用户名: 密码: 验证码:
MgTiO_3-ZnTiO_3-CaTiO_3系统MLCC陶瓷材料及中试生产的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要研究了MgTiO_3-ZnTiO_3-CaTiO_3(MZC)系介质陶瓷材料高温、中温和低温烧结系列化、MZC系介质陶瓷材料及MLCC研究三方面的问题。
     MgTiO_3-ZnTiO_3(MZ)系陶瓷和CaTiO_3系陶瓷的高频介电损耗小,其电容温度系数在-55℃~125℃范围内可以相互补偿。通过调节MZC系的CaTiO_3含量、烧结制度和球磨工艺改变陶瓷的相组成和微观结构,获得高温烧结条件下优异的介电性能。CaTiO_3可以调节系统介电常数和温度系数,还能抑制MZ晶粒的过度生长。球磨时间和球磨介质都对MZC系陶瓷粉料的粒度分布影响大。
     分别添加ZnO-H_3BO_3(GD)复合氧化物和Li_2O_3-B_2O_3-SiO_2(G4)复合氧化物可将MZC系陶瓷的烧结温度降低,实现中温和低温烧结。在中温烧结条件下,GD复合氧化物玻璃液相可以促进CaTiO_3晶粒的充分形成,当CaTiO_3晶体已经完全形成时,过剩的玻璃液相则会促进Mg_2TiO_4→MgTiO_3的转化。在低温烧结条件下,随着G4复合氧化物添加量增加时,Mg~(2+)进入ZnTiO_3晶体中取代Zn~(2+),形成(Zn,Mg)TiO_3固溶体,抑制了部分ZnTiO_3六方钛铁矿结构向Zn_2TiO_4立方反尖晶石结构的晶型转变。掺杂G4复合氧化物过多时,玻璃液相抑制了Mg~(2+)进入ZnTiO_3晶体中取代Zn~(2+),ZnTiO_3不稳定大量转化为Zn2Ti3O8。另外,G4复合氧化物的制备工艺和球磨助剂对系统的相组成也有重要的影响。
     通过配方、实验工艺以及介电性能等方面的协调优化,得到了高温、中温和低温烧结条件下性能优良的MZC系陶瓷材料。
     (1)高温:添加1.3mol%CaTiO_3的MZC陶瓷在1270℃烧结2h时得到的介电性能较好,介电常数为22.62、介电损耗为1.310-5,和电容温度系数为20.51ppm/℃(-55℃~125℃)。
     (2)中温:添加8.25wt%GD玻璃的MZC陶瓷在1110℃烧结2h时得到的介电性能较好,介电常数为22.38、介电损耗为1.710-5,和电容温度系数为20.93ppm/℃(-55℃~125℃)。
     (3)低温:添加10.0wt%G4复合氧化物的MZC系陶瓷在900℃烧结8h时得到的介电性能较好,介电常数为20.88、介电损耗为9.510-5和电容温度系数为15ppm/℃(-55℃~125℃)。
     对于MZC系陶瓷材料的中试生产和MLCC研究,初试到中试的工艺对MZC陶瓷粉料的粒度分布影响较小,中试样品性能优良。MZC系MLCC的烧结温度低于圆片电容的烧结温度,应合理调节烧结温度。相对圆片电容来说,MLCC介电性能有所下降(介电常数和介电损耗)。
The sintering temperature serialization,pilot production,and MLCC serializationof MgTiO_3-ZnTiO_3-CaTiO_3(MZC) system ceramics were studied.
     MgTiO_3-ZnTiO_3(MZ) system and CaTiO_3ceramics with mutual-compensatedtemperature coefficients of capacitance(-55℃~125℃) have low dielectric loss athigh frequency.By addition of appropriate amount of CaTiO_3,sintering system,andmilling technology,the microstructure and phases were altered so that excellentdielectric properties were obtained at high sintering temperature. CaTiO_3not only canadjust the relative dielectric constant (ε_r) and the temperature coefficient ofcapacitance(TCC),but also can inhabit the abnormal growth of MZ grain.The sizedistribution curve of MZC ceramic powder was influenced by milling time andmilling medium significantly.
