用户名: 密码: 验证码:
盐藻和小球藻富集铬(Ⅲ)的优化培养条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究以蛋白核小球藻和杜氏盐藻为材料,盐藻设定7个添加Cr~(3+)浓度处理,小球藻设定8个添加Cr~(3+)浓度处理,测定了不同Cr~(3+)浓度下微藻的生物量(细胞密度)、微藻对Cr~(3+)的富集量、叶绿素a、β-胡萝卜素、蛋白质及可溶性糖含量;选择其中对微藻生长和富集较优的添加Cr~(3+)浓度,比较了Cr~(3+)的不同添加方式对微藻生物量及富集量的影响;进行了两种微藻的三因素三水平正交试验,测定了不同组合的生物量和富集量;并探讨了最佳组合条件下的Cr~(3+)富集动态过程;分析了生物富集对微藻细胞分子官能团结构的影响。结果表明,培养液的Cr~(3+)浓度为1.0mg·L~(-1)时,可以提高小球藻的生物量、叶绿素a、蛋白质和可溶性糖的含量。小球藻富集Cr~(3+)的适宜添加条件为:在接种第1天至第5天期间分批次添加Cr~(3+),其最终加入是1.0mg·L~(-1),收获时测小球藻的生物量及富集量分别是2.25mg·mL~(-1)和82.89μg·g~(-1),小球藻对Cr~(3+)的富集效率为88.7%,与一次性添加相比较,小球藻的富集量提高了28.2%。小球藻获得最大生物量和富集量的优化组合为:温度30℃,pH7,N3.0g·L~(-1),P0.08g·L~(-1),此时的生物量为2.38mg·mL~(-1),富集量为85.35μg·g~(-1)。Cr~(3+)浓度为0.2mg·L~(-1)时,可以提高盐藻的生物量、β-胡萝卜素、蛋白质、可溶性糖含量。盐藻富集Cr~(3+)的适宜添加条件为:在接种第1天至第8天期间分批次添加Cr~(3+),其最终加入是0.2mg·L~(-1),收获时测盐藻的生物量及富集量分别是0.93mg·mL~(-1)和40.23μg·g~(-1),盐藻对Cr~(3+)的富集效率为90.6%,与一次性添加相比较,盐藻的富集量提高了32.6%。盐藻获得最大生物量和富集量的优化组合为:温度30℃,pH7,盐度70‰,此时的生物量为0.98mg·mL~(-1),富集量为42.77μg·g~(-1)。
In this paper, we used Chlorella pyrenoides and Dunaliella salina as experimental material to assess the optimal cultivation conditions of Cr enrichment by the two alga species through cultivation experiments by Cr3+ addition in the medium. Chlorella pyrenoides was cultivated under the 7 different concentrations of Cr3+ and Dunaliella salina was cultivated under the 8 different concentrations of Cr3+. We measured biomass (cell density) of the two algae, the amount of Cr3+ enrichment, contents of chlorophyll-a, β -carotene, intracellular protein and carbohydrate in the different Cr3+ addition treatments. Based on these experiments, we used orthogonal experiment with three factors and three levels, analyzed the effects of different methods of Cr3+ addition on algal biomass and Cr enrichment and discussed the dynamic processes of Cr3+ enrichment under the optimal combination conditions. In addition, the effects of Cr3+ enrichment on the algal cell molecular functional group structure were also investigated. The
     result of this study indicated that Cr3+ significantly increased the biomass of Chlorella pyrenoides and its contents of chlorophyll-a, β -carotene, protein and carbohydrate at the Cr3+ concentration of Img ?L"-1. The optimal concentration of Cr3+ was Img ?L-1 that should be added day by day to the medium during the initial 5d of culture. At this condition, harvested biomass and Cr enrichment quantity of Chlorella pyrenoides were 2.25mg ?mL-1 and 82.89 *g ?g-1, respectively, with an enrichment efficiency of 88.7%. The optimal combination of temperature, pH and N, P concentration depended on the experimental intention. To improve the growth and Cr3+ enrichment of Chlorella pyrenoides, the optimal combination of temperature, pH and N, P concentration is 30 ℃ in temperature, 7 in pH, 3g ?L-1 in N concentration and .08g 'L-1 in P concentration, with the highest biomass of 2.38mg 'mL-1 and the highest enrichment quantity of 85.35 * g ?g-1. The concentration of 0.2mg ?L-1 in Cr3+ can significantly increas
    ed the biomass of Dunaliella salina and its contents of chlorophyll-a, 3 -carotene, protein and carbohydrate. The optimal concentration of Cr3+ was 0.2mg ?L-1 that should be added day by day to the medium during the initial 8d of culture. At this condition, harvested biomass and Cr enrichment quantity of Dunaliella salina were 0.93mg ?mL-1 and 40.23 * g ?g-1, respectively, with an enrichment efficiency of 90.6%. The optimal combination is 30℃ in temperature, 7 in pH and 70 %o in salinity because the highest biomass of 0.98mg ?mL-1 and the highest enrichment quantity of 42.77 μ g ?g-1.
