纤维素接枝聚异戊二烯仿生材料的制备及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生材料由于其独特的性能得到广泛的研究和应用。本文首先设计制备了新型纤维素接枝聚异戊二烯共聚物,研究了该共聚物的微相分离和流变行为。以纤维素接枝聚异戊二烯为基础,设计制备了皮肤结构和力学性能仿生材料(CBPs)。并利用原位小角X-射线散射(SAXS)和广角X-射线衍射(WAXD)技术研究CBPs在循环拉伸过程中微结构的演变过程。此外,纤维素接枝聚异戊二烯共聚物还被用于设计和制备高弹力弹性体,模拟节肢弹性蛋白的杰出力学性能。其具体内容包括以下几个方面:
     1.本文报道了一种精心设计的新型接枝共聚物,该共聚物源自于两种具备相反物理性能的天然高分子:刚性且亲水的纤维素和柔性且疏水的聚异戊二烯(天然橡胶的类似物)。因此,该共接枝聚物将集柔性和刚性,疏水性和亲水性于一个大分子。所设计的纤维素接枝聚异戊二烯共聚物(Cell-g-PI)是通过补充催化剂和还原剂原子转移自由基聚合(SARA ATRP)制备的。FT-IR,1H NMR,13C NMR和TGA实验结果证明成功制备了Cell-g-PI。TEM和DMA实验结果证明Cell-g-PI发生微相分离。水接触角实验结果证明Cell-g-PI的疏水性随着聚异戊二烯侧链的增长而增大。通过白组织沉淀法可以制备核-壳结构的Cell-g-PI纳米微球。
     2.人类皮肤具备高度的非线性力学性能,这对皮肤的生理功能非常重要。在小应变时皮肤非常柔顺,而在大应变时皮肤非常强韧,从而保护人体内在组织和器官。然而,目前制备皮肤力学性能仿生材料仍然是一个重大挑战。本文设计制备了基于两种天然高分子的杂化材料,刚性的纤维素和弹性的天然橡胶,模拟皮肤的力学性能。所制备的杂化高分子展现高度非线性力学性能,非常接近皮肤的力学性能。更重要的是,通过调节纤维素的含量可以精确调节该杂化材料的力学性能,从而模拟不同类型的皮肤。
     3.研究结果显示循环拉伸使CBPs具备类似皮肤微结构和力学性能。原位小角X-射线散射(SAXS)和广角X-射线衍射(WAXD)实验被用来进一步研究循环拉伸过程中CBPs微结构演化过程。TEM结果显示CBPs样品展现两相结构:纤维素纳米球分散在聚异戊二烯基体中。原位SAXS实验结果显示拉伸过程中纤维素纳米微球逐渐转变为纤维素纳米纤维并取向。除去外力,纤维素纳米纤维不能变回纳米球。原位WAXD实验结果显示拉伸过程中聚异戊二烯链段首先发生取向,且整个拉伸过程中并无三维有序晶体结构产生。
     4.节肢弹性蛋白由于具备杰出的力学性能而受到广泛的关注,最近有大量研究致力于制备节肢弹性蛋白仿生材料。然而,在合成材料领域,制备具备节肢弹性蛋白力学性能的仿生材料仍然不可实现。本文设计了基于纤维素和天然橡胶的高弹力弹性体(HREs)模拟节肢弹性蛋白的力学性能。FT-IR,1HNMR,13C NMR和TGA实验结果证明成功制备了HREs。TEM结果显示纤维素纳米微球均匀分散在弹性基体中作为交联点。力学性能分析显示HREs具备类似节肢弹性蛋白的力学性能。
Biomimetic materials have been intensively studied due to their unique properties and have been wide applied. In this dissertation, we first design novel cellulose-graft-polyisoprene copolymers and studied their microphase structure and rheological properties. Then we prepared multi-phase polymers to mimic the micro structure and mechanical properties based on these cellulose-graft-polyisoprene copolymers (CBPs). In situ small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques were used to study the micro structure rearrangement during cyclic tensile deformation of CBPs. Moreover, cellulose-graft-polyisoprene copolymers were used in the design of high resilient elastomers to mimic the mechanical properties of resilin. The details and key conclusions are described as follows:
     1. An elegant design of novel graft copolymers based on two natural abundant biopolymers with opposite physical properties:rigid and hydrophilic cellulose, and flexible and hydrophobic synthesized polyisoprene (analogue of natural rubber), which combines the rigidity and flexibility, hydrophobicity and hydrophilicity all in one macromolecules. These cellulose-graft-polyisoprene (Cell-g-PI) copolymers were synthesized via homogenous supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP). FT-IR,1H NMR,13C NMR and TGA measurements demonstrate that Cell-g-PI copolymers are successfully prepared. TEM and DMA results illustrate that phase separation occurs in Cell-g-PI copolymers. Water contact angle measurements verify that their hydrophobicity increases with increasing polyisoprene side chain length. In addition, the core-shell Cell-g-PI nanoparticles in water can be prepared via self-organized precipitation (SORP) method.
     2. Human skin exhibits highly nonlinear elastic properties that are essential to its physiological functions. It is soft at low strain but stiff when strained, thereby protecting internal organs and tissues from mechanical trauma. However, to date, the development of materials to mimic the unique mechanical properties of human skin is still a great challenge. Here we report a bioinspired design of multiphase polymers combining two important plant-based biopolymers, stiff cellulose and elastic polyisoprene (natural rubber), to mimic human skin. The hybridpolymers show highly nonlinear mechanical properties closely mimicking that of human skin. Importantly, the mechanical properties of the hybrid polymers can be tuned by adjusting cellulose content, providing the opportunity to synthesize materials that mimic different types of skins. Given the simplicity, efficiency, and tunability, this design may provide a promising strategy for creating artificial skin both for general mechanical and biomedical applications.
     3. The CBPs samples exhibit human skin like mechanical properties and dermis-like microstructures after cyclic tensile deformation. In order to develop a more complete understanding of the deformation-induced structure rearrangements of CBPs samples, we performed in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) measurements. TEM image shows that the undeformed CBPs samples separated into two phases:cellulose nanospheres and polyisoprene matrix. Simultaneous SAXS and tensile measurements have been recorded during tensile loading/unloading cycles of the CBPs samples. The results demonstrated that the cellulose nanospheres change into nanofibers and orientate during stretching. After relaxation, the formed cellulose nanofibers do not return to nanospheres. WAXD data verified that the amorphous polyisoprene segments are increasingly oriented along the deformation direction and no crystalline structure formed during the whole tensile deformation process.
     4. Resilin possesses outstanding mechanical properties, which motivated recent effort in the engineering of resilin-like materials for biomedical applications. However, the preparation of synthetic materials to mimic the mechanical properties of resilin is still a challenge. In this dissertation, we designed high resilient elastomers (HREs) based on stiff cellulose and flexible polyisoprene. FT-IR,1H NMR, CP/MAS solid state13C NMR, and TGA were performed to demonstrate the successful preparation of HREs. TEM images show that cellulose nanoaprticles homogeneously embedded in polyisoprene matrix and act as cross-linkers. Mechanical analyze on HERs verified that they exhibit mechanical properties comparable to that of resilin.
引文
1. Popescu, A. I. Bionics, Biological systems and the principle of optimal design. Acta Biotheoretica,1998,46,299-310.
    2. Lipetz, L. E. Bionics. Science,1963,140,1419-1426.
    3. Aizenberg, J. & Fratzl, P. Biological and biomimetic materials. Advanced Materials,2009, 21,387-388.
    4. Parker, A. R. & Townley, H. E. Biomimetics of photonic nanostructures. Nature Nanotechnology,2007,2,347-353.
    5. Zhang, W., Zhang, D., Fan, T., et al. Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinspiration & Biomimetics,2006,1, 89.
    6. Pai, R. K., Zhang, L., Nykpanchuk, D., et al. Biomimetic pathways for nanostructured poly (KAMPS)/aragonite composites that mimic seashell nacre. Advanced Engineering Materials, 2011,13, B415-B422.