     The addition of ZnO-H_3BO_3(GD) composite oxide and Li_2O_3-B_2O_3-SiO_2(G4)can decrease the sintering temperature of MZC ceramic, so that middle and lowtemperature sintering were obtained. GD composite oxide can form liquid phase atintermediate sintering temperature and promote the formation of CaTiO_3grain.Besides surplus glass phase can promote the transformation from Mg_2TiO_4toMgTiO_3. At low sintering temperature, Zn~(2+)can be replaced by Mg~(2+)by increasingG4composite oxide,which can inhabit the some transformation from ZnTiO_3toZn_2TiO_4.By contrast, a large amount of surplus G4glass phase can promote theformation of Zn2Ti3O8from ZnTiO_3. The morphology of G4and milling medium alsoaffected the phases of system.
     By control of formula、process、and dielectric properties, The MZC ceramicswere obtained at high\intermediate\low sintering temperature.
     (1) The MZC ceramic doped with1.3mol%CaTiO_3sintered at1270℃for2hhad excellent dielectric properties of=22.62, tan=1.3×10-5, TCC=20.51ppm/℃(-55℃~125℃).
     (2) The MZC ceramic doped with8.25wt%GD glass sintered at1110℃for2hhad excellent dielectric properties of=22.38,=1.7×10-5, TCC=20.93ppm/℃(-55℃~125℃).
     (3) The MZC ceramic doped with10.0wt%G4glass sintered at900℃for8hhad excellent dielectric properties of=20.88,=9.5×10-5, TCC=15ppm/℃(-55℃~125℃).
     For the research of pilot production and MLCC about MZC ceramics, The size distribution curve of MZC ceramic powder were almost not influenced by the processfrom preliminary examination to pilot production.Compared to disk,the sinteringtemperature of MLCC was lower and dielectric properties were decreased to someextent,which was caused by impefect match between ceramics and electrodes.
引文
[1]萨法卡萨普,电子材料与器件原理,西安:西安交通大学出版社,2009.
    [2]干福熹,信息材料,天津:天津大学出版社,2000.
    [3]冯端,师昌绪,刘治国,材料科学导论-融贯的论述,北京:化学工业出版社,2002.
    [4]张利春,高玉芝,金海岩,等,超高速双层多晶硅发射极晶体管及电路,半导体学报,2001,22(3):345~349.
    [5]饶瑞,徐重阳,孙国才,等,微波退火法低温制备多晶硅薄膜晶体管,压电与声光,2001,23(4):299~301.
    [6] Jacunski M,Shur M and Ytterdal T,et al.,AShort-Channel DC SPICE Model forPolysilicon Thin Film Transistors IncludingTemperature Effects,IEEE Trans. onElectron Devices,1999,46:1146.
    [7]熊兆贤,肖芬,薛昊,等,微波介质陶瓷器件与测量技术,材料导报,2007,21(11A):187~191.
    [8]吴坚强,施阳和,王海圣,等,添加剂对BaO-TiO2-Sm2O3系微波陶瓷改性的研究,中国陶瓷,2004,40(1):17~19.
    [9]林曼红,吴霞宛,便携式无线通信中的陶瓷技术,电子元件与材料,2003,22(5):40~43.
    [10] O’Handley and Robert C,Modern Magnetic Materials,NewYork:John Wiley&Sons,Inc.,2000.
    [11]娄正松,熊曹水,李如康,等,巨磁阻效应及恒流电镀制备具有巨磁阻效应的CuNiCo/Cu多层膜,常州技术师范学院学报,1997,3(2):31~33.
    [12]刘宇,张兰兰,铁磁体半导体混杂纳米结构中的巨磁阻效应,湖南师范大学自然科学学报,2001,33(4):53~57.
    [13]胡文祥,磁性不均匀(纳米范围)体系的巨磁阻效应,仪器仪表学报,1995,16(1):255~259.
    [14]龙桂鲁,刘洋,广义量子干涉原理及对偶量子计算机,物理学进展,2008,28(4):410~429.
    [15]段宣明,秒激光双光子微纳加工技术及其在光子学微器件制备中的应用,功能材料信息,2007,4(5):41.
    [16]梁力平,赖永雄,李基森,片式叠层陶瓷电容器的制造与材料,广东:暨南大学出版社,2008.
    [17]天津大学无线电材料与元件教研室编,电容器,北京:技术标准出版社,1981.
    [18]唐斌,温度稳定型MLCC瓷料的研制及其改性机理研究,博士论文,成都:电子科技大学,2008.
