用户名: 密码: 验证码:
东北传统发酵特色食品中主要微生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然发酵酸菜和大酱是我国东北的传统特色食品,因其风味独特,至今仍深受老百姓的喜爱和青睐,在东北人民日常饮食中占据着很大比重。经过长期的自然选择和训化,其中蕴藏着丰富的乳酸菌、酵母菌等有益菌群,是研究和开发有益菌群的天然宝库。然而,由于采用的传统研究方法单一以及存在的缺陷,导致东北酸菜和大酱中的主要微生物类群组成、优势和关键菌群,至今仍不甚明确,也不够准确和客观,进而无法很好地指导研究和生产,至今普通工业化产品仍难以替代。本研究以采自我国东北三省不同地区农户家庭采用传统方法自然发酵的97份酸菜发酵液和43份大酱样品为试验对象,分别通过传统的纯培养技术和16S或26S rDNA序列分析、PCR-DGGE.新一代焦磷酸测序技术等三个不同层面和角度,对东北特色传统发酵酸菜和大酱中的乳酸菌和酵母菌等主要发酵微生物的群落结构及多样性进行系统研究,以期为进一步研究、保护和利用东北传统发酵食品中的有益乳酸菌和酵母菌等主要发酵微生物,提供理论依据。具体研究内容又分为以下七个试验:
     试验1从东北三省30个地区农户家庭,采集了97份采用传统方法自然发酵的酸菜发酵液样品,通过选择性纯培养技术方法,从中分离筛选出133株乳酸菌疑似菌株,再采用16S rDNA序列同源性分析方法对各菌株属种进行鉴定。结果表明,均为乳酸菌,分属3个属,8个种,呈现出较为丰富的乳酸菌多样性,34株菌归为植物乳杆菌(L.plantarum),占总菌株数的25.56%;23株菌归为棒状乳杆菌(L. coryniformis),占总菌株数的17.29%;21株菌归为弯曲乳杆菌(L. curvatus),占总菌株数的15.79%;18株菌归为清酒乳杆菌(L. sakei),占总菌株数的13.53%;12株菌归为短乳杆菌(L. brevi),占总菌株数的9.02%;13株菌归为屎肠球菌(E. faecium),占总菌株数的9.77%;4株菌归为粪肠球菌(E. faecalis),占总菌株数的3.01%;8株菌归为肠膜明串珠菌(Leu. mesenteroides),占总菌株数的6.02%。以此可以推断,植物乳杆菌、棒状乳杆菌、弯曲乳杆菌和清酒乳杆菌可能是东北自然发酵酸菜发酵液中的优势菌群。
     试验2从东北三省14个地区农户家庭采集了43份采用传统方法自然发酵的豆酱样品,通过选择性纯培养技术方法,从中分离筛选到了74株乳酸菌疑似菌株,再采用16S rDNA序列分析法对各菌株属种进行鉴定。结果表明,均为乳酸菌,分属8个种,分别是嗜盐四联球菌(T. halopHilus)30株,为样品中分离数量最多的菌种,占总数的40.54%;植物乳杆菌(L. plantarum)14株,占总数的18.92%;清酒乳杆菌(L. sakei)13株,占总数的17.57%;发酵乳杆菌(L.fermentum)9株,占总数12.16%;干酪乳杆菌(L. casei)2株,占总数2.7%;短乳杆菌(L. brevi)2株,占总数2.7%,戊糖片球菌(P. pentosaceus)2株,占总数2.7%,耐久肠球菌(E. durans)2株,占总数2.7%。从乳酸菌地区和样品分布结果可以初步推断出:嗜盐四联球菌、植物乳杆菌和清酒乳杆菌是东北传统发酵豆酱中的优势乳酸菌菌群。
     试验3通过选择性纯培养技术方法,从43份传统发酵豆酱样品中,分离筛选出93株酵母菌疑似菌株,进一步采用26S rDNAD1/D2区序列分析对各菌株属种进行鉴定。结果表明,均为酵母菌,分属9个种,呈现出较为丰富的多样性。分别是二孢接合酵母(Z. bisporus)28株,占总数的30.11%,该种菌在样品中分离数量最多,且在14个地区采集的样品中均分离到了该菌;近平滑假丝酵母(C. parapsilosis)25株,占总菌数的26.88%,分离数量次之,14个地区采集的样品中均分离到了该菌;汉逊德巴利酵母(D. hansenii)18株,占总数的19.35%,除了齐齐哈尔、延边、辽阳、营口和锦州外,有9个地区样品中都分离到了该种菌;解脂耶氏酵母(Y. lipolytica)8株,占总菌数的8.60%,该菌株仅在大庆市、铁岭市、盘锦市和锦州市采集样品中分离得到,其它地区样品中未分离到;粘质红酵母(R. mucilaginosa)7株,占总数7.53%,该菌种仅在铁岭、沈阳和葫芦岛分离到;涎沫假丝酵母菌(C. zeylanoides)2株,占总数2.15%,该菌株仅在营口地区样品中分离到;浅白隐球酵母(C. albidus)2株,占总数2.15%,仅在大庆地区样品中分离到;C. liquefaciens2株,占总数2.15%,该菌株仅在大庆和铁岭地区样品中分离到;从大庆地区样品中分离到了1株C. sorbosivorans,占总数1.08%。从获得酵母菌在地区和样品分布结果可以初步推断出:二孢接合酵母(Z. bisporus)、汉逊德巴利酵母(D. hansenii)和近平滑假丝酵母(C. parapsilosis)是东北地区传统发酵豆酱中优势酵母菌菌群。
     试验4从传统发酵酸菜发酵液样品中筛选出30份,直接提取各样品宏基因组,并进行PCR-DGGE,再进一步筛选条带清晰且较为丰富的样品上的条带,进行16S rDNA序列测定和分析比对。结果表明,30份样品均获得了清晰的电泳条带,对筛选出条带较为丰富的11份样品的清晰条带的16S rDNA序列测定,并作分析和比对可知,东北传统发酵酸菜发酵液中蕴藏着丰富的乳酸菌资源,属种多样,其中,植物乳杆菌(L.plantarum)、短乳杆菌(L. brevi)、清酒乳杆菌(L.sakei)、弯曲乳杆菌(L. curvatus)四种菌为传统发酵酸菜发酵液中的优势菌群。
     试验5从传统发酵大酱样品中筛选出30份,直接提取各样品宏基因组,并进行PCR-DGGE,再进一步筛选条带清晰且较为丰富的样品上的条带,进行16S rDNA序列测定和分析比对。结果表明,30份样品均获得了清晰的电泳条带,对筛选出条带较为丰富的14份样品的清晰条带的16S rDNA序列测定,并作分析和比对可知,东北传统发酵大酱中的细菌属种多样,鉴定出9个属,16个种,乳酸菌从种类和分布上均占优势,而植物乳杆菌(L.plantarum)、明串珠菌(Leuconostoc)、屎肠球菌(E. faecium)和嗜盐四联球菌(T. halopHilus)四种菌又为优势乳酸菌群。
     试验6对6份酸菜发酵液进行焦磷酸测序和分析,结果表明,样品中细菌以厚壁菌门Firmicutes (41%)和变形菌门Proteobacteria (34%)的细菌为主。乳杆菌目Lactobacillales占厚壁菌门的72%,包括Enterococcaceae、Lactobacillus、Pediococcus、Lactococcus、Leuconostocaceae和Weissella。变形菌门Proteobacteria中Alphaproteobacteria目的产碱菌Alcaligenaceae最多。真菌以子囊孢菌门Ascomycota (87%)中的酵母菌Saccharomycotina亚门(91%)为主。酵母菌亚门Saccharomycotina中的德巴利酵母科Debaryomycetaceae、耶罗威亚酵母科Dipodascaceae、酵母科Saccharomycetaceae和接合酵母Zygosaccharomyces等占多数,而德巴利汉逊酵母Debaryomyces hansenii和酿酒酵母Saccharomyces servazzii为主要发酵酵母。