    7. Neves, N. & Mano, J. Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering:C,2005,25,113-118.
    8. Winn, S. R., Schmitt, J. M., Buck, D., et al. Tissue-engineered bone biomimetic to regenerate calvarial critical-sized defects in athymic rats. Journal of Biomedical Materials Research,1999,45,414-421.
    9. Lu, Z., Roohani-Esfahani, S.-I., Wang, G., et al. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology and Medicine,2012,8,507-515.
    10. Perez-Rigueiro, J., Elices, M. & Guinea, G. Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer,2003,44,3733-3736.
    11. Porter, D. & Vollrath, F. Silk as a biomimetic ideal for structural polymers. Advanced Materials,2009,21,487-492.
    12. Shah, G. & Sitti, M. in Robotics and Biomimetics,2004. ROBIO 2004. IEEE International Conference on.873-878 (IEEE).
    13. Kim, D. S., Lee, H. S., Lee, J., et al. Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold. Microsystem Technologies,2007,13,601-606.
    14. Lin, J., Cai, Y, Wang, X., et al. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale,2011,3,1258-1262.
    15. Nosonovsky, M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir,2007,23,3157-3161.
    16. Xu, H., Nishida, J., Ma, W., et al. Competition between oxidation and coordination in cross-linking of polystyrene copolymer containing catechol groups. ACS Macro Letters, 2012,1,457-460.
    17. Krogsgaard, M., Behrens, M. A., Pedersen, J. S., et al. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules,2013,14,297-301.
    18. Hayashi, C. Y., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. International Journal of Biological Macromolecules,1999,24,271-275.
    19. Gosline, J. M., DeMont, M. E. & Denny, M. W. The structure and properties of spider silk. Endeavour,1986,10,37-43.
    20. Vepari, C. & Kaplan, D. L. Silk as a biomaterial. Progress in Polymer Science,2007,32, 991-1007.
    21. Rising, A., Widhe, M. & Johansson, J. Spider silk proteins:recent advances in recombinant production, structure-function relationships and biomedical applications. Cellular and Molecular Life Sciences,2011,68,169-184.
    22. Vollrath, F., Porter, D. & Holland, C. There are many more lessons still to be learned from spider silks. Soft Matter,2011,7,9595-9600.
    23. Vollrath, F. & Porter, D. Silks as ancient models for modern polymers. Polymer,2009,50, 5623-5632.
    24. Lazaris, A., Arcidiacono, S., Huang, Y, et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science,2002,295,472-476.
    25. Scheibel, T. Spider silks:recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microbial Cell Factories,2004,3,14.
    26. Vendrely, C. & Scheibel, T. Biotechnological Production of Spider-Silk Proteins Enables New Applications. Macromolecular Bioscience,2007,7,401-409.
    27. Kubik, S. High-performance fibers from spider silk. Angewandte Chemie International Edition,2002,41,2721-2723.
    28. Thiel, B. L., Guess, K. B. & Viney, C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers,1997,41,703-719.
    29. Rousseau, M.-E., Hernandez Cruz, D., West, M. M., et al. Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. Journal of the American Chemical Society,2007,129,3897-3905.
    30. Dalton, A. B., Collins, S., Munoz, E., et al. Super-tough carbon-nanotube fibres-These extraordinary composite fibres can be woven into electronic textiles. Nature,2003,423, 703-703.
    31. Liff, S. M., Kumar, N. & McKinley, G. H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nature Materials,2007,6,76-83.
    32. Hinman, M. B., Jones, J. A. & Lewis, R. V. Synthetic spider silk:a modular fiber. Trends in Biotechnology,2000,18,374-379.
    33. Zheng, Y., Bai, H., Huang, Z., et al. Directional water collection on wetted spider silk. Nature,2010,463,640-643.
    34. Bai, H., Ju, J., Sun, R., et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks. Advanced Materials,2011,23,3708-3711.
    35. Bai, H., Tian, X., Zheng, Y., et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks. Advanced Materials,2010,22,5521-5525.
    36. Tian, X., Bai, H., Zheng, Y, et al. Bio-inspired Heterostructured Bead-on-String Fibers That Respond to Environmental Wetting. Advanced Functional Materials,2011,21, 1398-1402.
    37. Sarikaya, M. & Aksay, I. A. Biomimetics. Design and Processing of Materials. (DTIC Document,1995).
    38. Sellinger, A., Weiss, P. M., Nguyen, A., et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature,1998,394,256-260.
    39. Mann, S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature,1993,365,499-505.
    40. Fritz, M., Belcher, A. M., Radmacher, M., et al. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature,1994,371,49-51.
    41. Weiner, S. & Addadi, L. Design strategies in mineralized biological materials. Journal of Material Chemistry,1997,7,689-702.
    42. Schwarz, K. & Epple, M. Biomimetic crystallization of apatite in a porous polymer matrix. Chemistry-A European Journal,1998,4,1898-1903.
    43. Ren, F., Wan, X., Ma, Z., et al. Study on microstructure and thermodynamics of nacre in mussel shell. Materials Chemistry and Physics,2009,114,367-370.
    44. Wise Jr, S. W. Microarchitecture and deposition of gastropod nacre. Science,1970,167, 1486-1488.
    45. Espinosa, H. D., Rim, J. E., Barthelat, F., et al. Merger of structure and material in nacre and bone-Perspectives on biomimetic materials. Progress in Materials Science,2009,54, 1059-1100.
    46. Stupp, S. I. & Braun, P. V. Molecular manipulation of microstructures:biomaterials, ceramics, and semiconductors. Science,1997,277,1242-1248.
    47. Olson, G. B. Designing a new material world. Science,2000,288,993-998.
    48. Douglas, T. A bright bio-inspired future. Science-New York Then Washington,2003, 1192-1192.
    49. Dabbs, D. M. & Aksay, I. A. Self-assembled ceramics produced by complex-fluid templation. Annual Review of Physical Chemistry,2000,51,601-622.
    50. Podsiadlo, P., Kaushik, A. K., Arruda, E. M., et al. Ultrastrong and stiff layered polymer nanocomposites. Science,2007,318,80-83.
    51. Tang, Z., Kotov, N. A., Magonov, S., et al. Nanostructured artificial nacre. Nature Materials, 2003,2,413-418.
    52. Tang, Z., Wang, Y., Podsiadlo, P., et al. Biomedical applications of layer-by-layer assembly:from biomimetics to tissue engineering. Advanced Materials,2006,18, 3203-3224.
    53. Kleinfeld, E. R. & Ferguson, G. S. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science,1994,265,370-373.
    54. Hammond, P. T. Form and function in multilayer assembly:new applications at the nanoscale. Advanced Materials,2004,16,1271-1293.
    55. Jiang, C. & Tsukruk, V. V. Freestanding Nanostructures via Layer-by-Layer Assembly. Advanced Materials,2006,18,829-840.
    56. Bonderer, L. J., Studart, A. R. & Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science,2008,319,1069-1073.
    57. Wang, C.-A., Long, B., Lin, W., et al. Poly (amic acid)-clay nacrelike composites prepared by electrophoretic deposition. Journal of Materials Research,2008,23,1706-1712.
    58. Luz, G. M. & Mano, J. F. Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2009,367,1587-1605.
    59. Lin, T.-H., Huang, W.-H., Jun, I.-K., et al. Bioinspired assembly of colloidal nanoplatelets by electric field. Chemistry of Materials,2009,21,2039-2044.
    60. Lin, T.-H., Huang, W.-H., Jun, I.-K., et al. Bioinspired assembly of surface-roughened nanoplatelets. Journal of Colloid and Interface Science,2010,344,272-278.
    61. Ding, Y., Jiang, Y., Xu, F., et al. Preparation of nano-structured LiFePO/graphene composites by co-precipitation method. Electrochemistry Communications,2010,12,10-13.