    [19]赵海龙,MgTiO3-CaTiO3系统高频陶瓷材料研究,硕士论文,天津:天津大学,2010.
    [20]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995.
    [21]王国庆,BaO-TiO2-ZnO系介质陶瓷及微波测试技术研究,博士论文,天津:天津大学,2005.
    [22]陈湘明,吴勇军,微波介质陶瓷,中国专利,00131518.8
    [23]陈湘明,徐铮谊,杨敬思,高介电常数微波介质陶瓷及其制备方法,中国专利,98107577.0
    [24]张其土,张校平,李斌,一种微波介质陶瓷及其制备方法,中国专利,200610040891.9
    [25]梁飞,朱建华,吕文中,微波介质陶瓷及其制备方法,中国专利,200710051796.3
    [26]卞建江,严康,宋国祥,A缺位复合钙钛矿微波介质陶瓷及其制备方法,中国专利,200710038787.0
    [27]宋开新,郑梁,秦会斌,一种低介电常数高品质微波介质陶瓷及其制备方法,中国专利,200810163153.2
    [28]朱田中,低介电常数高Q值微波介质材料,中国专利,200610150178.X
    [29]曾群,李蔚,施剑林,复合微波介质陶瓷材料,中国专利,200710046738.1
    [30]郑兴华,高介电常数低损耗微波介质陶瓷,中国专利,200410061329.5
    [31]岳振星,赵飞,李龙土,一种近零频率温度系数的微波介质陶瓷及其制备方法,中国专利,200510011657.9
    [32] L. N. Bunting, G. A. Shelton and A. S. Creamer, Properties of barium strontiumtitanate dielectrics, J. Am. Ceram. Soc.,1947,30:114~125.
    [33] G. R. Shelton, A. S. Creamer, and E. N. Bunting, Properties of bariummagnesium titanate dielectrics, J. Am. Ceram. Soc.,1948,31:205~212.
    [34] G. H. Jonker and W. Kwestroo, Ternary systems BaO–TiO2–SnO2andBaO–TiO2–ZrO2, J. Am. Ceram. Soc.,1958,41:390~394.
    [35] J. Schwarzbach and L. Plocek, Contribution to the study of the systemBaO–TiO2in the region of barium polytitanates, Silik,1968,11:231~238.
    [36] J. Naumann, J. Plotner and K. Stellenberger, Dielectric properties ofcompositions in the barium oxide-titanium dioxide system, Hermsdorfer Tech. Mitt.,1970,10:947~950.
    [37] D. J.Masse, R.A. Purcel and D.W. Readey, New lowloss high k temperaturecompensated dielectric for microwave applications, Proc. IEEE.,1971,59:1628~1629.
    [38] D. E. Rase and R. Roy, Phase equilibria in the system BaO–TiO2, J. Am. Ceram.Soc.,1955,38:102~113.
    [39] E. K. Keler and N. B. Karpenko, Formation conditions of barium titanates, Russ.J. Inorg.Chem.,1959,4:511~516.
    [40] K. W. Kirby and B. A. Wechsler, Phase relations in the barium titanate-titaniumoxide system, J. Am. Ceram. Soc.,1991,74:1841~1847.
    [41] H. M. O’Bryan Jr and J. Thomson Jr., Phase equilibria in theTiO2-region of thesystem BaO-TiO2, J. Am. Ceram. Soc.,1974,57:522~526.
    [42] T. Negas, R. S. Roth, H. S. Parker, and D. Minor, Subsolidus phase relations inthe BaTiO3–TiO2system, J. Solid State Chem.,1974,9:297~307.
    [43] E. Tillmanns, Crystal structure of barium titanium oxide (BaTi5O11), ActaCrystallogr.B,1969,25:1444~1452.
    [44] E. Tillmanns, Barium hexatitanate BaTi6O13, Cryst. Struct. Commun.,1972,1:1~4.
    [45]徐庭献,电子陶瓷材料,天津:天津大学出版社,1992.
    [46] H. D. Megaw, Crystal structure of double oxides of the perovskite type, Proc.Phys. Soc.,1946,58:133~152.
    [47] F. S. Galasso, Structure Properties and Preparation of Perovskite TypeCompounds, Oxford:Pergamon Press,1969:3~41.
    [48] R. Roy, Multiple ion substitution in perovskite lattice, J. Am. Ceram. Soc.,1954,37:581~588.
