用户名: 密码: 验证码:
环形推流反应器流态分析及反硝化除磷试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究中分别采用了传统的停留时间分布函数法和计算流体力学法(CFD)对已取得国家发明专利(发明专利号:ZL200710092501.7)的一种可调节自流分流式环型推流氧化沟反应器的流态进行了分析,试验中的CFD软件采用FLUENT软件。利用PCR-TGGE技术对该环形推流反应器中的微生物生态进行了研究,并联合利用LIVE/DEAD Baclight技术及TTC-脱氢酶活性测定法对环形推流反应器微生物活性及微生物衰减特性进行了研究。通过反应器长期稳定的运行,分析了环形推流反应器污染物去除效能、系统活性污泥特性及反应器低温运行情况。最后,对反应器中的反硝化聚磷菌进行了筛选、分离,并对其反硝化聚磷特性进行了研究。
     论文主要研究内容与结果如下:
     ①环形推流系统长期连续稳定运行的试验结果表明,试验条件下反应器对生活污水中CODCr、TN、TP和NH4+-N的平均去除率分别为91.38%、75.77%、82.84%和81.23%,出水水质能满足《城镇污水厂污染物排放标准》(GB18918-2002)一级B标准的相关要求,环形推流反应器处理生活污水效果良好,且稳定、可靠。
     ②通过RTD试验和对COD的去除试验,得出试验条件下串联级数为6.92级的近似活塞流反应器(Plug flow reactor,PFR)对COD的去除效率是串联级数为1.20级的近似全混流反应器(Continuous stirred tank reactor,CSTR)去除效率的3.18倍。将CFD软件FLUENT数值模拟技术与传统示踪剂RTD试验相结合,应用于分析环形推流反应器流态,结果表明,两种方法所得结果吻合度较好,且结果都表明环形推流反应器中存在着较好的推流流态,这是环形推流反应器良好的污染物处理效果的原因之一。
     ③通过温度梯度凝胶电泳技术图谱分析,不论是在高温条件(七月份,平均水温26.5℃)下还是在低温条件(十二月份,平均水温10.8℃)下,环形推流反应器中的每个区的条带数都大于40条带,可知环形推流反应器中存在着良好的生物多样性。这是环形推流系统长期连续稳定运行处理生活污水能取得良好的处理效果的原因之二。
     ④根据低温条件下反应器的运行效果试验研究及温度梯度凝胶电泳图谱的聚类分析,可知低温对环形推流反应器中活性污泥的活性及微生物种群都有影响,但随后的活性污泥衰减试验表明,环形推流反应器活性污泥细菌活性的衰减77.21%是由细胞内的酶调节引起的,而由细菌细胞的死亡引起的活性降低贡献仅为22.79%,因此环形推流反应器中的活性污泥系统对不利环境具有较强的适应能力。环形推流系统的脱氮表观温度影响系数为1.020,低于生物脱氮的活性污泥系统的典型值,表明环形推流反应系统在低温下具有良好的调控能力。以上这些因素都保证了环形推流系统处理生活污水效果的稳定。
     ⑤环形推流系统的污泥产率较传统活性污泥工艺低,平均表观产率系数仅为0.26gMLSS/gCOD。反应器中的四株反硝化聚磷菌的生长周期都较长,说明要取得好的脱氮除磷效果,应适当延长系统的污泥龄,以保证反硝化除磷菌族群的稳定。
     ⑥从该环形推流反应系统中筛选分离得到了四株反硝化聚磷菌,通过传统鉴定方法及16S rDNA序列测定,确定这四株菌株分别属于Alcaligenes sp.(产碱杆菌属)、Alcaligenes faecalis(粪产碱杆菌)、Bacillus cereus(蜡样芽胞杆菌)及Pseudomonas Medocina(门多萨假单胞菌)。最后,对这四株反硝化聚磷菌的反硝化聚磷特性进行了试验研究,得出这四株菌株都具有良好的反硝化除磷效能,四株菌株对磷和氮的去除率分别为93.00%、71.14%、74.18%、75.72%和94.39%、96.84%、86.77%、86.57%。在整个反硝化吸磷过程中,PHB在的作用十分重要,在研究中应重点监测。
     综上所述,环形推流反应器是一种节能、高效、稳定的污水处理反应器,具有较大的工程推广应用价值。
Circular plug-flow reactor had already been approved as invention patent(ZL200710092501.7), and the flow pattern of circular plug-flow reactor was analyzed in thisthesis by residence time distribution function (RTD) method with potassium chloride(KCL) and computational fluid dynamics (CFD) method with the software of FLUENTsimultaneously. Molecular biology technique of PCR-TGGE was used to researchmicrobial community structure. Then the activity of microorganism and decaycharacteristic of activated sludge in circular plug-flow system had been researched bycombing LIVE/DEAD Baclight technique with TTC-dehydrogenase activitydetermination method. Thirdly, according to the long time experimental data foroperation of circular plug-flow system, the pollution removal effects, activated sludgecharacteristic and operation condition under low temperature were investigated. Finally,the denitrifying phosphate-removal bacterias were screened from circular plug-flowreactor and the characteristics of these denitrifying phosphate-removal effects were alsostudied in this thesis.