    62. Lin, T.-H., Huang, W.-H., Jun, I.-K., et al. Electrophoretic co-deposition of biomimetic nanoplatelet-polyelectrolyte composites. Electrochemistry Communications,2009,11, 1635-1638.
    63. Schreyer, H. B., Gebhart, N., Kim, K. J., et al. Electrical activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules,2000,1,642-647.
    64. Osada, Y., Okuzaki, H. & Hori, H. A polymer gel with electrically driven motility.1992.
    65. Okuzaki, H. & Osada, Y. Electro-driven chemomechanical polymer gel as an intelligent soft material. Journal of Biomaterials Science, Polymer Edition,1994,5,485-496.
    66. Aliev, A. E., Oh, J., Kozlov, M. E., et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science,2009,323,1575-1578.
    67. Brochu, P. & Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications,2010,31,10-36.
    68. Morimoto, M. & Irie, M. A diarylethene cocrystal that converts light into mechanical work. Journal of the American Chemical Society,2010,132,14172-14178.
    69. Li, D., Paxton, W. F., Baughman, R. H., et al. Molecular, supramolecular, and macromolecular motors and artificial muscles. MRS bulletin,2009,34,671-681.
    70. Ebron, V. H., Yang, Z., Seyer, D. J., et al. Fuel-powered artificial muscles. Science,2006,311, 1580-1583.
    71. Lv, S., Dudek, D. M., Cao, Y., et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature,2010,465,69-73.
    72. Her, E. K., Ko, T.-J., Lee, K.-R., et al. Bioinspired steel surfaces with extreme wettability contrast. Nanoscale,2012,4,2900-2905.
    73. Liu, K., Yao, X. & Jiang, L. Recent developments in bio-inspired special wettability. Chemical Society Reviews,2010,39,3240-3255.
    74. Song, W., Veiga, D. D., Custodio, C. A., et al. Bioinspired degradable substrates with extreme wettability properties. Advanced Materials,2009,21,1830-1834.
    75. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta,1997,202,1-8.
    76. Neinhuis, C. & Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany,1997,79,667-677.
    77. Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., et al. Superhydrophobicity in perfection:the outstanding properties of the lotus leaf. Beilstein journal of nanotechnology,2011,2, 152-161.
    78. Koch, K., Bhushan, B., Jung, Y. C., et al. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter, 2009,5,1386-1393.
    79. Furstner, R., Barthlott, W., Neinhuis, C., et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir,2005,21,956-961.
    80. Solga, A., Cerman, Z., Striffler, B. F., et al. The dream of staying clean:Lotus and biomimetic surfaces. Bioinspiration & Biomimetics,2007,2, S126.
    81. Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature,2007,448,338-341.
    82. Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature,2009,457, 1023-1027.
    83. Chung, W.-J., Oh, J.-W., Kwak, K., et al. Biomimetic self-templating supramolecular structures. Nature,2011,478,364-368.
    84. Feng, L., Li, S., Li, Y, et al. Super-hydrophobic surfaces:from natural to artificial. Advanced Materials,2002,14,1857-1860.
    85. Gao, X. & Jiang, L. Biophysics:water-repellent legs of water striders. Nature,2004,432, 36-36.
    86. Zheng, Y, Gao, X. & Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter,2007,3,178-182.
    87. Feng, L., Zhang, Y, Xi, J., et al. Petal effect:a superhydrophobic state with high adhesive force. Langmuir,2008,24,4114-4119.
    88. Lanir, Y Skin mechanics. Handbook of Bioengineering,1987,11,11.25.
    89. Parsons, K. C. Human thermal environments:the effect of hot, moderate and cold environments on human health, comfort and performance. Taylor & Francis, New York, 2003.
    90. Brigham, P. A. & McLoughlin, E. Burn incidence and medical care use in the United States: estimates, trends, and data sources. Journal of Burn Care & Research,1996,17,95-107.
    91. Rose, J. & Herndon, D. Advances in the treatment of burn patients. Burns,1997,23, S19-S26.
    92. Monafo, W. W. Initial management of burns. New England Journal of Medicine,1996,335, 1581-1586.
    93. Schulz Iii, J., Tompkins, R. & Burke, J. Artificial skin. Annual Review of Medicine,2000,51, 231-244.
    94. MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature,2007,445, 874-880.
    95. Rheinwatd, J. G. & Green, H. Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is. Cell,1975,6,331-343.
    96. Rheinwald, J. G. & Green, H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature,1977,265,421-424.
    97. Green, H., Kehinde, O. & Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proceedings of the National Academy of Sciences, 1979,76,5665-5668.
    98. O'Connor, N., Mulliken, J., Banks-Schlegel, S., et al. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. The Lancet,1981,317,75-78.
    99. Gallico, G. r., OCONNOR, N. E., Compton, C. C., et al. Permanent coverage of large burn wounds with autologous cultured human epithelium. The New England Journal of Medicine, 1984,311,448-451.
    100. Khachemoune, A., Bello, Y. M. & Phillips, T. J. Factors that influence healing in chronic venous ulcers treated with cryopreserved human epidermal cultures. Dermatologic Surgery, 2002,28,274-280.
    101. Alvarez-Diaz, C., Cuenca-Pardo, J., Sosa-Serrano, A., et al. Controlled clinical study of deep partial-thickness burns treated with frozen cultured human allogeneic epidermal sheets. Journal of Burn Care & Research,2000,21,291&hyhen.
    102. Bolivar-Flores, Y. J. & Kuri-Harcuch, W. Frozen allogeneic human epidermal cultured sheets for the cure of complicated leg ulcers. Dermatologic surgery,1999,25,610-617.
    103. Stern, R., McPherson, M. & Longaker, M. Histologic study of artificial skin used in the treatment of full-thickness thermal injury. Journal of Burn Care & Research,1990,11,7-13.
    104. Wainwright, D. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns,1995,21,243-248.
    105. Supp, D. M. & Boyce, S. T. Engineered skin substitutes:practices and potentials. Clinics in Dermatology,2005,23,403-412.
    106. Kolokol'chikova, E., Budkevich, L., Bobrovnikov, A., et al. Morphological changes in burn wounds after transplantation of allogenic fibroblasts. Bulletin of Experimental Biology and Medicine,2001,131,89-93.
    107. Nomi, M., Atala, A., Coppi, P. D., et al. Principals of neovascularization for tissue engineering. Molecular Aspects of Medicine,2002,23,463-483.
    108. George, M. L., Eccles, S. A., Tutton, M. G., et al. Correlation of plasma and serum vascular endothelial growth factor levels with platelet count in colorectal cancer:clinical evidence of platelet scavenging? Clinical Cancer Research,2000,6,3147-3152.
    109. Tremblay, P. L., Hudon, V, Berthod, F., et al. Inosculation of Tissue-Engineered Capillaries with the Host's Vasculature in a Reconstructed Skin Transplanted on Mice. American Journal of Transplantation,2005,5,1002-1010.
    110. Swope, V. B., Supp, A. P., Cornelius, J. R., et al. Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes. Journal of Investigative Dermatology,1997,109.
    111. Wilkes, G, Brown, I. & Wildnauer, R. The biomechanical properties of skin. CRC Critical Reviews in Bioengineering,1973,1,453.
    112. Rnjak, J., Wise, S. G, Mithieux, S. M., et al. Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Engineering Part B:Reviews,2011,17,81-91.
    113. Carlisle, C., Coulais, C. & Guthold, M. The mechanical stress-strain properties of single electrospun collagen type I nanofibers. Acta Biomaterialia,2010,6,2997-3003.
    114. Silver, F. H. The Importance of Collagen Fibers in Vertebrate Biology. Journal of Engineered Fabrics & Fibers,2009,4.
    115. Yasui, T., Tohno, Y. & Araki, T. Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry. Journal of Biomedical Optics, 2004,9,259-264.