引文
[1] 陈晗华,钱凯先.氮、磷对盐藻生长及其β-胡萝卜素积累的影响.浙江大学学报(自然科学版),1997,31(6):731-736.
    [2] 陈小霞,梁世中,吴振强,岳振峰.异养小球藻生物富集Cr~(3+)的研究.食品与发酵工业,2001,(27):33-36.
    [3] 陈小霞,吴振强,梁世中.藻类对微量元素的生物富集及其机理探讨.食品与发酵工业,1997,25(4):56-60.
    [4] 陈永秉.数理统计浅说.北京:农业出版社,1993:223-230.
    [5] 范晓,王孝举.海藻中的碘.海洋科学,1994(4):16-20.
    [6] 古玉环,陈军.盐生杜氏藻(Dunaliella salina)的生物学特性与培养研究.西北师范大学学报(自然科学版),1995,31(4):52-55.
    [7] 郝涤非.螺旋藻的特性利用与培养.生物学教学,1999,24(3):39—44.
    [8] 浩云涛,李建宏,潘欣.椭圆小球藻(CHorelln ellipsoidea)对4种重金属的耐受性及富集.湖泊科学,2001.13(2):158-162.
    [9] 贺超兴.盐藻的生物学特性与开发利用.生物学通报,1998,33(2):12-16.
    [10] 姜健国,周世水,姚汝华.盐藻的诱变育种及光合反应器培养的初步研究.海洋科学,2001,25(1):44-46.
    [11] 李乐农,郭宝江.螺旋藻的培养及其分子生物学研究概况.植物学通报,1998,15(增刊):72-76.
    [12] 李平,梁世中.微量元素铬作为功能食品因子的研究进展.食品与发酵工业,2000,27(1):74-77.
    [13] 李师翁,李虎乾,张建军.小球藻大规模培养研究的进展.植物学通报,1998,15(4):45-50.
    [14] 李师翁,李虎乾.植物单细胞蛋白质源-小球藻开发利用研究的现状.生物技术,1997,7(3):45-48.
    [15] 李志勇,郭祀远,李琳,蔡妙颜.藻类对微量元素的生物富集及其应用.微生物学通报,1997,24(6):368-369.
    [16] 李志勇,郭祀远,李琳,蔡妙颜.藻类富集微量元素的机理研究.华南理工大学学报(自然科学版),1998,26(2):33—37.
    
    
    [17] 李志勇,郭祀远,李琳.功能性高铬(Ⅲ)螺旋藻的研制.中国海洋药物,1999,(4):14-18.
    [18] 李志勇,李元广,郭祀远,李琳.钝顶螺旋藻生物富集Cr~(3+)影响因素的研究.生物工程学报,2000,16(1):108-112.
    [19] 李玉山,崔征,殷军.七种马尾藻属海藻碘及微量元素的含量测定.中国海洋药物,1996,(4):35-37.
    [20] 刘学铭,梁世中.小球藻在食品工业中的应用及小球藻食品的研制.武汉食品工业学院学报,1999,(1):47-52.
    [21] 柳一鸣.微量元素与人类健康.岳阳师范学院学报(自然科学版),2002,15(2):64—66.
    [22] 陆超华,谢文造.利用盐藻开发功能食品的前景.广州食品工业科技,1995,11(4):14—17.
    [23] 毛文君,管华诗,李八方.几种海洋生物体内硒含量的测定.海洋湖沼通报.1995,(4):28—32.