     This research was mainly carried out in the following several aspects:
     ①The results of stable operation in long experiment period showed that: theaverage removal rates of CODCr, TN, TP and NH4+-N were91.38%,75.77%,82.84%and81.23%, respectively. Amost all of parameters during experiment period can meetthe B standard of first grade of China Discharge standard of pollutants for municipalwastewater treatment plant (GB18918-2002).
     ②The RTD tests and COD remove experiment showed that: the removalefficiency of PFR (The number of series is6.92) was3.18times of that of CSTR (Thenumber of series is1.20). The flow pattern simulation of circular plug-flow system byFLUENT, the CFD software, had the similar result of traditional RTD method, whichshowed the circular plug-flow reactor had a higher proportion of plug flow pattern, thiswas one of the reasons of the good removal efficiency of the circular plug-flow system.
     ③According to TGGE result, the circular plug-flow system had rich biofacies andmicroorganism not only in July (average water temperature is about26.5℃) but also inDecember (average water temperature is about10.8℃), this was the another reason ofthe good removal efficiency of the circular plug-flow system.
     ④According to the bacterial decay characteristics experimental, results revealed that77.21%of cell decay in circular plug-flow system was caused by activity decreaseand22.79%was caused by cell death.
     ⑤The average sludge yield of circular plug-flow system was0.26gMLSS/gCOD,it’s lower than conventional activated sludge processes.
     ⑥Four denitrifying phosphate-removal bacteria strians were screened fromcircular plug-flow reactor and be identified as Alcaligenes sp., Alcaligenes faecalis,Bacillus cereus and Pseudomonas Medocina according to their morphological,physiological-biochemical reactions and16S rDNA sequence homology comparison.And in the denitrifying phosphate-removal experiment, the removing rate of phosphorusand nitrogen were93.00%,71.14%,74.18%,75.72%and94.39%,96.84%,86.77%,86.57%, Poly-β-hydroxybutyric (PHB) was the key in whole denitrifying phosphate-removal process.
引文
[1] Jo o G. Ferreira, Jesper H. Andersen, Angel Borja, et al. Overview of eutrophication indicatorsto assess environmental status within the European Marine Strategy Framework Directive [J].Estuarine, Coastal and Shelf Science,2011,(93):117-131.
    [2]钟成华.三峡库区水体富营养化研究[D].成都:四川大学,2004.
    [3]韩继刚,孟颂东等.藻类污染生物防治新策略[J].微生物学报,2001,41(3):381-384.
    [4]黄俊熙.厌氧/缺氧同步反硝化除磷过程的研究[D].广州:中山大学,2010.