     试验7对6份大酱样品进行焦磷酸测序并作分析,结果表明,样品中细菌主要由厚壁菌门Firmicutes (46%)和变形菌门Proteobacteria (30%)为主。厚壁菌门Firmicutes中,主要以芽孢杆菌纲(Bacilli)中的乳杆菌目Lactobacillales (70%)中的Lactobacillus、 Enterococcaceae、Tetragenococcus、Lactococcus、Streptococcus、Leuconostocaceae和Weissella等,以及芽孢杆菌目Bacillales(24%)中的芽孢杆菌科(Bacillaceae)中的地衣芽孢杆菌Bacillus licheniformis为主。变形菌门Proteobacteria中,以Alphaproteobacteria、 Betaproteobacteria和Gammaproteobacteria纲细菌为主。大酱样品中真菌主要为子囊孢菌门Ascomycota (99%)中酵母菌亚门Saccharomycotina中的德巴利酵母科Debaryomycetaceae中的德巴利汉逊酵母Debaryomyces hansenii,以及盘菌亚门Pezizomycotina中青霉属Penicillium等为主。
     以上试验结果表明:东北传统发酵酸菜发酵液和大酱中微生物复杂多样,几乎涵盖了细菌和真菌的各个门目的种属,均以厚壁菌门Firmicutes和变形菌门Proteobacteria细菌和子囊孢菌门Ascomycota中的酵母菌Saccharomycotina亚门真菌为主。细菌又以乳杆菌目属种占优势,真菌以德巴利汉逊酵母Debaryomyces hansenii为主,这些属种大多为有益菌群,但大酱较酸菜发酵液中微生物构成更为复杂,具体菌群种类和数量也不尽相同。
As the specialty foods, suan-cai and da-jiang made by the traditional method are still very popular because of its unique flavor in the northeast of China, which occupies a large proportion of the northeast people's daily diet. After a long period of natural selection and training, a lot of lactic acid bacteria, yeast and other beneficial bacteria are enriched in suan-cai and da-jiang. Therefore, the traditional fermented food suan-cai and da-jiang are always considered as one of valuable natural resources to research and develop beneficial bacteria. However, due to the defects of traditional cultured method, the composition of microbe and the main microbial groups involved in the northeast suan-cai and da-jiang are still not very clear and objective. The production is difficult to industrialization completely. The current results are urgently needed to be comprehended and supplemented. Thus it can able to guide the research and production well. In the present study,97suan-cai samples and43da-jiang samples were collected from located peasant household in different areas of three provinces in Northeast China. All samples were made by traditional natural fermentation method. Based on the combination of traditional pure cultured method and16S or26S rDNA sequence analysis, and PCR-DGGE, as well as a new pyrosequencing technology, the study developed a systematic research of the community structure of lactic acid bacteria and yeast and other major fermentation microorganisms involved in suan-cai and da-jiang in three different aspects and angles. The study may be helpful to protect and utilize the lactic acid bacteria and yeasts and other major fermentation microorganisms in traditional fermented food collected in northeast of China. The concrete research content was divided into the following seven tests:
     Test1:A total of133isolates were obtained from97samples of naturally fermented suan-cai broth by traditional screened cultivation, that were showing to be lactic acid bacteria. According to16S rDNA sequence analysis, the isolates were grouped in three genera and8species, including Lactobacillus plantarum (34strains,25.56%), Lactobacillus coryniformis (23strains,17.29%), Lactobacillus curvatus (21strains,15.79%), Lactobacillus sakei (18strains,13.53%), Lactobacillus brevis (12strains,9.02%), Enterococcus faecium (13strains,3.01%), Enterococcus faecalis (4strains,3.01%), and Leuconostoc mesenteroides (8strains,6.02%). In general, Lactobacillus plantarum, Lactobacillus coryniformis, Lactobacillus curvatus and Lactobacillus sakei probably can be regarded as the predominate lactic acid bacteria species in suan-cai.
