用户名: 密码: 验证码:
硒和碲对螺旋藻的生物效应及其机制的光谱学研究方法初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究设计高低两个质量浓度组,分别研究了硒和碲两元素对螺旋藻的促进作用和毒性作用,并对结果进行统计分析;采用相加指数法研究了硒和碲对螺旋藻的联合毒性作用;用光谱法在完整藻细胞和离体藻蓝蛋白分子两个层次研究了硒和碲对螺旋藻生物效应的机理。取得了一些有意义的结果:
     1.低质量浓度的Se(Ⅳ)和Te(Ⅳ)对钝顶和极大两种螺旋藻的生长具弱促进作用,促进作用的强弱与培养条件有关;高质量浓度的Se(Ⅳ)和Te(Ⅳ)均对钝顶和极大螺旋藻均具毒性作用,并且Te(Ⅳ)毒性较Se(Ⅳ)大;Se(Ⅳ)和Te(Ⅳ)对钝顶螺旋藻的联合毒性表现为拮抗作用。
     2.Te(Ⅳ)胁迫下,极大螺旋藻活体细胞的吸收光谱特征吸收峰强度下降。而从荧光光谱中,观察到叶绿素和藻胆体受损,能量传递受阻,而类胡萝卜素的能量传递效率增加。藻粉中各色素的能量传递过程则均受阻。Te(Ⅳ)胁迫实验组的干藻粉与对照组的干藻粉,其红外光谱无明显差异。
     3.藻蓝蛋白(纯度系数A_(620)/A_(280)=3.0,含少量别藻蓝蛋白)与Se(Ⅳ)作用后,藻蓝蛋白溶液的光谱发生了一系列的变化,并在92h后观察到红色纳米硒的生成。其中,吸收光谱在620nm处的吸收减弱,并随Se(Ⅳ)质量浓度和时间的增加而降低;在278nm和347nm处的光吸收增强,变化趋势与藻蓝蛋白在620nm处的特征吸收变化趋势相反。藻蓝蛋白的荧光发射和荧光激发均逐渐减弱,但599nm和629nm处的2个激发峰的相对高低与对照相反。这些提示藻蓝蛋白分子是Se(Ⅳ)的主要靶分子之一,硒对螺旋藻的生物效应可能部分是通过硒作用于藻蓝蛋白引起。
The effects of selenium and tellurium on S. platensis and 5. maximum were investigated at the higher mass concentration group and the lower mass concentration group respectively, and the data were analyzed with statistics. The additive toxicity of selenium and tellurium mixture to 5. platensis was assessed with AI(additive index). An attempt was made to research the mechanism of the biological effects of selenium and tellurium on spirulina at two levels, the intact algal cell level and and the isolated phycocyanin molecular level, by spectroscopy. Some important results were obtained.
    Firstly, Se(IV) and Te(IV) stimulated slightly the growth of S. platensis and S. maximum at lower mass concentrations, but inhibited the growth of them at higher mass concentrations. The intensity of stimulative effect and inhibitive effect was also related with the culture conditions apart from the mass concentrations. Both Se(IV) and Te(IV) were toxical to spirulina, and the toxicity of Te(IV) to spirulina were heavier than Se(IV). The additive toxicity of Se(IV) and Te(IV) was assessed to be antagonism.
    Secondly, the absorption spectra for intact algal cells of S.maxima showed that the intensity of typical absorption peak decreased under Te(IV) stress, whereas the fluorescence spectra suggested that the energy transfer of carotenoids increased. The fluorescence spectra of dry algal powder were markedly different from those of intact algal cells, and it suggested that all the three pigments(chlorophyll a , carotenoids and Phycocyanin ) were damaged in dry powder. IR spectra of dry powder between the control set and Te(IV) stress sets had no difference.