    [5]罗文娟. OGO反应系统流态及脱氮除磷试验研究[D].重庆:重庆大学,2008.
    [6] Laura Monteagudo, José Luis Moreno, Félix Picazo. River eutrophication: Irrigated vs.non-irrigated agriculture through different spatial scales[J]. Water research,2012,(46):2759-2771.
    [7] Boqiang Qin. Lake eutrophication: Control countermeasures and recycling exploitation[J].Ecological Engineering,2009,35:1569–1573.
    [8] Guo, L. Doing battle with the green monster of Lake Taihu[J]. Science,2007,(317):1166.
    [9] Satoshi Watanabe, Masashi Kodama, Masaaki Fukuda. Nitrogen stable isotope ratio in themanila clam, Ruditapes philippinarum, reflects eutrophication levels in tidal flats[J]. MarinePollution Bulletin,2009,(58):1447–1453.
    [10] P. M.J. Janssen, K. Meinema, H.F. Van der Roest. Biological Phosphorus Removal: Manualfor Design and Operation[M]. London, UK: IWA Publishing,2002.
    [11] X.S. Guo, J.X. Liu, Y.S. Wei and L. Li, Sludge reduction with Tubificidae and the impact onthe performance of the wastewater treatment process[J]. J. Environ. Sci.-China,2007,19:257–263.
    [12] H.J. Ma, S.T. Zhang, X.B. Lu, B. Xi, X.L. Guo, H. Wang and J.X. Duan, Excess sludgereduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkalinedisintegration and hydrolysis/acidogenesis pretreatment[J]. Bioresource Technol,2012),116:441–447.
    [13] Y. M. Kim, D.H. Chon, H.S. Kim and C. Park, Investigation of bacterial community inactivated sludge with an anaerobic side-stream reactor (ASSR) to decrease the generation ofexcess sludge[J]. Wat. Res.,2012,46:4292–4300.
    [14] Harmer G. Continuous culture of bacteria with special reference to activated studgewastewater treatment process [A].1987,318–346.
    [15]周雹.活性污泥工艺简明原理及设计计算[M].北京:中国建筑工业出版社,2005.
    [16] Bruijn P D, Van de Graaf A A, Jetten M S M, et al. Growth of nitrosomonas europaea onhydroxylamine[J]. FEMS Microbial Lett,1985,125:179-184.
    [17]汤丽娟. OGO反应器中好氧反硝化菌的筛选与脱氮特性研究[D].重庆:重庆大学,2009.
    [18]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [19] Mogens Henze, Poul Harremo s.国家城市给水排水工程技术研究中心译.污水生物处理与化学处理技术[M].中国建筑工业出版社,1999.
    [20]陈燕云. OGO反应器反硝化除磷试验研究[D].重庆:重庆大学,2009.
    [21] V. Mateju, S. Cizinska, J. Krejci, et al. Biological water denitrification–a review[J]. Enz.Microb. Tech.,1992,14:170–183.
    [22] Glen T. Daigger, Henry C. Lim,张锡辉,刘勇弟译.废水生物处理(第二版,改编和扩充)[M].化学工业出版社环境科学与工程出版中心,2003.
    [23]王洪臣,周军,王佳伟,等.5F-A2/O—脱氮除磷工艺的实践研究[M].北京:中国建筑工业出版社,2009.
    [24] K.R. Pagilla, M. Urgun-Demirtas, K. Czerwionka, et al. Nitrogen speciation in wastewatertreatment plant influents and effluents-the US and Polish case studies.[J]. Water Sci Technol,2008,57(10):1511-1517.
    [25] M. Sarioglu, G. Insel, N. Artan, et al. Model evaluation of simultaneous nitrification anddenitrification in a membrane bioreactor operated without an anoxic reactor.[J]. Journal ofMembrane Science,2009,337:17–27.