    116. Fung,Y. (Springer-Verlag, New York).
    117. BROWN, I. A. A scanning electron microscope study of the effects of uniaxial tension on human skin. British Journal of Dermatology,1973,89,383-393.
    118. Holzapfel, G A. Biomechanics of soft tissue. The Handbook of Materials Behavior Models, 2001,3,1049-1063.
    119. Gibson, T. & Kenedi, R. Biomechanical properties of skin. The Surgical Clinics of North America,1967,47,279.
    120. Daly, C. H. Biomechanical properties of dermis. Journal of Investigative Dermatology,1982, 79.
    121. Silver, F. H., Siperko, L. M. & Seehra, G P. Mechanobiology of force transduction in dermal tissue. Skin Research and Technology,2003,9,3-23.
    122. Langer, K. On the anatomy and physiology of the skin:Ⅱ. Skin Tension (With 1 Figure). British Journal of Plastic Surgery,1978,31,93-106.
    123. Ridge, M. & Wright, V. The directional effects of skin. Journal of Investigative Dermatology, 1966,46,341-346.
    124. Liang, X. & Boppart, S. A. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. Biomedical Engineering, IEEE Transactions on,2010,57, 953-959.
    125. Annaidh, A. N., Bruyere, K., Destrade, M., et al. Characterization of the anisotropic mechanical properties of excised human skin. Journal of the Mechanical Behavior of Biomedical Materials,2012,5,139-148.
    126. Jansen, L. & Rottier, P. Some mechanical properties of human abdominal skin measured on excised strips. Dermatology,1958,117,65-83.
    127. Jansen, L. & Rottier, P. Some mechanical properties of human abdominal skin measured on excised strips. Dermatology,2009,117,65-83.
    128. Vogel, H. Age dependence of mechanical and biochemical properties of human skin. I: Stress-strain experiments, skin thickness and biochemical analysis. Bioengineering and the Skin,1987,3,67-91.
    129. Jacquemoud, C., Bruyere-Garnier, K. & Coret, M. Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test. Journal of Biomechanics, 2007,40,468-475.
    130. Ni Annaidh, A., Bruyere, K., Destrade, M., et al. Characterization of the anisotropic mechanical properties of excised human skin. Journal of the Mechanical Behavior of Biomedical Materials,2012,5,139-148.
    131. Capadona, J. R., Shanmuganathan, K., Tyler, D. J., et al. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science,2008,319,1370-1374.
    132. Young, C.-D., Wu, J.-R. & Tsou, T.-L. High-strength, ultra-thin and fiber-reinforced pHEMA artificial skin. Biomaterials,1998,19,1745-1752.
    133. Seo, Y.-K., Youn, H.-H., Park, C.-S., et al. Reinforced bioartificial dermis constructed with collagen threads. Biotechnology and Bioprocess Engineering,2008,13,745-751.
    134. Choi, Y. S., Hong, S. R., Lee, Y. M., et al. Study on gelatin-containing artificial skin:Ⅰ. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials,1999,20, 409-417.
    135. Choi, Y. S., Hong, S. R., Lee, Y. M., et al. Studies on gelatin-containing artificial skin:Ⅱ. Preparation and characterization of cross linked gelatin-hyaluronate sponge. Journal of Biomedical Materials Research,1999,48,631-639.
    136. Lee, S. B., Jeon, H. W., Lee, Y. W., et al. Bio-artificial skin composed of gelatin and (1→ 3),(1→ 6)-glucan. Biomaterials,2003,24,2503-2511.
    137. Mao, J., Zhao, L., de Yao, K., et al. Study of novel chitosan-gelatin artificial skin in vitro. Journal of Biomedical Materials Research Part A,2003,64,301-308.
    138. Motokawa, T. Effects of ionic environment on viscosity of Triton-extracted catch connective tissue of a sea cucumber body wall. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1994,109,613-622.
    139. Thurmond, F. & Trotter, J. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. Journal of Experimental Biology,1996,199,1817-1828.
    140. Wilkie, I. Is muscle involved in the mechanical adaptability of echinoderm mutable collagenous tissue? Journal of Experimental Biology,2002,205,159-165.
    141. Trotter, J. A., Lyons-Levy, G., Chino, K., et al. Collagen fibril aggregation-inhibitor from sea cucumber dermis. Matrix Biology,1999,18,569-578.
    142. Szulgit, G. K. & Shadwick, R. E. Dynamic mechanical characterization of a mutable collagenous tissue:response of sea cucumber dermis to cell lysis and dermal extracts. Journal of Experimental Biology,2000,203,1539-1550.
    143. Hsu, L., Weder, C. & Rowan, S. J. Stimuli-responsive, mechanically-adaptive polymer nanocomposites. Journal of Materials Chemistry,2011,21,2812-2822.
    144. Shanmuganathan, K., Capadona, J. R., Rowan, S. J., et al. Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. Journal of Materials Chemistry,2010,20,180-186.
    145. Sturcova, A., Davies, G. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules,2005,6,1055-1061.
    146. van den Berg, O., Capadona, J. R. & Weder, C. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules,2007,8,1353-1357.
    147. Azizi Samir, M. A. S., Alloin, F. & Dufresne, A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 2005,6,612-626.
    148. Capadona, J. R., Van Den Berg, O., Capadona, L. A., et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology,2007,2,765-769.
    149. Hou, J., Bonser, R. H. & Jeronimidis, G. Design of a biomimetic skin for an octopus-inspired robot-Part Ⅰ:Characterising octopus skin. Journal of Bionic Engineering,2011,8,288-296.
    150. Hou, J., Bonser, R. H. & Jeronimidis, G. Design of a biomimetic skin for an octopus-inspired robot-Part Ⅱ:Development of the skin artefact. Journal of Bionic Engineering,2011,8, 297-304.
    151. Wichterle, O. & Lim, D. Hydrophilic gels for biological use.1960.
    152. Vacanti, F. X. PHEMA as a Fibrous Capsule-Resistant Breast Prosthesis. Plastic and Reconstructive Surgery,2004,113,949-952.
    153. Voldrrich, Z., Tomanek, Z., Vacik, J., et al. Long-term experience with poly (glycol monomethacrylate) gel in plastic operations of the nose. Journal of Biomedical Materials Research,1975,9,675-685.
    154. Kliment, K., Stol, M., Fahoun, K., et al. Use of spongy hydron in plastic surgery. Journal of Biomedical Materials Research,1968,2,237-243.
    155. Lee, S.-D., Hsiue, G.-H., Kao, C.-Y., et al. Artificial cornea:surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge. Biomaterials,1996, 17,587-595.
    156. Nathan, P., Macmillan, B. G. & Holder, I. A. Effect of a synthetic dressing formed on a burn wound in rats:a comparison of allografts, collagen sheets, and polyhydroxyethylmethacrylate in the control of wound infection. Applied Microbiology, 1974,28,465-468.
    157. Crichton, M. L., Donose, B. C., Chen, X. F., et al. The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials,2011,32, 4670-4681.
    158. Fratzl, P. Cellulose and collagen:from fibres to tissues. Current Opinion in Colloid & Interface Science,2003,8,32-39.
    159. Mathew, A. P., Oksman, K., Pierron, D., et al. Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose,2012,19, 139-150.
    160. Silver, F. H. The Importance of Collagen Fibers in Vertebrate Biology. Journal of Engineered Fibers and Fabrics,2009,4,9-17.
    161. Tatham, A. S. & Shewry, P. R. Comparative structures and properties of elastic proteins. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2002,357,229-234.
    162. Gosline, J., Lillie, M., Carrington, E., et al. Elastic proteins:biological roles and mechanical properties. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2002,357,121-132.
    163. Gorb, S. N. The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae):skeleton-muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements. Arthropod Structure & Development,2004,33,201-220.
    164. Bennet-Clark, H. C. Resonators in insect sound production:How insects produce loud pure-tone songs. Journal of Experimental Biology,1999,202,3347-3357.