     Test2:A total of74isolates were obtained from43samples of naturally fermented da-jiang by traditional screened cultivation, that were showing to be lactic acid bacteria. According to16S rDNA sequence analysis, the isolates were grouped in8species, including Tetragenococcus halophilus (30strains,40.54%), Lactobacillus plantarum (14strains,18.92%). Lactobacillus sakei (13strains,17.57%), Lactobacillus fermentum (9strains. 12.16%), Lactobacillus casei (2strains,2.7%), Lactobacillus brevis (2strains,2.7%), Enterococcus durans (2strains,2.7%). In general, Tetragenococcus halophilus, Lactobacillus plantarum and Lactobacillus sakei probably can be regarded as the predominate lactic acid bacteria species in da-jiang.
     Test3:A total of93isolates were obtained from43samples of naturally fermented da-jiang by traditional screened cultivation that was showing to be yeast. According to26S rDNAD1/D2sequence analysis, the isolates were grouped in9species, including Zygosaccharomyces bisporus (28strains,30.11%), Candida parapsilosis (25strains,26.88%), Debaryomyces hansenii (18strains,19.35%), Yarrowia Lipolytica (8strains,8.60%), Rhodotorula mucilaginosa (7strains,7.53%), Candida zeylanoides (2strains,2.15%), Cryptococcus liquefaciens (2strains,2.15%), and Candida sorbosivorans (1strains,1.08%). In general, Zygosaccharomyces bisporus, Candida parapsilosis and Debaryomyces hansenii were probably can be regarded as the predominate yeast species in da-jiang.
     Test4:Diversity of lactic acid bacteria involved in30selected suan-cai samples was analyzed by denaturing gradient gel electrophoresis (DGGE). The results indicated that Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus sakei and Lactobacillus curvatus were the predominant microflora in samples. Cocci-shaped strains of Pediococcus sp. and Lactococcus lactis were also identified in some samples.
     Test5:In this study,30samples of naturally fermented da-jiang were analyzed by denaturing gradient gel electrophoresis (DGGE) to determine the diversity of the bacteria involved in fermentation. The results indicate that lactic acid bacteria, including Lactobacillus plantarum, uncultured Leuconostoc mesenteroides, Leuconostoc gasicomitatum, Enterococcus faecium, and Tetragenococcus halophilus, were the predominant species. This is the first report of Enterococcus spp. and Leuconostoc spp. in the Chinese fermented soybean paste dajiang using DGGE. The presence of Bacillus spp.(including Bacillus firmus), Oceanobacillus spp., and Paenibacillus glycanilyticus in the dajiang samples may be due to their salt tolerance. Potentially pathogenic Alphaproteobacteria and Staphylococcus epidermidis strains were also detected in this study. Moreover, three uncultured bacterium clones were found in some samples and require further study. The results reveal a high level of bacterial diversity in da-jiang.
