalysis Communications,2008,9(14):2323-2326
    [193]Zhang J. L., Xiao L., Cong Y., Anpo M. Preparation and characterization of multi-functional titanium dioxide photocatalysts[J].Topics in Catalysis,2008,47(3-4):122-130
    [194]Yin J. B.,Zhao X. P. Facile synthesis and the sensitized luminescence of europium ions-doped titanate nanowires[J].Materials Chemistry and Physics,2009,114(2-3):561-568
    [195]Choi G. J.,Kim S.K., Won S. J., Kim H.J., Hwang C. S.Plasma-Enhanced Atomic Layer Deposition of TiO2 and Al-Doped TiO2 Films Using N2O and O2 Reactants[J].Journal of the Electrochemical Society,2009,156(9):G138-G143
    [196]井立强,孙志华,王百齐,屈宜春,付宏刚.采用溶胶-水热法合成掺La的Ti02纳米粒子及其表征[J].无机材料学报,2005(04):789-793
    [197]魏凤玉,曾华灵,师彬,崔鹏,彭书传.硫与铁共掺杂对二氧化钛光催化性能的影响[J].硅酸盐学报,2008(09):1272-1276
    [198]An T. C.,Liu J.K.,Li G.Y., Zhang S.Q.,Zhao H.J., Zeng X. Y.,Sheng G.Y., Fu J. M. Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2[J].Applied Catalysis A:General,2008,350(2):237-243
    [199]Alvaro M.,Aprile C., Benitez M.,Carbonell E.,Garcia H.Photocatalytic activity of structured mesoporous TiO2 materials[J].The Journal of Physical Chemistry B,2006,110(13): 6661-6665
    [200]Jiang T. S.,Zhao Q., Li M.,Yin H.B.Preparation of mesoporous titania solid superacid and its catalytic property[J].Journal of Hazardous Materials,2008,159(2-3):204-209
    [201]Liu C. Q.,Lei F. B.,Economy J. A simple, template-free route for the synthesis of mesoporous titanium dioxide materials[J].Journal of Materials Chemistry,2004,14(7): 1187-1189
    [202]Zhou M.H.,Yu J.G.,Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method[J].Journal of Hazardous Materials,2006,137(3):1838-1847
    [203]Zhang H.M., Quan X., Chen S.,Zhao H. M. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability[J].Environmental Science and Technology,2006,40(19):6104-6109
    [204]Wang Y. W., Xu H., Wang X. B.,Zhang X., Jia H. M.,Zhang L. Z., Qiu J. R. A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres[J].The Journal of Physical Chemistry B,2006,110(28):13835-13840
    [205]Yu J. G.,Yu H. G., Cheng B.,Zhao X. J., Zhang Q. J. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method[J].Journal of Photochemistry and Photobiology A:Chemistry,2006,182(2):121-127
    [206]Yu H. G., Yu J. G., Cheng B.,Lin J. Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites[J].Journal of Hazardous Materials,2007,147(1-2):581-587
    [207]Kasuga T., Hiramatsu M.,Hoson A.,Sekino T., Niihara K. Formation of titanium oxide nanotube[J].Langmuir,1998,14(12):3160-3163
    [208]Song Z., Hrbek J., Osgood R. Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM[J].Nano Letters,2005,5(7):1327-1332
    [209]Sing K. S.,Everett D. H., Haul R. A., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity [J].Pure and Applied Chemistry,1985,57(4): 603-619
    [210]Yu J. G.,Zhao X.J., Zhao Q. N. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method[J].Thin Solid Films,2000,379(1-2):7-14
    [211]Alapi T.,Sipos P.,Ilisz I.,Wittmann G.,Ambrus Z.,Kiricsi I.,Mogyorosi K., Dombi A. Synthesis and characterization of titania photocatalysts:The influence of pretreatment on the activity[J].Applied Catalysis A:General,2006,303(1):1-8
    [212]Yu J.C., Yu J.G.,Ho W.K., Jiang Z. T.,Zhang L. Z. Effects of F" doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J].Chemistry of Materials,2002,14(9):3808-3816
    [213]Tsai C.C.,Teng H.S.Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment[J].Chemistry of Materials,2004,16(22): 4352-4358
    [214]Guo S.,Wu Z. B.,Wang H.Q.,Dong F.Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances[J].Catalysis Communications,2009,10(13):1766-1770
    [215]Chen X.,Mao S. S.Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications[J].Chemical Reviews,2007,107(7):2891-2959
    [216]Luo Y., Ollis D. F. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air:Kinetic promotion and inhibition, time-dependent catalyst activity[J].Journal of Catalysis,1996,163(1):1-11
    [217]顾卓良.纳米TiO2的溶剂热法制备及其在光催化降解气相苯中的应用[D].硕士学位论文,2007
    [218]甄开吉,王国甲,毕颖丽,李荣生,阚秋斌.催化作用基础[M].北京:科学出版社,2005
    [219]Obee T. N.,Hay S.O. Effects of moisture and temperature on the photooxidation of ethylene on Titania[J].Environmental Science and Technology,1997,31(7):2034-2038
    [220]Cao L. X., Huang A.M.,Spiess F. J., Suib S.L. Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts[J].Journal of Catalysis,1999,188(1):48-57
    [221]Noguchi T., Fujishima A.Photocatalytic degradation of gaseous formaldehyde using TiO2 film[J].Environmental-Science and Technology,1998,32(23):3831-3833
    [222]Ahmed S., Fonseca S.M.,Kemp T. J.,Unwin P. R. Kinetics of 0-2 reduction at illuminated TiO2 films[J].The Journal of Physical Chemistry B,2003,107(24):5892-5900
    [223]Wang W., Ku Y. Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor[J].Journal of Photochemistry and Photobiology A:Chemistry,2003, 159(1):47-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700