    165. Neff, D., Frazier, S. F., Quimby, L., et al. Identification of resilin in the leg of cockroach, Periplaneta americana:confirmation by a simple method using pH dependence of UV fluorescence. Arthropod Structure & Development,2000,29,75-83.
    166. BennetClark, H. C. Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae. Journal of Experimental Biology,1997,200,1681-1694.
    167. Weisfogh, T. Molecular Interpretation of Elasticity of Resilin, a Rubber-Like Protein. Journal of Molecular Biology,1961,3,648-&.
    168. Weisfogh, T. A Rubber-Like Protein in Insect Cuticle. Journal of Experimental Biology,1960, 37,889-&.
    169. Bailey, A. J., MacMillan, J., Shewry, P. R., et al. Elastomeric proteins:structures, biomechanical properties and biological roles-Preface. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2002,357,119-120.
    170. Elvin, C. M., Carr, A. G., Huson, M. G, et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature,2005,437,999-1002.
    171. Lyons, R. E., Lesieur, E., Kim, M., et al. Design and facile production of recombinant resilin-like polypeptides:gene construction and a rapid protein purification method. Protein Engineering Design & Selection,2007,20,25-32.
    172. Kim, M., Elvin, C., Brownlee, A., et al. High yield expression of recombinant pro-resilin: Lactose-induced fermentation in E coli and facile purification. Protein Expression and Purification,2007,52,230-236.
    173. Qin, G K., Lapidot, S., Numata, K., et al. Expression, Cross-Linking, and Characterization of Recombinant Chitin Binding Resilin. Biomacromolecules,2009,10,3227-3234.
    174. Lyons, R. E., Nairn, K. M., Huson, M. G, et al. Comparisons of Recombinant Resilin-like Proteins:Repetitive Domains Are Sufficient to Confer Resilin-like Properties. Biomacromolecules,2009,10,3009-3014.
    175. Charati, M. B., Ifkovits, J. L., Burdick, J. A., et al. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter,2009,5,3412-3416.
    176. Truong, M. Y., Dutta, N. K., Choudhury, N. R., et al. A pH-responsive interface derived from resilin-mimetic protein Recl-resilin. Biomaterials,2010,31,4434-4446.
    177. Li, L. Q., Teller, S., Clifton, R. J., et al. Tunable Mechanical Stability and Deformation Response of a Resilin-Based Elastomer. Biomacromolecules,2011,12,2302-2310.
    178. Vincent, J. F. V. & Wegst, U. G K. Design and mechanical properties of insect cuticle. Arthropod Structure & Development,2004,33,187-199.
    179. Guan, Z. B., Roland, J. T., Bai, J. Z., et al. Modular domain structure:A biomimetic strategy for advanced polymeric materials. Journal of the American Chemical Society,2004,126, 2058-2065.
    180. Chen, Y. L. & Guan, Z. B. Bioinspired Modular Synthesis of Elastin-Mimic Polymers To Probe the Mechanism of Elastin Elasticity. Journal of the American Chemical Society,2010, 132,4577-+.
    181. Malkoch, M., Vestberg, R., Gupta, N., et al. Synthesis of well-defined hydrogel networks using click chemistry. Chemical Communications,2006,2774-2776.
    182. Tanaka, Y, Gong, J. P. & Osada, Y Novel hydrogels with excellent mechanical performance. Progress in Polymer Science,2005,30,1-9.
    183. Xiao, L., Liu, C., Zhu, J., et al. Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter,2010,6,5293-5297.
    184. Johnson, J. A., Turro, N. J., Koberstein, J. T., et al. Some hydrogels having novel molecular structures. Progress in Polymer Science,2010,35,332-337.
    185. Zhu, M., Liu, Y, Sun, B., et al. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromolecular Rapid Communications,2006,27, 1023-1028.
    186. Webber, R. E., Creton, C., Brown, H. R., et al. Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules,2007,40,2919-2927.
    187. Hou, Y., Schoener, C. A., Regan, K. R., et al. Photo-cross-linked PDMSstar-PEG hydrogels: synthesis, characterization, and potential application for tissue engineering scaffolds. Biomacromolecules,2010,11,648-656.
    188. Guo, C. & Bailey, T. S. Highly distensible nanostructured elastic hydrogels from AB diblock and ABA triblock copolymer melt blends. Soft Matter,2010,6,4807-4818.
    189. Mespouille, L., Hedrick, J. L. & Dubois, P. Expanding the role of chemistry to produce new amphiphilic polymer (co) networks. Soft Matter,2009,5,4878-4892.
    190. Erdodi, G. & Kennedy, J. P. Amphiphilic conetworks:definition, synthesis, applications. Progress in Polymer Science,2006,31,1-18.
    191. Lutolf, M. & Hubbell, J. Synthesis and physicochemical characterization of end-linked poly (ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules,2003,4,713-722.
    192. Spruell, J. M., Wolffs, M., Leibfarth, F. A., et al. Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups. Journal of the American Chemical Society,2011,133,16698-16706.
    193. Cui, J., Lackey, M. A., Madkour, A. E., et al. Synthetically Simple, Highly Resilient Hydrogels. Biomacromolecules,2012,13,584-588.
    194. Cui, J., Lackey, M. A., Tew, G. N., et al. Mechanical Properties of End-Linked PEG/PDMS Hydrogels. Macromolecules,2012,45,6104-6110.
    195. Liu, J. Q., Chen, C. F., He, C. C., et al. Synthesis of Graphene Peroxide and Its Application in Fabricating Super Extensible and Highly Resilient Nanocomposite Hydrogels. Acs Nano, 2012,6,8194-8202.
    196. Mark, J. E. & Erman, B. Rubberlike elasticity:a molecular primer. (Cambridge University Press,2007).
    197. Mark, J. in Polymer Networks 1-26 (Springer,1982).
    198. McConkey, E. H. Molecular evolution, intracellular organization, and the quinary structure of proteins. Proceedings of the National Academy of Sciences,1982,79,3236-3240.
    199. Elliott, G., Huxley, A. & Weis-Fogh, T. On the structure of resilin. Journal of Molecular Biology,1965,13,791-IN713.
    200. Li, B., Alonso, D. O. V, Bennion, B. J., et al. Hydrophobic hydration is an important source of elasticity in elastin-based biopolymers. Journal of the American Chemical Society,2001, 123,11991-11998.
    201. Truong, M. Y., Dutta, N. K., Choudhury, N. R., et al. The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials,2011,32,8462-8473.
    1. Moon, R. J., Martini, A., Nairn, J., et al. Cellulose nanomaterials review:structure, properties and nanocomposites. Chemical Society Reviews,2011,40,3941-3994.
    2. Edgar, K. J., Buchanan, C. M., Debenham, J. S., et al. Advances in cellulose ester performance and application. Progress in Polymer Science,2001,26,1605-1688.
    3. Ibrahim, A. & Dahlan, M. Thermoplastic natural rubber blends. Progress in Polymer Science, 1998,23,665-706.
    4. Liu, H. S., Xie, F. W., Yu, L., et al. Thermal processing of starch-based polymers. Progress in Polymer Science,2009,34,1348-1368.
    5. Czaja, W. K., Young, D. J., Kawecki, M., et al. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules,2007,8,1-12.
    6. Pinkert, A., Marsh, K. N., Pang, S. S., et al. Ionic Liquids and Their Interaction with Cellulose. Chemical Reviews,2009,109,6712-6728.
    7. Cai, J. & Zhang, L. Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions. Macromolecular Bioscience,2005,5,539-548.
    8. Yan, L. F. & Gao, Z. J. Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose, 2008,15,789-796.
    9. Qi, H. S., Yang, Q. L., Zhang, L. N., et al. The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose,2011,18,237-245.
    10. Smith, M. E. B., Schumacher, F. F., Ryan, C. P., et al. Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides. Journal of the American Chemical Society, 2010,132,1960-1965.