     Test6:In the study, we firstly examined the microbe diversity of suan-cai broth using high-throughput barcoded pyrosequencing. The results showed that the member of Firmicutes (41%) and Proteobacteria (34%) were the main bacteria. Lactobacillales, including Enterococcaceae, Lactobacillus, Pediococcus, Lactococcus, Leuconostocaceae and Weissella, account72%of the total bacteria in Firmicutes. In Proteobacteria, Alcaligenaceae was the most genera which belonging to Alphaproteobacteria. In fungi, Ascomycota occupied87%, and Saccharomycotina was the most genera which mainly included Debaryomycetaceae, Dipodascaceae, Saccharomycetaceae, Zygosaccharomyces.
     Test7:Furthermore, we also examined the microbe diversity of da-jiang using high-throughput barcoded pyrosequencing. The results showed that the member of Firmicutes (46%) and Proteobacteria (30%) were the main bacteria. Lactobacillales, including Lactobacillus, Enterococcaceae, Tetragenococcus, Lactococcus, Streptococcus, Leuconostocaceae and Weissella, account70%of the total bacteria in Firmicutes. Besides, Bacillus licheniformis was found as the main genera involved in Bacillales which accounted24%of Firmicutes. Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were the most genera in Proteobacteria. In fungi, Ascomycota occupied99%, and Saccharomycotina and Pezizomycotina were the most genera in da-jiang which mainly included Debaryomyces hansenii and Penicillium.
     In conclusion, the above experimental results showed that the microbial involved in traditional fermentation suan-cai and dajiang which collected in northeast of China was complex. Firmicutes and Proteobacteria, as well as Saccharomycotina were the predominant bacteria and fungi in both two kind of traditional fermentation. In bacteria, the specie of Lactobacilli was dominate, and Debaryomyces hansenii was dominate in fungi. The genera involved are mostly the beneficial bacterium group. Besides, the microbe composition involved in da-jiang is more complicated than suan-cai. The species and quantity involved in suan-cai and da-jiang are also different.
引文
1.包启安.1992.酱及酱油的起源及其生产技术(一)[J].中国调味品,1992,(9):1-4.
    2.柴洋洋,葛菁萍,宋刚,等.2013.传统发酵豆酱中酵母菌的分离、筛选及功能酵母的鉴定[J].中国食品学报,3:191-196.
    3.陈苍林.2002.酱谚寓趣[J].中国酿造,(1):43.
    4.陈晓平,刘华英,魏小川,等.2006.自然发酵酸菜汁中乳酸菌的分离筛选与鉴定研究[J].食品科学,27(2):91-93.
    5.陈之遥,周国华.2008.焦磷酸测序技术的研究进展[J].现代生物医学进展,8(8):1573-1577.
    6.杜晓华.2009.内蒙古西部地区自然发酵酸粥中乳酸菌的分离与鉴定[D].内蒙古农业大学硕士学位论文.
    7.范艳霞,张俊亚,杨霞,等.2012.糖蜜酒精废水的生物脱色及其细菌群落结构分析[J].基因组学与应用生物学,31(5):485-491.
    8.付琳琳,曹郁生,李海星,等.2005.应用PCR-DGGE技术分析泡菜中乳酸菌的多样性[J].食品与发酵工业,31(12):103-105.
    9.高亦豹,王海燕,徐岩.2010.利用PCR-DGGE未培养技术对中国白酒高温和中温大曲细菌群落结构的分析[J].微生物学通报,(7):999-1004.
    10.高娃,于洁,乌兰,等.2010.蒙古国传统发酵乳中部分乳杆菌16S rRNA-RFLP的分类[J].中国乳品工业,38(1):4-7.
    11.高秀芝,王小芬,刘慧,等.2011.PCR-DGGE分析天源酱园豆酱发酵过程中微生物多样性[J].食品科学,32(1):112-114.
    12.高秀芝,艾启俊,仝其根,等.2013.传统豆酱和商品豆酱发酵过程中营养及理化指标动态[J].中国食品学报,13(2):205-209.
    13.高玉荣.2004.豆酱快速酿造工艺研究[J].粮食与食品工业,4:33-36.
    14.贡汉坤.2004.传统豆酱自然发酵的动态分析及人工接种多菌种发酵研究[D].江南大学硕士论文.
    15.贡汉坤,姚清海.2003.传统酱类自然发酵微生物学分析[J].中国调味品,10:9-12.
    16.郭兴华.2008.益生乳酸细菌——分子生物学及生物技术[M].北京:科学出版社.
    17.黄胜君.2008.辽东地区传统大豆酱制作工艺[J].中国酿造,(19):75,81.
    18.黄永.2006.黑龙江地区自然发酵黄豆酱中酵母菌的分离鉴定及筛选[D].东北农业大学硕士论文.
    19.李红印,崔焕成,杜鹃,等.2003.乳酸菌发酵在食品加工中的应用[J].郑州牧业工程高等专科学校学报,3(1):25-29.
    20.李秀娟,白萍,高伟利,等.2010.短片段基因序列测定检测沙门菌[J].现代预防医学,37(20):3907-3909.
    21.李文斌,唐中伟,宋敏丽,等.2009.农家泡菜发酵液中乳酸菌的研究[J].食品工程,3:38-41.
    22.李秀娟,徐保红,田会芳,等.2010.焦磷酸测序法检测单增李斯特菌[J].中国卫生检验杂志,20(7):1623-1625.