    [26] Mohammad Seifi, Mohammad Hassan Fazaelipoor. Modeling simultaneous nitrification anddenitrification (SND) in a fluidized bed biofilm reactor [J]. Applied Mathematical Modelling,2012, Available online12January2012.
    [27] Yousef Rahimi, Ali Torabian, Naser Mehrdadi, et al. Simultaneous nitrification–denitrificationand phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)[J]. Journal ofHazardous Materials,2011,185:852–857.
    [28] Watanabe W, et al. Simultaneous Nitrification and Denitrification in Micro-aerobic Biofilm[J].Water Sci&Tech,1992,26:511-52.
    [29] N. Puznava, M. Payraudeau. D. Thornberg, Simultaneous nitrification and denitrification inbiofilters with real-time aeration control[J]. Water Sci. Tech.,2000,43(1):269-276.
    [30]] Lijiao Ren, Yining Wu, Nanqi Ren, Kun Zhang, et al. A/O reactor treating diluted livestockwastewater during start-up period[J]. Journal of environmental sciences,2010,5:656-662.
    [31]杨涛.一体化多级生物膜反应器处理中_高浓度小城镇污水试验研究[D].重庆:重庆大学,2006.
    [32]吴姝媛. OGO反应系统同时硝化反硝化脱氮试验研究[D].重庆:重庆大学,2007.
    [33] Sen Priyali, Dentel Steven K, Simultaneous Nitrification-denitrification in a Fluidized BedReactor [J]. Water Sci&Tech,1998,38(1):247-254.
    [34] Klangduen Pochana, J urg Keller. Study of factors affecting Simultane ous Nitrification andDenitrification (SND)[J]. Wat. Sci. Tech.,1999,39(6):61-68.
    [35] Lesley A Robertson. Simultaneous nitrification and denitrification in aerobic chemostatcultures of thiosphaera pantotropha [J]. Appied and Environmental Microbiology,1998,54(11):2812-2818.
    [36] Tage Dalsgaard, Bo Thamdrup, Donald E. Canfield. Anaerobic ammonium oxidation(anammox) in the marine environment[J]. Research in Microbiology,2005,156:457-464.
    [37] LIAO Dexiang, LI Xiaoming, YANG Qi, et al. Effect of inorganic carbon on anaerobicammonium oxidation enriched in sequencing batch reactor[J]. Journal of EnvironmentalSciences,2008,20:940-944.
    [38] N. Chamchoi, S. Nitisoravut, J.E. Schmidt. Inactivation of ANAMMOX communities underconcurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification[J].Bioresource Technology,2008,99:3331-3336.
    [39]豆俊峰.螺旋升流式反应器处理城市污水的试验研究[D].重庆:重庆大学,2004.
    [40] Ling Wang, Tian Li. Anaerobic ammonium oxidation in constructed wetlands with bio-contactoxidation as pretreatment[J]. Ecological Engineering,2011,37:1225-1230.
    [41] Dawen Gao, Yongzhen Peng, Baikun Li, et al. Shortcut nitrification–denitrification byreal-time control strategies[J]. Bioresource Technology,2009,100(7):2298-2300.
    [42] Kempen van R, Mulder J W, et al. Overview: Full scale experience of the Sharon process fortreatment of rejection water of digested sludge dewatering[J]. Wat Sci&Tech,2001,44:145-152.
    [43] Metcalf&Eddy Inc. Wastewater Engineering Treatment and Reuse (Fourth Edition)[M]. BeiJing: Tsinghua University press.2003.
    [44]顾夏声.废水生物处理数学模式(第二版)[M].北京:清华大学出版社,1993.
    [45]王锐刚.活性污泥法除磷动力学研究[D].徐州:中国矿业大学,2009.
    [46]张园.螺旋升流式SUFR-UCT系统脱氮除磷试验研究[D].重庆:重庆大学,2011.
    [47] W. T. Liu, T. Mino, K. Nakamura, et al. Glycogen accumulating population and its anaerobicsubstrate uptake in anaerobic-aerobic activated sludge without biological phosphorusremoval[J]. Water Research,2003,30(1):75-82.