    11. Mori, T., Hirose, A., Hagiwara, T., et al. Single-Molecular Enzymatic Elongation of Hyaluronan Polymers Visualized by High-Speed Atomic Force Microscopy. Journal of the American Chemical Society,2012,134,20254-20257.
    12. Robertson, M. L., Hillmyer, M. A., Mortamet, A. C., et al. Biorenewable Multiphase Polymers. Mrs Bulletin,2010,35,194-200.
    13. Roy, D., Semsarilar, M., Guthrie, J. T., et al. Cellulose modification by polymer grafting:a review. Chemical Society Reviews,2009,38,2046-2064.
    14. Khan, F. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber. Biomacromolecules,2004,5,1078-1088.
    15. Yuan, W. Z., Yuan, J. Y., Zhang, F. B., et al. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization. Biomacromolecules,2007,8, 1101-1108.
    16. Roy, D., Guthrie, J. T. & Perrier, S. Graft polymerization:Grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules,2005,38,10363-10372.
    17. Perrier, S., Takolpuckdee, P., Westwood, J., et al. Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules,2004,37,2709-2717.
    18. Hansson, S., Trouillet, V., Tischer, T., et al. Grafting Efficiency of Synthetic Polymers onto Biomaterials:A Comparative Study of Grafting-from versus Grafting-to. Biomacromolecules, 2013,14,64-74.
    19. Morandi, G., Heath, L. & Thielemans, W. Cellulose Nanocrystals Grafted with Polystyrene Chains through Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). Langmuir,2009,25,8280-8286.
    20. Hansson, S., Ostmark, E., Carlmark, A., et al. ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers. Acs Applied Materials & Interfaces,2009,1,2651-2659.
    21. Carlmark, A. & Malmstrom, E. Atom transfer radical polymerization from cellulose fibers at ambient temperature. Journal of the American Chemical Society,2002,124,900-901.
    22. Li, J. N., El Harfi, J., Howdle, S. M., et al. Controlled oligomerisation of isoprene-towards the synthesis of squalene analogues. Polymer Chemistry,2012,3,1495-1501.
    23. Germack, D. S. & Wooley, K. L. Isoprene polymerization via reversible addition fragmentation chain transfer polymerization. Journal of Polymer Science Part a-Polymer Chemistry,2007,45,4100-4108.
    24. Cheng, C., Qi, K., Khoshdel, E., et al. Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures. Journal of the American Chemical Society,2006,128,6808-6809.
    25. Matyjaszewski, K. & Xia, J. H. Atom transfer radical polymerization. Chemical Reviews, 2001,101,2921-2990.
    26. Meng, T., Gao, X., Zhang, J., et al. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer,2009,50,447-454.
    27. Zhong, J. F., Chai, X. S. & Fu, S. Y. Homogeneous grafting poly (methyl methacrylate) on cellulose by atom transfer radical polymerization. Carbohydrate Polymers,2012,87, 1869-1873.
    28. Xin, T. T., Yuan, T. Q., Xiao, S., et al. Synthesis of Cellulose-Graft-Poly(Methyl Methacrylate) Via Homogeneous Atrp. Bioresources,2011,6,2941-2953.
    29. Lin, C. X., Zhan, H. Y., Liu, M. H., et al. Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydrate Polymers,2009,78,432-438.
    30. Tang, E. J., Yuan, M., Li, L., et al. Synthesis of Microcrystalline Cellulose Grafting Poly (methyl methacrylate) Copolymers by ATRP in 1-Allyl-3-Methylimidazolium Chloride. Advanced Materials Research,2013,621,157-161.
    31. Jiang, F., Wang, Z. K., Qiao, Y. L., et al. A Novel Architecture toward Third-Generation Thermoplastic Elastomers by a Grafting Strategy. Macromolecules,2013,46,4772-4780.
    32. Yabu, H., Higuchi, T. & Shimomura, M. Unique phase-separation structures of block-copolymer nanoparticles. Advanced Materials,2005,17,2062-2067.
    1. Shin, H., Jo, S. & Mikos, A. G. Biomimetic materials for tissue engineering. Biomaterials, 2003,24,4353-4364.
    2. Chen, R. & Hunt, J. A. Biomimetic materials processing for tissue-engineering processes. Journal of Materials Chemistry,2007,17,3974-3979.
    3. Lv, S., Dudek, D. M., Cao, Y., et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature,2010,465,69-73.
    4. Capadona, J. R., Shanmuganathan, K., Tyler, D. J., et al. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science,2008,319,1370-1374.
    5. Jin, H. J. & Kaplan, D. L. Mechanism of silk processing in insects and spiders. Nature,2003, 424,1057-1061.
    6. Cranford, S. W., Tarakanova, A., Pugno, N. M, et al. Nonlinear material behaviour of spider silk yields robust webs. Nature,2012,482,72-U91.
    7. Pugno, N. M., Cranford, S. W. & Buehler, M. J. Synergetic Material and Structure Optimization Yields Robust Spider Web Anchorages. Small,2013,9,2747-2756.
    8. Boyer, G., Molimard, J., Ben Tkaya, M., et al. Assessment of the in-plane biomechanical properties of human skin using a finite element model updating approach combined with an optical full-field measurement on a new tensile device. Journal of the Mechanical Behavior of Biomedical Materials,2013,27,273-282.
    9. Hussain, S. H., Limthongkul, B. & Humphreys, T. R. The Biomechanical Properties of the Skin. Dermatologic Surgery,2013,39,193-203.
    10. Dunn, M. G. & Silver, F. H. Viscoelastic Behavior of Human Connective Tissues-Relative Contribution of Viscous and Elastic Components. Connective Tissue Research,1983,12, 59-70.
    11. Annaidh, A. N., Bruyere, K., Destrade, M., et al. Characterization of the anisotropic mechanical properties of excised human skin. Journal of the Mechanical Behavior of Biomedical Materials,2012,5,139-148.
    12. MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature,2007,445, 874-880.
    13. Efimenko, K., Rackaitis, M., Manias, E., et al. Nested self-similar wrinkling patterns in skins. Nature Materials,2005,4,293-297.
    14. Takei, K., Takahashi, T., Ho, J. C., et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials,2010,9,821-826.
    15. Crichton, M. L., Donose, B. C., Chen, X. F., et al. The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials,2011,32, 4670-4681.
    16. Fratzl, P. Cellulose and collagen:from fibres to tissues. Current Opinion in Colloid & Interface Science,2003,8,32-39.
    17. Mathew, A. P., Oksman, K., Pierron, D., et al. Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose,2012,19, 139-150.
    18. Silver, F. H. The Importance of Collagen Fibers in Vertebrate Biology. Journal of Engineered Fibers and Fabrics,2009,4,9-17.
    19. Min, K., Gao, H. F. & Matyjaszewski, K. Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules,2007,40,1789-1791.
    20.Matyjaszewski, K., Dong, H. C., Jakubowski, W., et al. Grafting from surfaces for "Everyone": ARGET ATRP in the presence of air. Langmuir,2007,23,4528-4531.
    21. Dong, H. & Matyjaszewski, K. ARGET ATRP of 2-(dimethylamino)ethyl methacrylate as an intrinsic reducing agent. Macromolecules,2008,41,6868-6870.
    22. Jakubowski, W., Kirci-Denizli, B., Gil, R. R., et al. Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP. Macromolecular Chemistry and Physics,2008,209,32-39.
    23. Domingues, K. M. & Tillman, E. S. Radical-Radical Coupling of Polystyrene Chains Using AGET ATRC. Journal of Polymer Science Part a-Polymer Chemistry,2010,48,5737-5745.
    24. Chen, Y. L., Kushner, A. M., Williams, G. A., et al. Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chemistry,2012,4,467-472.
    25. Jiang, F., Wang, Z. K., Qao, Y, et al. A Novel Architecture toward Third-Generation Thermoplastic Elastomers by a Grafting Strategy. Macromolecules,2013,46,4772-4780.