    23.李志明,郭洁,崔希勇,等.2008.黄豆酱类食品的微生物状况分析[J].中国调味品,(12):75-76,87.
    24.梁恒宇,马莺,程建军,等.2006.自然发酵黄豆酱中嗜盐乳酸菌的分离、鉴定与筛选[J].中国酿造,8:24-27.
    25.梁新乐,朱扬玲,蒋予箭,等.2008.PCR-DGGE法研究泡菜中微生物群落结构的多样性[J].中国食品学报,8(3):133-137.
    26.林颖,王旭太,刘仁奉.2000.酸菜发酵液在腌渍过程中的变化及毒理学研究[J].中国食品卫生杂志,12(5):38-39.
    27.凌代文,东秀珠.1999.乳酸细菌分类鉴定及试验方法[M].北京:中国轻工业出版社.
    28.刘晓辉,陈顺,高晓梅,等.2009.酸菜中乳酸菌的分离筛选与鉴定研究[J].中国酿造,(2):62-64
    29.陆冰,杨负耐,张雪,等.2009.产胞外多糖乳酸球菌的分离筛选及在Mozzarella中的应用[J].食品与生物技术学报,28(5):665-669.
    30.罗立新,吕莉,潘力,等.2006.中国酱油发酵酱醪中嗜盐四联球菌的鉴定[J].华南理工大学学报(自然科学版),34(12):20-24.
    31.马力,张兰威,冯一兵.1995.“酸菜发酵液鲜”对酸菜发酵液腌制过程微生物菌系及酸菜发酵液品质的影响[J].食品工业,(4):47-49.
    32.曲媛媛,魏利.2010.微生物非培养技师原理与应用[M].北京:科学出版社.
    33.任国英.2004.中国东北地区大豆食品文化[J].南宁职业技术学院学报,9(4):17-21.
    34.施庆珊,陈仪本,欧阳友生,等.酱油酿造中的生香酵母及生香过程[J].中国酿造,1:57-60.
    35.束玮炜,韩衍青,徐幸莲,等.2011.超高压处理抑制低温烟熏火腿中的优势腐败菌[J].食品与生物技术学报,30(6):945-949.
    36.孙立军.2010.满族传统美食——大酱[J].满族研究.(4):65-66.
    37.唐玲,刘平,黄瑛,等.2008.酵母的分子生物学鉴定[J].生物技术通报,5:84-87.
    38.王纯信,王纪,王全.2010.长白山满族大酱文化考论[J].通化师范学院学报,31(3):29-32.
    39.王国庆,刘天明.2007.酵母菌分类学方法研究进展[J].微生物学杂志,27(3):96-101.
    40.王夫杰,鲁绯,纪凤娣,等.2009.乳酸茵在中国传统酿造调味品中的应用[J].中国调味品,24(9):24-26.
    41.王炜宏,杜晓华,张家超,等.2010.内蒙古鄂尔多斯地区酸粥发酵液中乳酸菌的分离鉴定[J].食品与生物技术学报,29(2):265-270.
    42.王友湘,陈庆森,阎亚丽.2007.用于乳酸菌分离鉴定的几种培养基的筛选及应用[J].食品科学,28(9):374-378.
    43.王升跃(国家人类基因组南方研究中心).2010.新一代高通量测序技术及其临床应用前景[J].广东医学,31(3):269-272.
    44.魏娜.2012.黑龙江省世居民族饮食民俗及文化特征[J].哈尔滨师范大学硕士学位论文.
    45.武俊瑞,李欣,李晓忱,等.2012.自然发酵酸菜汁中乳杆菌的分离鉴定[J].食品科学,33(15):191-194.
    46.武俊瑞,岳喜庆,石璞,等.2013.PCR-DGGE分析东北自然发酵酸菜发酵液中乳酸菌多样性研究[J].食品生物技术学报,已录用,拟2013年12月发表.
    47.乌日娜.2005.内蒙古传统酸马奶中乳杆菌的分离鉴定及16S rDNA序列同源性分析[D].呼和浩特:内蒙古农业大学.
    48.乌日娜,张和平,孟和毕力格.2005.酸马奶中乳杆菌Lb.casei.Zhang和ZL12-1的16S rDNA基因序列及聚类分析[J].中国乳品工业,3(6):4-9.
    49.吴斯日古冷.2011.内蒙古西部地区酸面团中酵母菌和乳酸菌的分离鉴定及其生物多样性研究[D].内蒙古农业大学硕士学位论文.
    50.小崎道雄,内村泰,冈田早苗.1992.乳酸菌试验[M].东京:朝仓书店,258-261.
    51.谢韩,杨中梁.2013.酱和酱油的传承[J].中国酿造,32(3):169-173.
    52.徐超德,李绍兰.2004.核酸分子系统学方法在酵母菌分类中的应用进展[J].微生物学通报,31(3):126-129.
    53.许伟,张晓君,李崎,等.2007.微生物分子生态学技术在传统发酵食品行业中的应用研究进展[J].食品科学,2(12):521-525.