    [48] Comeau Y. Hall K J, Hancock R E W, et al.. Biochemical model for enhanced biologicalphosphorus removal [J]. Wat Res.,1986,20(12):1511~1521.
    [49] K.C. Lindrea, G. Lockwood, M. Majone. The distribution and movement of polyphosphateand associated cations in sludges from ndebpr plants in different configurations at pilotscale[J]. Water Science and Technology,1998,37(4-5):555-562.
    [50] Keasling J D. van Dien S J, Pramanik J.Engineering polyphosphate metabolism in escherichiacoli: implications for bioremediation of inorganic contaminants [J]. Biotechnol Bioeng,1998,58:231-239
    [51] Kuba T, Smolders G J F, van Loosdrecht M C M, et al. Biological phosphorus removal fromwastewater by anaerobic-anoxic sequencing batch reactor [J]. Wat. Sci. Tech.1993,27:241-252.
    [52] Dircks K,Beun J J. van Loosdrecht M C M, et al.. Glycogen metabolism in aerobic mixedcultures[J]. Biotechnol. Bioeng.,2001,73:85~94.
    [53]叶姜瑜. SUFR系统中微生物多样性及稳定性的试验研究[D].重庆:重庆大学,2007.
    [54] Gabriel Bitton. Wastewater Microbiology (Third Edition)[M]. Hoboken, New Jersey: JohnWiley&Sons, Inc.,2005.
    [55] ZENG Wei, LI Lei, YANG Ying-ying, et al. Denitrifying phosphorus removal and impact ofnitrite accumulation on phosphorus removal in a continuous anaerobic–anoxic–aerobic (A2/O)process treating domestic wastewater [J]. Enzyme and Microbial Technology,2011,48:134-142.
    [56] MA Juan, PENG Yongzhen, WANG Shuying, et al. Denitrifying phosphorus removal in astep-feed CAST with alternating anoxic-oxic operational strategy[J]. Journal ofEnvironmental Sciences,2009,21:1169-1174.
    [57] Kuba T, van Loosdrecht M C M, Brandse FA,, et al. Occurrence of denitrifying phosphorusremoving bacteria in modified UCT-type wastewater treatment plants[J]. Water Res,1997,31(4):777–86.
    [58] Kuba T, van Loosdrecht M C M, Heijnen J J. Biological dephosphatation by acti-vated sludgeunder denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation ina full-scale waste water treatment plant.[J]. Water Sci Technol,1997,36(12):75–82.
    [59] Gilda C, Paulo C L, Adrian O, et al. Denitrifying phosphorus removal: Linking the processperformance with the microbial community structure [J]. Water Res,2007,41:4383–4396.
    [60]鲍林林.反硝化聚磷菌特性与反硝化除磷工艺研究[D].哈尔滨:哈尔滨工业大学市政环境工程学院,2008.
    [61] J.Y. Hu, S.L. Ong, W.J. Ng, et al. A New Method for Characterizing Denitrifying PhosphorusRemoval Bacteria by Using Three Different Types of Electron Acceptors [J]. Water Res,2003,37:3463-3471.
    [62] Y. B. Comeau, K. J. Rabinowitz, K. J. Hall, et al. Phosphate release and uptake in enhancedbiological phosphorus removal from wastewater[J]. JWPCF,1987,59:707-713.
    [63]李捷,熊必永,张杰.电子受体对厌氧/好氧反应器聚磷菌吸磷的影响[J].哈尔滨工业大学学报,2005,37(5):619-622.
    [64] J. Meinhold, E. Arnold, S. Isaacs. Effect of nitrite on anoxic phosphate uptake in biologicalphosphorus removal activated sludge [J]. Wat. Res.,1999,33(8):1871-1883.
    [65] P. A. Wilderer, W. L. Jones, U. Dau. Competition in denitri cation systems a ecting reductionrate and accumulation of nitrite [J]. Wat. Res,1987,21(2):239-245.