    [24] 单振光,吴玉树.项圈藻的生长及其主要营养成分的研究.应用生态学报,1994,5(2):172-176.
    [25] 孙飚,范晓.海藻中砷的含量分布特征.海洋科学,1996,(5):24-26.
    [26] 汤又文,莫胜钧.生物藻分离富集法在痕量元素分析中的应用及进展.化学通报,1994,(1):1-4.
    [27] 王大志,高亚辉,程兆.硒对两种盐藻生长的影响及其在细胞中的累积和分布.海洋学报,1997,19(5):110-115.
    [28] 王大志,王海黎,李少菁.微量元素锗对四种微藻光合色素的影响.生态学报,2000.20(3):482-484.
    [29] 王夔.生物无机化学.北京:清华大学出版社,1988:200-203.
    [30] 严雪,杨永清,李永科.2002.不同营养条件下原始小球藻对蒽的富集和降解研究.应用生态学报,2002,13(2):145-150.
    [31] 杨鹭生,李国平,陈林水.蛋白核小球藻粉的蛋白质氨基酸含量及营养价值评价.亚热带植物科学,2003,32(1):36-38.
    [32] 杨雪梅.培养密度和培养液“老化”对盐藻生长和β-胡萝卜素累积的影响.海洋科学,1996,6:39-44.
    [33] 张首临,刘明星.4种重金属离子对海洋三角褐指藻生长的影响的研究.海洋与湖沼.1995.(6):582—585.
    
    
    [34] 张志良主编.植物生理学实验指导.高等教育出版社,1990:184—185.
    [35] 周志刚,李明富,刘志礼.三种螺旋藻及其蛋白质、多糖和脂类结合硒的研究,海洋与湖沼.1997,28(4):363-370.
    [36] 周志刚,钟罡,刘志礼.硒对极大螺旋藻生长及含硒量的影响.海洋科学,1997(5):42—45.
    [37] 朱祖强.微量元素铬的营养与免疫研究进展.湖南畜牧兽医,1999,(2):2—3.
    [38] Albert A, Quantitative studies of the avidity of naturally occurring substances for trace metals. Biochem. J., 1950, 47: 531-537.
    [39] Arthur L. Metal removal by laboratory scale immobilized microalgal reactor. J. Environ.Sci., 1998, 10(4): 474-478.
    [40] Avron M, Ben-Amotz A. Dunaliella:Physiology. Biochemistry and Biotechnology.CRC Press. Boca Raton, Ann. Arbor. London. Tokyo. 1992.
    [41] Becker E W. Measurement of algal growth. In: Becker E W(ed). Microalgae Biotechnology and Microbiology. Cambridge: Cambridge University Press.1994: 56-62.
    [42] Benjamin Greene. Interaction of Gold(Ⅰ) and Gold(Ⅲ) complexes with algal biomass environment. Sci. Technol., 1986, 20:627-632.
    [43] Carlos Cervantes. Interaction of chromium with microorganisms and plants. FEMS Microbiology Reviews, 2001,25:335-347.
    [44] Ciferri O, Tiboni O. The biochemistry and industrial potential of Spirulina. Ann. Rev.Microbiol., 1985, 39: 503-526.
    [45] Crist R H. Interaction of metals and protons with algae. Environ. Sci. Technol., 1988,22: 755-760.
    [46] Crist R H. Interaction of metals and protons with algae. Environ. Sci. Technol., 1990,24: 337-342.
    [47] Crist R H. Interaction of metals and protons with algae. Environ. Sci. Technol., 1992,26: 496-502.
    [48] Depledge M H, Weeks J M, Bjerregard P. Heavy metals. In Handbook of Ecotoxicology(P. Calow, Ed.), Blackwell Science. Oxford, 1995, 2: 79-105.
    [49] Donald Wang, Luis Oliveria. Effects of Selenite and Selenate on growth and motility of seven species of marine microalgae. Can. J. Fish. Aquat. Sci., 1991,48:1193-1200.
    
    
    [50] Fred Y Leung, D Michael Grace. Abnormal trace elements in a Patient on total parenteral nutrition with normal renal function. Clinical Biochemistry, 1995,28(3): 297-302.