    54.杨洁彬,郭兴华等.1991.乳酸菌—生物学基础及应用[M].北京:中国轻工业出版社.
    55.杨晓晖,籍保平,李博,等.2005.泡菜中优良乳酸菌的分离鉴定及其发酵性能的研究[J].食品科学,26(5):130-134.
    56.俞真.2008.五花八门的酸菜发酵液[J].食品与健康,(4):42.
    57.于志会,李常营,张雪,等.2011.酸菜发酵液中降胆固醇功能植物乳杆菌的体外筛选[J].食品与生物技术学报,30(3):398-402.
    58.张春辉.2009.应用PCR-DGGE分析高温制曲中细菌群落变化的研究[D].天津科技大学硕士毕业论文.
    59.张海.1993.大豆酱发酵过程中乳酸菌和酵母菌的作用[J].中国调味品,6:65-68.
    60.张和平.2012.自然发酵乳制品中乳酸菌生物多样性[M].北京:科学出版社.
    61.张兰威,马力,冯一兵.1994.“酸菜发酵液鲜”对北方酸菜发酵液中亚硝酸盐形成规律及维生素C损失的影响[J].食品工业,(1):56-58.
    62.张鲁冀,孟祥晨.2010.自然发酵东北酸菜发酵液中乳杆菌的分离与鉴定[J].东北农业大学学报,41(11):125-131.
    63.张家超,王芳,徐海燕,等.2010.6种区分乳酸乳球菌乳酸亚种和乳酸乳球菌乳脂亚种的分子生物学方法比较[J].微生物学报,50(12):1670-1676.
    64.张巧云,孟祥晨.2013.几种发酵豆酱的微生物组成及理化性质分析[J].食品科技,38(8):266-270.
    65.章善生.1994.中国酱腌菜[M].北京:中国商业出版社.
    66.张天琪,张雪,孔保华,等.2009.东北酸菜发酵液中产胞外多糖乳杆菌的分离筛选及其在酸乳中的应用[J].中国乳品工业,37:8-11.
    67.张先琴,张小平,敖晓琳,等.2013.PCR-DGGE分析四川地区家庭制作泡菜中微生物多样性[J].食品科学,34(12):129-134.
    68.张杨,孟祥晨.2009.自然发酵酸菜发酵液中乳杆菌的分离鉴定与多态性分析[J].中国乳品工业.37(2):19-22.
    69.周光燕,张小平,钟凯,等.2006.乳酸菌对泡菜发酵过程中亚硝酸盐含量变化及泡菜品质的影响研究[J].西南农业学报,19(2):290-293.
    70.周集中,多罗西娅K.汤普森,徐鹰等著.张洪勋,赵立平等译.2007.微生物功能基因组学[M].北京:化学工业出版社.
    71. Anita Y C K, Anthony W C.2003. Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences[J]. International Journal of Systematic and Evolutionary Microbiology,53:87-92.
    72. Brown J.P.1988. Hydrolysis of glycosides and esters. In:Rowland IR(ed) Role of the gut flora in toxicity and cancer [J]. Academic, San Diego,109-144.
    73. Byoung J K, Hee-Y, Yeo-Jun Y, et al.2010. Differentiation of bifidobacterium species using partial RNA polymerase (3-subunit (rpoB) gene sequences [J]. Int J Syst Evol Microbiol,60:2697-2704.
    74. Chao S H, Wu R J, Watanabe K, et al.2009. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan [J]. Int J Food Microbiol.135:203-210.
    75. Chang H W, Kim K H, Nam Y D, et al.2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis [J]. Int J Food Microbiol,126:159-166
    76. Chiou R.Y, Ferng Y S, Chen M J.1997. White Partieulate Formationa as a Result of Enzymatic Proteolysis of Portein Substartes in Brine-fermented Foods [J]. Lebensm-Wiss-u-Technology. (30)241-245.
    77. Claus S P, Ellero S L, Berger B, et al.2011. Colonization-induced host-gut microbial metabolic interaction [J]. mBio,2(2):e00271-10.
    78. Cletus P K, Jack W F.1998. The Yeast-A Taxonomic Study [M].4rd edition. Elsevier Science Publishers, Amsterdam,70-100.
    79. Cocolin L, Manzano M, Cantoni C, et al.2001. Denaturing gradient gel electrophoresis analysis of the 16s rDNA geneVl region to monitor dynamic changes in the bacterial population during fermentation of Italian sausage[J].Appl Environ Microbiol,67(11):5113-5121.
    80. de Vuysta L, Vancanneyt M.2007. Biodiversity and identification of sourdough lactic acid bacteria[J]. Food Microbiol,24(2):120-127.
    81. Ercolini D, Hill P J, Dodd C E.2003. Bacterial community structure and location in Stilton cheese[J]. Appl Environ Microbiol,42:3540-3548.
    82. Friend D R, Chang G W.1984. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria [J]. Journal of Medical Chemistry,27(3):261-266.