    [66]李相昆.反硝化除磷工艺与微生物学研究[D].哈尔滨:哈尔滨工业大学,2006.
    [67]王亚宜.反硝化除磷脱氮机理及工艺研究[D].哈尔滨:哈尔滨工业大学,2004.
    [68] Y. Y. Wang, Y. Z. Peng, F. F. Yin, et al. Characteristics and affecting factors of denitrifyingphosphorus removal in two-sludge sequencing batch reactor [J]. Environmental Science,2008,29(6):1526-1532.
    [69]杨寅.氧化沟优化运行的CFD模拟及实验研究[D].武汉:华中科技大学,2011.
    [70]张大鹏,谢丽,宋乐平等.循环流环型脱氮除磷工艺处理低浓度城镇污水[J].给水排水(增刊),2006,32:35-38.
    [71]周雹.城镇污水生物处理新工艺及其应用[J].中国给水排水,2003.19(12):12-15.
    [72]吕庆洪.一体化氧化沟流态研究及一体化OCO工艺试验[D].成都:四川大学,2004.
    [73]毕韶丹,李海波,董维芳. OCO工艺处理高浓度啤酒废水[J].水处理技术,2009,35(12):117-120.
    [74]李德豪,周锡堂,林培喜,等.一体化OCO工艺处理生活污水研究[J].给水排水,2004,30(8):17-20.
    [75]许晓毅,罗固源,汤丽娟,等.活动导流墙同心圆工艺处理生活污水的试验研究[J].环境工程学报,2007,1(8):40-43.
    [76] Xu xiaoyi, Luo Guyuan. OGO process for biological removal of nitrogen and phosphorus [J].Proceedings of International Conference on Asia-European Sustainable Urban Development,Journal of Central South University of Technology,(Suppl.),2006,13(6):198-201.
    [77]许晓毅,罗固源,唐刚,等. OGO工艺处理城市污水的脱氮除磷效能与水力特性的试验研究[J].环境科学学报,2006,26(8):1295-1301.
    [78]罗固源,许晓毅,唐刚,等. OGO工艺处理城市污水脱氮除磷试验研究[J].中国给水排水,2006,22(3):69-72.
    [79]罗固源.水污染物化控制原理与技术[M].北京.化学工也出版社,2003.
    [80]张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社,2001.
    [81]罗固源.水污染控制工程[M].北京:高等教育出版社,2006.
    [82]罗固源,许晓毅,季铁军,等.可调节自流分流式环型氧化沟[P].中国, ZL200710092501.7,2009.4.8.
    [83]许晓毅.同心圆活动导流墙式反应器的试验研究[D].重庆:重庆大学,2007.
    [84]国家环境保护总局《水和废水监测分析方法》编委会.水和废水标准分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [85]陈磊.反硝化聚磷菌培养驯化分离方法及菌种特性的研究[D].济南:山东大学,2008.
    [86]周琴,蒋冬花,杨叶,等.合成聚-β-羟基丁酸芽孢杆菌的筛选、鉴定及碳氮源优化[J].浙江师范大学学报(自然科学版),2010,33(2):203-209.
    [87]赵良启,张丽珍,张建国,等.一种多聚羟基烷酸产生菌的诱变育种[J].微生物学通报,1998,25(6):329-331.
    [88]陈接锋.产聚β-羟基丁酸球衣菌分离筛选及发酵和提取的研究[D].福州:福建师范大学,2003.
    [89]王秀国.杀菌剂多菌灵高频投入对土壤微生物群落的影响及其生物修复[D].杭州:浙江大学,2009.
    [90] Gerard Muyzer, Kornelia Smalla. Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J].Antonie van Leeuwenhoek,1998,73:127-141.
    [91] Robert S. Dungan, Urzsula Kukier, Brad Lee. Blending foundry sands with soil: Effect ondehydrogenase activity [J]. Science of the Total Environment,2006,357:221-230.