    [51] Garc(?)a E M, Cabrera C,S(?)nchez J, Lorenzo M L, L(?)pez M C. Chromium levels in potable water, fruit juices and soft drinks: influence on dietary intake. The Science of the Total Environment, 1999, 241:143-150.
    [52] Gardea Torresdey Jorgel. Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ. Sci. Technol., 1990,24:1372-1378.
    [53] Gorbi G, Corradi M G, Invidia M, Bassi M. Light intensity influences chromium bioaccumulation and toxicity in Scenedesmus acutus(Chlorophyceae). Ecotoxicology and Environmental safety, 2001, 48: 36-42.
    [54] Guillard RRL. In Stein J R, Handbook of Phycological Method.Cambridge University Press, Bridge, 1973, 289-311.
    [55] Guillard R R L, Pyther J H, Studies of marine plandtonic diatom. I. Cyclotella nana Hustedt and Detonula confervacea(cleve) Gran.Can. J. Microbiol., 1962, 8:229-239.
    [56] Hard B C, Gilmour D J. A mutant of the halotolerant alga Dunaliella which leaks large amounts of plycerol. Br. Phycol., 1990, 25: 89.
    [57] Holan Z R. Biosorption of Pb, Ni by biomass of marine algae. Biotechnol. Bioeng.,1994, 43: 1001-1009.
    [58] Jassby A. A model for microalgae as human food, In: Zarole A Led. Algae and Human Affairs. Cambridge University Press, 1989: 149-202.
    [59] Jensen A. Chlorphylls and Carotenoids. Hellebust J A, Craigie J S. Handbook of physiological Methods. Cambridge: Cambridge University Press, 1978: 59-70.
    [60] Kuyucak N. The mechanism of Co biosorption. Biotechnol. Bioeng, 1989, 33: 823-831.
    [61] Lang Norma J. The fine structure of blue-green algae. Ann. Res. Microbio., 1968,22:15-70.
    [62] Leusch A, Holan Z R,Volesky B.Biosorption of heavy metals(Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. Journal of Chemical Technology and Biotechnology, 1995, 62(3): 279-288.
    [63] Low K S. Sorption of Trivalent Chromium from Tannery Waster by Moss. Environ. Tech., 1997,18:449.
    
    
    [64] Mattuschka B. Biosorption of metals by a waste Biomass. Chem. Tech. Biotech.,1993,58: 57.
    [65] Mertz W. Chromium in human nutrition. A review J. Nutr., 1992, 123:626-633.
    [66] Mertz W. Effects and metabolism of glucose tolerance factor. In present knowledge in nutrition. The Nutrition Foundation. Inc. Washington D C, 1976:365-372.
    [67] Oh-Hama T, Miyachi S. Chlorella In: Borowitzka M A, Borowizika L J(eds).Microalgal Biotechnology. Cambridge University Press, 1992, 18-19.
    [68] Patterson G M L. Bioactive natural products from blue-green. J. Appl. Phycol.,1994,6:151-157.
    [69] Phillips D J H. Bioaccumulation. In Handbook of Ecotoxicology(P. Calow, Ed.),Blackwell Science. Oxford, 1995, 1:378-396.
    [70] Phillips D J H, Depledge M H. Metabolic pathways involving arsenic in marine organisms: a unifying hypothesis. Mar. Environ. Res., 1985,17:1-12.
    [71] Schlipalius L. The extensive commercial cultivation of Dunaliella salina. Bioresource Technology, 1991,38(2/3): 241-243.
    [72] Shubert L E. Algae as ecological indicators. Academic Press. London, 1984.
    [73] Stephen Morris G, Kevin A Guidry, Maren Hegsted. Effects of dietary chromium supplementation on cardiac mass, metabolic enzymes and contractile proteins. Nutrition Research, 1995,15(7): 1045-1052.
    [74] Tadeusz S. Energy-dependent transport of cadmium by stichococcus bacillaris.Chemasphere, 1984,12:1379-1384.
    [75] Wang Xenxiong, Robert C H D. Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 2001,3:233-240.
    [76] Wrench J J. Selenium metabolism in the marine phytoplankter Tetraselmis tetrathele and Dunaliella minuta. Mar. Biol., 1978,49:231-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700