    83. Giraffa G. C, Gatti M, et al.2003. Molecular typing of Lactobacillus delbrueckii of dairy origin by PCR-RFLP of protein-coding genes[J].International Journal of Food Microbiology,82:163-172.
    84. Green R E, Krause J, Ptak S E.2006. Analysis of one million base pairs of Neanderthal DNA [J]. Nature,444(7117):330-336.
    85. Hideo E and Hiromiehi,1997. Antioxidant activity and isolation from soybeans fermented with aspegillus spp [J]. J Agric Food Chem.45(6):2020-2024.
    86. Humblot C, Guyot J P.2009. Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries[J]. Appl Environ Microbiol,75:4354-4361.
    87. Hummon A B, Richmond T A, Verleyen P.2006. From the genome to the proteome:uncovering peptides in the Apis brain [J]. Science,314(5799):647-649.
    88. Iacumin L, Cecchini F, Manzano M, et al.2009. Description of the microflora of sourdoughs by culture-dependent and culture-independent methods[J]. Food Microbial.26:128-135.
    89. Imamura T, Toko K, Yanagisawa S, et al.1996. Monitoring of fermentation progress of miso(soybean paste)using multichannel taste sensors[J]. Sensors and Actuators, B:Chemical, (3):179-185.
    90. Jean M N, Yves V P, et al.1991. Compilation of small ribosomal subunit RNA sequences [J]. Nucleic Acids Research,19:1987-2016.
    91. Joshi S, Yadav S, Desai A J.2008. Application of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by Bacillus licheniformis R2[J]. Biochem Engineer J,41(2):122-127.
    92. Kataoka S.2005. Functional effects of Japanese style fermented soy sauce and its components [J]. J Biosci Bioeng,100:227-234.
    93. Kim T W, Lee J H, Park M H, et al.2010. Analysis of bacterial and fungal communities in Japanese and Chinese-fermented soybean pastes using nested PCR-DGGE [J]. Curr Microbiol,60:315-320.
    94. Kima J S, Kwonb C S.2001. Estimated dietary isoflavone intake of Korean population based on national nutrition survey [J]. Nutr Res,21:947-953.
    95. Koratkar R.,Rao A V.1997. Effect of soy bean saponins on azoxymethane-induced preneoplastic lesions in the colon of mice [J]. Nutrition Cancer,27:206-209.
    96. Kun Y P, Keun O J. Sook H R, et al.2003. Antimutgaenic effects of doenjang(Koerane fermented soy paste)and its active compounds[J]. Mutation Research,43-53.
    97. Kwak C S, LeeM S, Park S C.2007. Higher antioxidant properties of Chungkookjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation [J]. Nutrition Research,27:719-727.
    98. Lane D J.1991.16S/23S rRNA sequencing In Goodfellow,S.E.(ed)Nucleic acide techniques in bacterial systematics Chichester[M]. John Wiley&Sons,115-175.
    99. Lee J S, Heo G Y, Lee Y J, et al.2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis[J]. Int. J. Food Microbiol,102:143-150.
    100. Lee J Y, Kim C J, Kunz B.2006. Identification of lactic acid bacteria isolated from kimchi and studies on their suitability for application as starter culture in the production of fermented sausages [J]. Meat Sci,72:437-445.
    101. Lee D, Kim S, Cho J, Kim J.2008. Microbial population dynamics and temperature changes during fermentation of kimjang kimchi [J]. J Microbiol,46:590-593.
    102. Leilah A A, Khateeb S A.2005. Statistical analysis of wheat yield under drought conditions[J]. Journal of Arid Environments,61(3):483-496.
    103. Li M, Wang B, Zhang M, et al.2008. Symbiotic gut microbes modulate human metabolic phenotypes[J]. PNAS,105(6):2117-2122.
    104. Lin R C, Hanquet B.1996. Lacaille-Dubois M A. Aferoside A,a steroidal saponin from Costusafer [J]. Phytochemistry,43:665-668.
    105. Liu Z, DeSantis T Z, Andersen G L, et al.2008. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers [J]. Nucleic Acids Res,36:e120.
    106. Lu Z H, Peng H H, Cao W, et al.2008. Isolation, characterization and identification of lactic acid bacteria and yeasts from sour Mifen, a traditional fermented rice noodle from China [J]. J Appl Microbiol,105:893-903.
    107. Luangsakul N, Keeratipibul S, Jindamorakot S, et al.2009. Lactic acid bacteria and yeasts isolated from the starter doughs for Chinese steamed buns in Thailand [J]. LWT Food Sci Technol,42: 1404-1412.
    108. Luca S, Sara V, Douwe van S, et al.2006. Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species[J]. Appl Environ Microbiol,72(5):3793-3796.
    109. Margulies M, Egholm M, Altman W E, et al.2005. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature,437:376-380.
    110. Mauro S, Diego M, Silvia C, et al.2002. Development of genus/species-specific PCR analysis for identification of camobacterium strains[J]. Current Microbiology,45:24-29.
    111. Mccue P, Shetty K.2003. Role of carbohydrate-cleaving enzymes in phenolic antioxidant mobilization from whole soybean fermented with Rhizopus oligosporus[J]. Food Biotechnol,17:27-37.