    And thirdly, after C-phycocyanin(A620/A280=3.0, containing little allophycocyanin) was mixed with Se(IV), the spectrum of the mixture solution
    
    
    underwent changes and nano red selenium was observed in the solution after 92h. Among the changes of the spectrum, the absorption spectra showed that with the increase of time and the mass concentration of Se(IV), the characteristic absorption peak at 620nm was decreased gradually but the absorption peaks of phycocyanin at 278nm and 347nm were increased gradually. The fluorescence spectra showed that the fluorescence emission peak and two fluorescence excitation peaks all decreased, but the relative fluorescence intensity of excitation peak at 599nm and 629nm was different from control. The information from the spectra of phycocyanin suggested that phycocyanin could be one of the principal target molecules of Se(IV) and the biological effects of Se(IV) on spirulina, in part, could be caused accordingly by the interaction of phycocyanin and Se(IV)
引文
[1]徐辉碧.硒的化学、生物化学及其在生命科学中的应用.武汉:华中理工大学出版,1994
    [2]郑文杰,欧阳政.植物有机硒的化学及其医学应用.广州:暨南大学出版社,2001
    [3]李子全.稀有金属应用(下).北京:冶金工业出版社,1985:7
    [4]Summerw.A.O.,Jacob.Y.G.A..Plasmid-determined resistance to tellurium compounds.J.Bacterial, 1977, 129:276—281
    [5]胡莉萍,吕京等.碲及其化合物的毒性研究进展.卫生毒理学杂志,2002,16(2):120—123
    [6]Garberg P., Engman.L.,Tolmachev.V.,et al.Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite:consequences for the activity of selenium-dependent glutathione peroxidase.The International Journal of Biochemistry & Cell biology. 1999, 31: 291—301
    [7]陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社,1999.9
    [8]郑文杰,贺鸿志,黄峙,杨芳.螺旋藻富集转化硒研究进展.中国生物工程杂志,2003,23(1):57—60
    [9]徐晶,陈婉华,谢应先等.亚硒酸钠浓度对螺旋藻生长及富硒量的影响.土壤肥料,1996,6:38—46
    [10]陈必链,庄惠如,余望等.钝顶螺旋藻对锌和硒生物富集作用的研究.食品与发酵工业1998,24(6):27—29
    [11]黄峙,谭龙飞.硒添加方法对螺旋藻生长及富集转化硒的影响.广州食品工业科技,1999,15(2):60—63
    [12]周志刚,李富朋,刘志礼等.三种螺旋藻及其蛋白质、多糖和脂类结合硒的研究.海洋与湖沼,1997,28(4):363—370
    [13]黄峙.钝顶螺旋藻富集转化硒及含硒造蓝蛋白对小鼠实验性肝损伤的保护作用.华南师范大学生物系硕士论文,2000,20—32
    [14]Yu Liang-yao,He Kang-ming,Cai Duan-ren,et al.1993.Evidence for telluroamino acid in biological materials and some rules of assimilation of inorganic tellurium by yeast.Analytical Biochemistry, 209: 318—322
    [15]郑文杰,贺鸿志,黄峙,杨芳,郭宝江.S、Se和Te对两种螺旋藻生长的影响.生态科学,2002,21(3):213—216
    
    
    [16]郑文杰,贺鸿志,黄峙,杨芳,郭宝江.硒碲胁迫对两种螺旋藻生长的影响.海洋科学,2003
    [17]周永欣,章宗涉.水生生物毒性实验方法.北京:农业出版社,1989:114—122
    [18]阎海,王杏君,林毅雄等.铜锌和锰抑制蛋白核小球藻生长的毒性效应.环境科学,2001,22(1):23—26