    [49] J. B. Goodenough and J. M. Longo, Crystallographic and Magnetic Properties ofPerovskite and Perovskite Related Compounds, NewYork:Springer Verlag,1970:126.
    [50] M. T. Anderson, K. B. Greenwood and G. A. Taylor, B cation arrangements indouble perovskites, Prog. Solid State Chem.,1993,22:197~233.
    [51] F. S. Galasso, Perovskites and High Temperature Superconductors, MartinGordon:Gordon&Breach Science Publishers,1990:3–55.
    [52] K. Wakino, K. Minai, and H. Tamura, Microwave characteristics of (Zr,Sn)TiO4and BaO–PbO–Nd2O3–TiO2dielectric resonator, J. Am. Ceram. Soc.,1984,67:278–281.
    [53] P. C. Osbond, R. W. Whatmore, and F. W. Ainger, The properties and microwaveapplications of zirconium titanate stannate ceramics, Br. Ceram. Proc.,1985,36:167–178.
    [54] Pollet M, Marinel S, Low temperature sintering of CaZrO3using lithium fluorideaddition, Journal of the European Ceramic Society,2003,23(11):1925~1933.
    [55] F. Hund, ZrTiO4–Miscphasenpigmente, Z. Anorg. Allg. Chem.,1985,525:221–229.
    [56] D.A. Chang, P. Lin, and T. Tseng, Optical properties of ZrTiO4films grown byradiofrequency magnetron sputtering, J. Appl. Phys.,1995,77:4445–4451.
    [57] W. Rath, Keramische sindermassen fur die Elektronik Fortschritter auf demGreblet der keramischen isollerstoff fur die Electroteknik II, Keram. Radsch.,1941,49:137–139.
    [58] K. Wakino, T. Nishikawa, S. Tamura, andY. Ishikawa, Microwave band passfilters containing dielectric resonators with improved temperature stability andspurious response, New York:Proc.IEEE MTT Symposium,1975:63–65.
    [59] K. Wakino, T. Nishikawa, S. Tamura, andY. Ishikawa, Miniaturised band passfilters using half wave dielectric resonators with improved spurious response, ProcIEEE MTT Symposium,1978:230–132.
    [60] K. Wakino, T. Nishikawa, S. Tamura, andY. Ishikawa, Proc IEEE MTTSymposium,1979:278.
    [61] R. B. Van Dover, L. F. Schneemeyer, and R. M. Fleming, Discovery of a usefulthin-film dielectric using a composition-spread approach, Nature,1998,392:162–164.
    [62] J. F. Eichler, O. Just, and W. S. Rees, The design and synthesis of heterometallicalkoxideamides and their application in the MOCVD of zirconium-tin-titanate (ZTT),J. Mater.Chem.,2004,14:3139–3143.
    [63] W. Wolfram and H. E. Gobel, Existence range, structural and dielectricproperties of ZrxTiySnzO4ceramics (xtytz=4), Mater. Res. Bull.,1981,16:1455–1463.
    [64] H. Tamura, Microwave loss quality of (Zr0.8Sn0.2)TiO4, Am. Ceram. Soc. Bull.,1994,73:92–95.
    [65] C. L. Wang, H. Y. Lee, and F. Azough, The microstructure and microwavedielectric properties of zirconium titanate ceramics in the solid solution systemZrTiO4–Zr5Ti7O24, J. Mater. Sci.,1997,32:1693–1701.
    [66] A. Bianco, G. Gusmano, and R. Freer., Zirconium titanate microwave dielectricsprepared via polymeric precursor route, J. Eur. Ceram. Soc.,1999,19:959–963.
    [67] A. Bianco, M. Paci, and R. Freer, Zirconium titanate: from polymeric precursorsto bulk ceramics, J. Eur. Ceram. Soc.,1998,18:1235–1243.
    [68]刘忠池,ZnO-TiO2基低温烧结微波介质陶瓷的改性及其机理研究,博士论文,武汉:华中科技大学,2009.
    [69]陈兴宇,张为军,堵永国,等,玻璃/陶瓷体系低温共烧陶瓷的研究进展,佛山陶瓷,2008,18(12):43-46.
    [70]李宝剑,张树人,周晓华,等,低介低损耗CaO-B2O3-SiO2系微晶玻璃性能研究,电子元件与材料,2009,28(12):12-16.