    112. Muyzer G, Waal E C d, Andreg.1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol,59:695-700.
    113. Myungjin, Jongsik C.2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis [J]. Int J Food Microbiol,103:91-96.
    114. Nikolic M, Terzic-Vidojevic A, Jovcic B, et al.2008. Characterization of lactic acid bacteria isolated from Bukuljac, a homemade goat's milk cheese [J]. Int J Food Microbiol,122:162-170.
    115.Nacke H, Thurmer A, Wollherr A, et al.2011. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils [J]. PLoS One.6(2):e17000.
    116. Noda F, Hayashi K, Mizunuma T.1980. Antagonism between lactic acid bacteria and yeasts in brine fermentation of soy sauce [J]. Appl Environ Microb,40(3):452-457.
    117. Ohminami H.1981. Effect of soyasaponims on lipid metabolism[J].Wakanyaku Shinpojumu,41:1571.
    118. Onda T, Yanagida F, Uchimura T, et al.2002. Widespread distribution of the bacteriocin-producing lactic acid cocci in miso-paste products [J]. J Appl Microbiol,92:695-705.
    119. Pang X, Ding D, Wei G, et al.2005. Molecular profiling of Bacteroides spp. in human feces by PCR* temperature gradient gel electrophoresis [J]. J Microbiol Meth,61:4134.
    120. Randazzo C L, Torriani S, Akkermans A D, et al.2002. Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis[J]. Appl Environ Microbiol,68:1882-1892.
    121. Rantsiou K, Comi G, Cocolin L.2004. The rpoB gene as a target for PCR-DGGE analysis to follow lactic acid bacterial population dynamics during food fermentation [J]. Food Microbiol,21:481-487.
    122. Rao A V.1995. Saponins as anticarcinogens [J]. J Nutrition,125:717-725.
    123. Renouf V, Claisse O, Miot-Sertier C, et al. Lactic acid bacteria evolution during wine making:use of rpoB gene as a target for PCR-DGGE analysis[J]. Food Microbiol,2006,23:136-145.
    124. Robin R.G, George E.F.1988. Compilation of large subunit RNA sequences presented in a structural format [J]. Nucleic Acids Res,16:175-269.
    125. Roh S W, Kim Kyoung-Ho, Nam Young-Do, et al.2010. Investigation of archaeal and bacterial diversity in fermented seafood using bar-coded pyrosequencing [J]. The 1SME Journal,4:1-16.
    126. Ronaghi M, Uhlen M, Nyren P.1998. A sequencing method based on real-time pyrophosphate [J]. Science,281(5375):363-365.
    127. Sekiguchi H, Tomioka N, Nakahara T, et al.2001. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis [J]. Biotechnol Lett,23:1205-1208.
    128. Shen J, Zhang B, Wei G, et al.2006. Molecular Profiling of the Clostridium leptum Subgroup in Human Fecal Micro flora by PCR-Denaturing Gradient Gel Electrophoresis and Clone Library Analysis[J]. Appl Environ Microbiol,72(8):5232-5238.
    129. Siqueira J F, Fouad Jr A F, Rocas I N.2012. Pyrosequencing as a tool for better understanding of human microbiomes[J]. J Oral Microbiol,4:10743-10749.
    130. Spano G, Lonvaud-Funel A, Claisse O, et al.2007. In vivo PCR-DGGE analysis of Lactobacillus plantarum and oenococcus oeni populations in red wine [J]. Current Microbiol,54:9-13.
    131. Tanasupawat S, Thongsanit J, Okada S, et al.2002. Lactic acid bacteria isolated from soy sauce mash in Thailand [J]. J Gen Appl Microbiol,48:201-209.
    132. Wu J, Wang Z, Li X, et al.2011. Identification of Lactic Acid Bacteria Involved in Naturally Fermented Dajiang from Liaoning[J]. China. HHBE.2011,8:22-23.
    133. Yamakoshi J, Toru I.2000. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits [J]. Journal of Nutrition,130:1887-1893.
    134. Yang E J, Chang H C.2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi [J]. Int J Food Microbiol,139:56-63.
    135. Zhao J, Dai X, Liu X, et al.2009. Changes in microbial community during Chinese traditional soybean paste fermentation [J]. Int J Food Sci Technol,44:2526-2530.
    136. Zhang J C, Liu W J, Sun Z H, et al.2011. Diversity of lactic acid bacteria and yeasts in traditional sourdoughs collected from western region in Inner Mongolia of China [J]. Food Control.22:768-774.
    137. Zhang X, Gao P, Chao Q, et al.2004. Microdiversity of phenol-hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system[J]. FEMS Microbiol Lett, 273:369-375.
    138. Zhu L, Li W, Dong X.2003. Species identification of genus bifidobacterium based on partial Hsp60 gene sequences and proposal of bifidobacterium thermacidophilum subsp. porcinum subsp. nov[J]. International journal of systematic and evolutionary of microbiology,53:1619-1623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700