    [19]ZHOU Zhi-gang.Promotive effect Of Se on the growth and antioxidation of a blue-green alga Sprulina maxima.Chin.J.Oceanol.Limnol., 1998, 16(4):346—358
    [20]贺鸿志.Se、Te胁迫对极大和钝顶两种螺旋藻生长的影响.暨南大学硕士论文,2003
    [21]汪尔康主编.分析化学新进展.科学出版社,2002:510—516
    [22]俞达辉,刘少明.钝顶螺旋藻对不同无机硒的吸收研究.海洋学报,2000,22(2):137—141
    [23]黄峙,向军俭,郑文杰等.钝顶螺旋藻富集转化硒及硒在藻体中的分布.植物生理学通讯,2001,37(1):12—14
    [24]徐晶,朱茂祥,陈婉华.螺旋藻富集同化无机硒研究.植物营养与肥料学报,1997,3(2):169—175
    [25]徐洁红,郭宝江.螺旋藻培养液的筛选.华南师范大学学报(自然科学版),1996,4:32—34
    [26]李志勇,郭祀远,李琳等.采用鼓泡柱式光生物反应器培养螺旋藻的研究.食品工业科技,1998,5
    [27]林俊,李韬,沈宏等.镧对微囊藻的生长效应及被富集的动力学研究.环境化学,2003,22(1):75—79
    [28]周志刚,钟罡,刘志礼.硒对极大螺旋藻生长及含硒量的影响.海洋科学,1997,5:42—45
    [29]王大志,程兆第,高亚辉.硒对顿顶螺旋藻生长的影响及其在细胞中的积累和分布.台湾海峡,1998,17(40):433—438
    [30]Michale A.,Lewis.Use of freshwater plants for phytotoxicity testing: A review.Environmental pollution, 1995, 87: 319—336
    [31]黄峙,郑文杰,向军俭等.硒硫比值对钝顶螺旋藻有机化硒的影响及藻体中硒的形态、价态构成.海洋科学,2002,26(5):60—62
    [32]武宝玕,陈贻竹,臧汝波.钝顶螺旋藻的光谱特征及耐热的荧光研究.暨南大学学报(自然科学版),1994,15(1):119—123
    [33]邱丽氚,凌元洁,谢树莲.极大螺旋藻一些生理特性的研究.植物研究,1998,18(3):356—360
    [34]周志刚,尹长松.富硒极大螺旋藻整细胞、藻胆体及藻蓝蛋白的光谱特性.上海水产大学
    
    学报,2002,11(3):208—214
    [35]路荣昭,刘斌,李凤平.螺旋藻藻胆体在解离过程中荧光发射光谱和光能传递的研究.生物物理学报,1994,10(3):479—484
    [36]Donghui Li,Jie Xie,Yuewei Zhao,et al.Probing connection of PBS with the photosystems in intact cells of Spirulina Platensis by temperature-induced fluorescence fluctuation.Biochimica et Biophysica Acta, 2003, 1557: 35—40
    [37]唐全民,杨芳,郑文杰等.Te(Ⅳ)对钝顶螺旋藻和极大螺旋藻的生物效应.暨南大学学报(自然科学版),2003,24(5):75—80
    [38]郑文杰,余景,杨芳等.两种螺旋藻在不同生长阶段的硒胁迫效应.生态科学,2003,22(4):305—309
    [39]杜林方,付华龙,邹晓东.铜离子对钝顶螺旋藻完整细胞中光系统Ⅱ活性和藻胆体能量传递的影响.植物学报,1995,87(2):109—113
    [40]黄有馨,刘志礼.固氮蓝藻,农业出版社,1984
    [41]李乐农,张秀平,江涛等.富硒螺旋藻中含硒藻蓝蛋白的纯化结晶及初步晶体学研究.中国科学(C辑),2000,30(5),449—455
    [42]黄峙等.钝顶螺旋藻中蛋白质结合硒的研究.暨南大学学报(自然科学版),2001,6,22(3)
    [43]彭卫民等.钝顶螺旋藻藻胆蛋白性质的研究[J],中国农业大学学报,1999,4(增刊):35—38
    [44]Hilditch C. M.,Smith A.J.,et al.Phytochemistry, 1991, 30(11): 3515—3517
    [45]XIA A D, ZHOU J C, et al.Biochemical and Biophysical Research Communications, 1991,179(1): 558—564
    [46]Koji sode, Kenichi,Haruko Takeyama.Journal of Biotechnology, 1991, 21,209—218
    [47]Schirmer T.,Bede W.,Huber R.,et al.J. Mol. Biol., 1985, 184: 257—277
    [48]余多慰等.光动力蛋白C-PC中脱辅蛋白的空间结构研究.光散射学报,2000,1,11(4)
    [49]Park J W.,Sauer K..Biochim Biophys Acta, 1991, 1056: 181-189
    [50]Mimuro M.,Rumbeli R.,et al.Biochim Biophys Acta, 1986, 851: 447—456
    [51]Toole C.M.,Plank T.L., et al. Molecular Microbiology, 1998, 30(3): 475—486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700