    [71]李冉,傅仁利,何洪等,低温共烧陶瓷技术(LTCC)与低介电常数微波介质陶瓷,材料导报,2010,24(3):40-44.
    [72]周琪,低温共烧陶瓷技术发展现状与趋势,科技经济市场,2009,(4):25-26.
    [73]王洪恩,李勃,低温烧结Bi6Ti5TeO22和Bi2Ti3TeO12陶瓷及其微波介电性能,稀有金属材料与工程,2009,38(2):613-616.
    [74]张为军,陈兴宇,陈力春,等,硼硅酸盐玻璃/Al2O3陶瓷LTCC材料的研制,混合微电子技术,2009,20(4):22-25.
    [75]刘向春,钛酸锌介电陶瓷的低温烧结研究,硕士论文,西安:西北工业大学,2005.
    [76]李江,潘裕柏,宁金威,等,陶瓷低温烧结的研究与展望,硅酸盐通报,2003,(2):66-69.
    [77]童建喜,中介电常数低温共烧微波介质陶瓷及其器件研究,博士论文,浙江:浙江大学,2006.
    [78] Yonggang Zhang, Shunhua Wu, and Shunqi Gao, Improvement in the dielectricproperties of Ba6-3x(Nd0.4Bi0.6)8+2xTi18O54(x=1–1.5) ceramics by LiBSi/BaLiF glassadditives, J Mater Sci: Mater Electron,2011,22(5):561–564.
    [79] Young-Jin Choi, Jeong-Hyun Park, and Won-Jun Ko, Co-Firing and ShrinkageMatching in Low and Middle-Permittivity Dielectric Compositions for aLow-Temperature Co-Fired Ceramics System, J. Am. Ceram. Soc.,2006,89(2):562–567.
    [80]J. Mu¨ ller, H. Thust, and K. H. Dru¨ e, RF-Design Considerations for PassiveElements in LTCC Material Systems, Int. J. Microcircuits Electron. Packaging,1995,18:200–206.
    [81] K. Delaney, J. Barrett, and R. Doyle, Characterization andPerformance Prediction for Integral Capacitors in Low-Temperature Co-FiredCeramic Technology, IEEE Trans. Adv. Pack.,1999,22:68–77.
    [82] Dong Guo, Zhiyuan Ling, Xing Hu, Low temperature sintering and dielectricproperties of Ba2Ti3Nb4O18ceramics for silver co-sintering application, J Mater Sci:Mater Electron,2009,20:582–586.
    [83] Yanping Long, Yilin Wang, and Wenjun Wu, Sintering and MicrowaveDielectric Properties of the LiNb0.63Ti0.4625O3Ceramics with the B2O3–SiO2Liquid-PhaseAdditives, J. Am. Ceram. Soc.,2009,92(11):2630–2633.
    [84] Yonggang Wang, Guangneng Zhang, Jusheng Ma, Research of LTCC/Cu, Agmultilayer substrate in microelectronic packaging, Materials Science and EngineeringB,2002,94:48–53.
    [85] Seong-Jin Hwang, Yu-Jin Kim, Hyung-Sun Kim, La2O3–B2O3–TiO2Glass/BaO–Nd2O3–TiO2ceramic for high quality factor low temperature co-firedceramic dielectric, J. Electroceram.,2007,18:121–128.
    [86] Jae-Hwan Park, Young-Jin Choi, Jeong-Hyun Park, Low-fire dielectriccompositions with permittivity20–60for LTCC applications, mater.chem.phys.,2004,88:308–312.
    [87] Jichun Chen, Yong Zhang, and Changsheng Deng, Improvement in theMicrostructures and Dielectric Properties of Barium Strontium TitanateGlass–Ceramics by AlF3/MnO2Addition, J. Am. Ceram. Soc.,2009,92(8):1863–1866.
    [88] A. M. Hu, K.-M. Liang, and F. Peng, Crystallization and MicrostructureChanges in Fluorine-Containing Li2O–Al2O3–SiO2Glasses, Thermochim. Acta,2004,413:53–55.
    [89]张锐,孙恩伟,李秀明,等,弛豫铁电单晶铌镁酸铅-钛酸铅研究前沿,大庆师范学院学报,2009,29(6):85-88.