    26. Meng, T., Gao, X., Zhang, J., et al. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer,2009,50,447-454.
    27. Sui, X. F., Yuan, J. Y, Zhou, M., et al. Synthesis of Cellulose-graft-Poly(N,N-dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules,2008,9, 2615-2620.
    28. Liu, W. Y, Liu, R. G, Li, Y X., et al. Self-assembly of ethyl cellulose-graft-polystyrene copolymers in acetone. Polymer,2009,50,211-217.
    29. Yan, L. F. & Ishihara, K. Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing mew hemocompatible coating materials. Journal of Polymer Science Part a-Polymer Chemistry,2008,46,3306-3313.
    30. Shen, D., Yu, H. & Huang, Y. Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly. Cellulose,2006,13,235-244.
    31. Ifuku, S. & Kadla, J. F. Preparation of a Thermosensitive Highly Regioselective Cellulose/N-Isopropylacrylamide Copolymer through Atom Transfer Radical Polymerization. Biomacromolecules,2008,9,3308-3313.
    32. Raus, V, Stepanek, M., Uchman, M., et al. Cellulose-Based Graft Copolymers with Controlled Architecture Prepared in a Homogeneous Phase. Journal of Polymer Science Part a-Polymer Chemistry,2011,49,4353-4367.
    33. Munster, S., Jawerth, L. M., Leslie, B. A., et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proceedings of the National Academy of Sciences of the United States of America,2013,110,12197-12202.
    34. Ogden, R. & Roxburgh, D. A pseudo-elastic model for the Mullins effect in filled rubber. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1999,455,2861-2877.
    35. Bueche, F. Molecular basis for the Mullins effect. Journal of Applied Polymer Science,1960, 4,107-114.
    36. Govindjee, S. & Simo, J. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect. Journal of the Mechanics and Physics of Solids,1991,39,87-112.
    37. Gerhardt, L. C., Lenz, A., Spencer, N. D., et al. Skin-textile friction and skin elasticity in young and aged persons. Skin Research and Technology,2009,15,288-298.
    38. Jansen, L. & Rottier, P. Some mechanical properties of human abdominal skin measured on excised strips. Dermatology,2009,117,65-83.
    39. Vogel, H. Age dependence of mechanical and biochemical properties of human skin. I: Stress-strain experiments, skin thickness and biochemical analysis. Bioengineering and the Skin,1987,3,67-91.
    40. Jacquemoud, C., Bruyere-Garnier, K. & Coret, M. Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test. Journal of Biomechanics, 2007,40,468-475.
    41. Ni Annaidh, A., Bruyere, K., Destrade, M., et al. Characterization of the anisotropic mechanical properties of excised human skin. Journal of the Mechanical Behavior of Biomedical Materials,2012,5,139-148.
    1. Cai, J., Hsiao, B. S. & Gross, R. A. Real-time structure changes during uniaxial stretching of poly (ω-pentadecalactone) by in situ synchrotron WAXD/SAXS techniques. Macromolecules, 2011,44,3874-3883.
    2. Landel, R. F. & Nielsen, L. E. Mechanical Properties of Polymers and Composites. (CRC Press,1993).
    3. Hong, K., Rastogi, A. & Strobl, G. A model treating tensile deformation of semicrystalline polymers:quasi-static stress-strain relationship and viscous stress determined for a sample of polyethylene. Macromolecules,2004,37,10165-10173.
    4. Fu, B. X., Hsiao, B., Pagola, S., et al. Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. Polymer, 2001,42,599-611.
    5. Men, Y, Rieger, J. & Homeyer, J. Synchrotron ultrasmall-angle X-ray scattering studies on tensile deformation of poly (1-butene). Macromolecules,2004,37,9481-9488.
    6. Men, Y., Rieger, J. & Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Physical Review Letters,2003,91,095502.
    7. Munster, S., Jawerth, L. M., Leslie, B. A., et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proceedings of the National Academy of Sciences,2013,110,12197-12202.
    8. Kawakami, D., Hsiao, B. S., Burger, C., et al. Deformation-induced phase transition and superstructure formation in poly (ethylene terephthalate). Macromolecules,2005,38,91-103.
    9. Wang, Z., Niu, Y, Fredrickson, G. H., et al. Step-Cycle Mechanical Processing of Gels of sPP-b-EPR-b-sPP Triblock Copolymer in Mineral Oil. Macromolecules,2010,43,6782-6788.
    10. Kamal, T., Shin, T. J. & Park, S.-Y. Uniaxial Tensile Deformation of Poly (ε-caprolactone) Studied with SAXS and WAXS Techniques Using Synchrotron Radiation. Macromolecules, 2012,45,8752-8759.
    11. Choi, T., Fragiadakis, D., Roland, C. M., et al. Microstructure and segmental dynamics of polyurea under uniaxial deformation. Macromolecules,2012,45,3581-3589.
    12. Cai, Z., Zhang, Y, Li, J., et al. Real time synchrotron SAXS and WAXS investigations on temperature related deformation and transitions of β-iPP with uniaxial stretching. Polymer, 2012,53,1593-1601.
    13. Okamoto, S., Saijo, K. & Hashimoto, T. Real-time SAXS observations of lamella-forming block copolymers under large oscillatory shear deformation. Macromolecules,1994,27, 5547-5555.
    14. Park, J. W., Tanaka, T. & Iwata, T. Uniaxial Drawing of Poly [(R)-3-hydroxybutyrate]/Cellulose Acetate Butyrate Blends and Their Orientation Behavior. Macromolecular bioscience,2005,5,840-852.
    15. Sun, Y., Fischer, S., Jiang, Z., et al. in Macromolecular Symposia.51-62 (Wiley Online Library).
    16. Qiu, J., Wang, Z., Yang, L., et al. Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer,2007,48,6934-6947.
    17. Zhang, J., Tashiro, K., Tsuji, H., et al. Disorder-to-order phase transition and multiple melting behavior of poly (1-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules,2008,41,1352-1357.
    18. Somani, R. H., Yang, L., Hsiao, B. S., et al. Shear-induced precursor structures in isotactic polypropylene melt by in-situ rheo-SAXS and rheo-WAXD studies. Macromolecules,2002, 35,9096-9104.
    19. Tosaka, M., Murakami, S., Poompradub, S., et al. Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules,2004,37, 3299-3309.
    20. Ran, S., Zong, X., Fang, D., et al. Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in-situ synchrotron SAXS/WAXD. Macromolecules,2001,34,2569-2578.
    21. Prosa, T. J., Bauer, B. J., Amis, E. J., et al. A SAXS study of the internal structure of dendritic polymer systems. Journal of Polymer Science Part B:Polymer Physics,1997,35,2913-2924.
    22. Hura, G. L., Menon, A. L., Hammel, M., et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nature Methods,2009,6,606-612.
    23. Bras, W., Derbyshire, G, Ryan, A., et al. Simultaneous time resolved SAXS and WAXS experiments using synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1993, 326,587-591.
    24. Marco, Y, Chevalier, L. & Chaouche, M. WAXD study of induced crystallization and orientation in poly (ethylene terephthalate) during biaxial elongation. Polymer,2002,43, 6569-6574.
    25. Mo, Z. & Zhang, H. The degree of crystallinity in polymers by wide-angle x-ray diffraction (WAXD). Journal of Macromolecular Science, Part C:Polymer Reviews,1995,35,555-580.
    26. Minagawa, M., Taira, T., Yabuta, Y, et al. An Anomalous Tacticity-Crystallinity Relationship: A WAXD Study of Stereoregular Isotactic (83-25) Poly (Acrylonitrile) Powder Prepared by Urea Clathrate Polymerization. Macromolecules,2001,34,3679-3683.