    [90] Xiangyong Zhao, Jie Wang, and KH.Chew, Composition dependence ofpiezoelectric constant and dielectric constant tunability in the (001)-orientedPb(Mg1/3Nb2/3)O3-PbTiO3single crystals, Materials Letters,2004,58(14):2053-2056.
    [91]陈晋,樊慧庆,铌镁酸铅基弛豫铁电厚膜的研究进展,无机材料学报,2010,25(7):673-676.
    [92] N. Ogata, J. Van Tassel and C. A. Randall, Electrode formation byelectrophoretic deposition of nanopowders, Materials Letters,2001,49(1):7-14.
    [93] DangY., Burtrand L., Processing of barium titanate tapes with different bindersfor MLCC applications-Part I:optimization using design of experiments, J Eur CeramSoc,2004,24:739-752.
    [94] M. Kosec, J. Holc, D. Kuscer, Pb(Mg1/3Nb2/3)O3-PbTiO3thick films frommechano-chemically synthesized powder, J. Eur. Ceram. Soc.,2007,27(13-15):.3775-3778.
    [95] A. Y. Wu, P. M. Vilarinho, A. Kholkin, LowTemperature Preparation ofFerroelectric Relaxor Composite Thick Films, Journal of the American CeramicSociety,2007,90(4):1029~1037.
    [96] Z Shen,WY Shih,WH Shih, Self-exciting, self-sensing PbZr0.53Ti0.47O3/SiO2piezoelectric microcantilevers with femtogram/Hertz ssensitivity, Appl Phys Lett,2006,89(2):23.
    [97]高洪波,王晓武,卞建江,A位取代对钨镁酸铅微波性能的影响,硅酸盐学报,2004,32(1):1-9.
    [98]王晓武,吴健,王鸿,等,Ca掺杂钨镁酸铅陶瓷材料的制备及其介电性能,硅酸盐学报,2003,31(1):15-19.
    [99]盖志刚,钛酸铋钠无铅压电陶瓷与高温铋层无铅压电陶瓷探索,博士论文,山东:山东大学,2008.
    [100]赵亮,高温铋层状结构Na0.5Bi4.5Ti4O15压电陶瓷的研究,博士论文,山东:山东大学,2008.
    [101] Mather,Galeb H., Low-Firing High Q Monolithic Ceramic Caoacitor.CA1207042(A1),1986.
    [102] Heli Jantunen, Risto Rautioaho, Antti Uusimaki, Compositions ofMgTiO3-CaTiO3ceramic with two borosilicate glasses for LTCC technology, Journalof the European Ceramic Society,2000,20:2331~2336.
    [103]宋开新,陈湘明,一种Mg2SiO4低介电常数微波介质陶瓷及其制备方法,中国专利,101429015A.
    [104]张启龙,史灵航,杨辉,等,一种低介电常数低温烧结微波介质陶瓷及其制备方法,中国专利,101172848A.
    [105] Jvana Radosavl, jevic Evans,Variable temperature in situ X-ray diffractionstudy of mechanically activated synthesis of calcium titanate CaTiO3, MaterialsResearch Bulletin,2003,38:1203~1213.
    [106] Hao Su,Shunhua Wu, Studies on the (Mg,Zn)TiO3-CaTiO3microwavedielectric ceramics, Materials Letters,2005,59:2337~2341.
    [107] Dong-Wan,Kim, Duk-Gyu Lee,Kug Sun Hong, Low-temperature firing andmicrowave dielectric properties of BaTi4O9with Zn-B-O glass system, MaterialsResearch Bulletin,2001,36:585-595.
    [108] P. Smith, G. Garcia-Blanco, and L. Rivoir, An. R. Soc. Esp. Fis. Quim., Ser. A,1961,57(11-12):263-268.
    [109] Sastry B S R,Hummel F A, Studies in lithium oxide systems:VII,Li2O-B2O2-SiO2, Journal of the American Ceramic Society,1960,43(1):23~33.
    [110] Sastry B S R,Hummel F A. Studies in lithium oxide systems:III,liquidimmiscibility in the system Li2O-B2O3-SiO2, Journal of the American CeramicSociety,1959,42(2):81~88.
    [111] Park J H,Choi Y J,Park J H, Low fire dielectric compositions withpermittivity20-60for LTCC applications. Materials Chemistry and Physics,2004,88:308~312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700