    27. Saitoh, A., Amutharani, D., Yamamoto, Y, et al. Structure and properties of the mesophase of syndiotactic polystyrene IV. Release of guest molecules from δ form of syndiotactic polystyrene by time resolved FT-IR and WAXD measurement. Polymer Journal,2003,35, 868-871.
    28. Cavallo, D., Portale, G., Balzano, L., et al. Real-time WAXD detection of mesophase development during quenching of propene/ethylene copolymers. Macromolecules,2010,43, 10208-10212.
    1. Tatham, A. S. & Shewry, P. R. Comparative structures and properties of elastic proteins. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2002, 357,229-234.
    2. Gosline, J., Lillie, M., Carrington, E., et al. Elastic proteins:biological roles and mechanical properties. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2002,357,121-132.
    3. Gorb, S. N. The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae):skeleton-muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements. Arthropod Structure & Development,2004,33,201-220.
    4. Bennet-Clark, H. C. Resonators in insect sound production:How insects produce loud pure-tone songs. Journal of Experimental Biology,1999,202,3347-3357.
    5. Neff, D., Frazier, S. F., Quimby, L., et al. Identification of resilin in the leg of cockroach, Periplaneta americana:confirmation by a simple method using pH dependence of UV fluorescence. Arthropod Structure & Development,2000,29,75-83.
    6. BennetClark, H. C. Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae. Journal of Experimental Biology,1997,200,1681-1694.
    7. Weisfogh, T. Molecular interpretation of elasticity of resilin, a rubber-like protein. Journal of Molecular Biology,1961,3,648-&.
    8. Weisfogh, T. A Rubber-like protein in insect cuticle. Journal of Experimental Biology,1960, 37,889-&.
    9. Bailey, A. J., MacMillan, J., Shewry, P. R., et al. Elastomeric proteins:structures, biomechanical properties and biological roles-Preface. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2002,357,119-120.
    10. Elvin, C. M., Carr, A. G., Huson, M. G., et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature,2005,437,999-1002.
    11. Lyons, R. E., Lesieur, E., Kim, M., et al. Design and facile production of recombinant resilin-like polypeptides:gene construction and a rapid protein purification method. Protein Engineering Design & Selection,2007,20,25-32.
    12. Kim, M., Elvin, C., Brownlee, A., et al. High yield expression of recombinant pro-resilin: Lactose-induced fermentation in E coli and facile purification. Protein Expression and Purification,2007,52,230-236.
    13. Qin, G. K., Lapidot, S., Numata, K., et al. Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules,2009,10,3227-3234.
    14. Lyons, R. E., Nairn, K. M., Huson, M. G., et al. Comparisons of recombinant resilin-like proteins:repetitive domains are sufficient to confer resilin-like properties. Biomacromolecules, 2009,10,3009-3014.
    15. Charati, M. B., Ifkovits, J. L., Burdick, J. A., et al. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter,2009,5,3412-3416.
    16. Truong, M. Y., Dutta, N. K., Choudhury, N. R., et al. A pH-responsive interface derived from resilin-mimetic protein Recl-resilin. Biomaterials,2010,31,4434-4446.
    17. Li, L. Q., Teller, S., Clifton, R. J., et al. Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules,2011,12,2302-2310.
    18. Vincent, J. F. V. & Wegst, U. G. K. Design and mechanical properties of insect cuticle. Arthropod Structure & Development,2004,33,187-199.
    19. Guan, Z. B., Roland, J. T., Bai, J. Z., et al. Modular domain structure:A biomimetic strategy for advanced polymeric materials. Journal of the American Chemical Society,2004,126, 2058-2065.
    20. Chen, Y. L. & Guan, Z. B. Bioinspired modular synthesis of elastin-mimic polymers to probe the mechanism of elastin elasticity. Journal of the American Chemical Society,2010,132, 4577-+.
    21. Cui, J., Lackey, M. A., Madkour, A. E., et al. Synthetically simple, highly resilient hydrogels. Biomacromolecules,2012,13,584-588.
    22. Cui, J., Lackey, M. A., Tew, G. N., et al. Mechanical PROPERTIES OF END-LINKED PEG/PDMS HYDROGELS. Macromolecules,2012,45,6104-6110.
    23. Liu, J. Q., Chen, C. F., He, C. C., et al. Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. Acs Nano,2012,6, 8194-8202.
    24. Mark, J. E. & Erman, B. Rubberlike elasticity:a molecular primer. (Cambridge University-Press,2007).
    25. Mark, J. in Polymer Networks 1-26 (Springer,1982).
    26. McConkey, E. H. Molecular evolution, intracellular organization, and the quinary structure of proteins. Proceedings of the National Academy of Sciences,1982,79,3236-3240.
    27. Elliott, G, Huxley, A. & Weis-Fogh, T. On the structure of resilin. Journal of Molecular Biology,1965,13,791-IN713.
    28. Li, B., Alonso, D. O. V., Bennion, B. J., et al. Hydrophobic hydration is an important source of elasticity in elastin-based biopolymers. Journal of the American Chemical Society,2001,123, 11991-11998.
    29. Truong, M. Y., Dutta, N. K., Choudhury, N. R., et al. The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials,2011,32,8462-8473.
    30. Nah, C., Ryu, H. J., Kim, W. D., et al. Preparation and properties of acrylonitrile-butadiene copolymer hybrid nanocomposites with organoclays. Polymer International,2003,52, 1359-1364.
    31. Min, K., Gao, H. F. & Matyjaszewski, K. Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules,2007,40,1789-1791.
    32.Matyjaszewski, K., Dong, H. C, Jakubowski, W., et al. Grafting from surfaces for "Everyone": ARGET ATRP in the presence of air. Langmuir,2007,23,4528-4531.
    33. Dong, H. & Matyjaszewski, K. ARGET ATRP of 2-(dimethylamino)ethyl methacrylate as an intrinsic reducing agent. Macromolecules,2008,41,6868-6870.
    34. Jakubowski, W., Kirci-Denizli, B., Gil, R. R., et al. Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP. Macromolecular Chemistry and Physics,2008,209,32-39.
    35. Domingues, K. M. & Tillman, E. S. Radical-radical coupling of polystyrene chains using AGET ATRC. Journal of Polymer Science Part a-Polymer Chemistry,2010,48,5737-5745.
    36. Chen, Y. L., Kushner, A. M., Williams, G. A., et al. Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chemistry,2012,4,467-472.
    37. Sui, X., Yuan, J., Zhou, M., et al. Synthesis of cellulose-graft-poly(n,n-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous atrp and their aggregates in aqueous media. Biomacromolecules,2008,9,2615-2620.
    38. Meng, T., Gao, X., Zhang, J., et al. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer,2009,50,447-454.
    39. Sui, X. F., Yuan, J. Y, Zhou, M., et al. Synthesis of Cellulose-graft-Poly(N,N-dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules,2008,9, 2615-2620.
    40. Liu, W. Y, Liu, R. G., Li, Y. X., et al. Self-assembly of ethyl cellulose-graft-polystyrene copolymers in acetone. Polymer,2009,50,211-217.
    41. Yan, L. F. & Ishihara, K. Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing mew hemocompatible coating materials. Journal of Polymer Science Part a-Polymer Chemistry,2008,46,3306-3313.
    42. Shen, D., Yu, H. & Huang, Y. Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly. Cellulose,2006,13,235-244.
    43. Ifuku, S. & Kadla, J. F. Preparation of a Thermosensitive highly regioselective cellulose/n-isopropylacrylamide copolymer through atom transfer radical polymerization. Biomacromolecules,2008,9,3308-3313.
    44. Raus, V, Stepanek, M., Uchman, M., et al. Cellulose-based graft copolymers with controlled architecture prepared in a homogeneous phase. Journal of Polymer Science Part a-Polymer Chemistry,2011,49,4353-4367.
    45. Jiang, F., Wang, Z. K., Qao, Y, et al. A Novel Architecture toward Third-generation thermoplastic elastomers by a grafting strategy. Macromolecules,2013,46,4772-4780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700