    [92] V. Lazarova, J. Manem. Biofilm characterization and activity analysis in water [J]. Wat. Res.,1995,29(10):2227-2245.
    [93] R. Barrena, F. Vázquez, A. Sánchez. Dehydrogenase activity as a method for monitoring thecomposting process[J]. Bioresource Technology,2008,99:905-908.
    [94]王金霞,罗固源.应用荧光光谱法检测蓝藻生物量[J].现代科学仪器,2011,(6):111-113.
    [95]刘周忆,朱拓,顾恩东,等.荧光光谱检测的酸性橙II的研究[J].光学学报,2008,28(6):1106-1110.
    [96]方玲玲.厌氧板反应器水力混合特性研究[D].合肥:合肥工业大学,2006.
    [97]颜大椿,等编.试验流体力学[M].北京:高等教育出版社,1992.
    [98] Kramer.H., and K.P.R.Westererp. Elements of chemical reactor design and operation [M].Academic Press, Inc. New York,1963.
    [99]魏辉.氧化沟数学模型的初步研究[D].长沙:湖南大学,2002.
    [100]许丹宇,张代钧,艾海男,等.氧化沟反应器流体力学特性的数值模拟与实验研究[J].环境工程学报,2007,1(12):20-26.
    [101] K. Pougatch, M. Salcudean, L. Gartshore et al. Computational modelling of large aeratedlagoon hydraulics[J].Wat. Res.,2007,41(10):2109-2116.
    [102]夏震寰.现代水力学[M].北京:高等教育出版社.1992.
    [103]韩占忠. FLUENT:流体工程仿真计算实例与分析[M].北京:北京理工大学出版社书.2009.
    [104]吴望一.流体力学[M].北京:北京大学出版社.1982.
    [105]华祖林.湍流模型在环境水力学研究中的应用[M].水科学进展.2001.
    [106]印志松. CFD技术及其在水泥工业中的应用研究[D].武汉:武汉理工大学.2010.
    [107]刘兆存.湍流理论与计算初探[M].南京:河海大学出版社.1995.
    [108]韩占忠,王敬,兰小平. Fluentl流体工程仿真计算实例与应用(第二版)[M].北京:北京理工大学出版社.2010.
    [109]于勇. FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.
    [110]常欣. FLUENT船舶流体力学仿真计算工程应用基础[M].北京:人民出版社,2011.
    [111]许保玖.当代给水与废水处理原理讲义[M].清华大学出版社,1983.
    [112]何龙庆,林继成,石冰.菲克定律与扩散的热力学理论[J].安庆师范学院学报(自然科学版),2006,12(4):38-39.
    [113] G. Tchobanoglous, F. Burton, Wastewater Engineering Treatment, Disposal and reuse[M].Metcalf&Eddy, McGraw Hill International Editions. Civil Engineering Series, thirded,2002.
    [114]罗麟,李伟民,邓荣森,等.一体化氧化沟的三维流场模拟与分析[J].中国给水排水.2003.19(12):15-18.
    [115]赵杰.基于CFD的同心环流反应器流态模拟研究及优化[D].重庆:重庆大学,2010.
    [116]张宗才,张新申,张铭让.氧化沟水力分析及流场计算[J].中国皮革,2004.33(11):22-25.
    [117]王福军.计算流体动力学分析[M].北京:清华大学出版社.2004.
    [118]李媛. AIRE-O2充氧机性能浅析与Orbal氧化沟流态测试及三维模拟[D].重庆:重庆大学,2005.
    [119]张凯,王瑞金,王刚,等. Fluent技术基础与应用实例[M].北京:清华大学出版社,2010.
    [120]邓荣森.氧化沟污水处理理论与技术[M].北京:化学工业出版社,2006.
    [121]张伟.温度梯度凝胶电泳(TGGE)分析消毒剂对微宇宙细菌群落结构的影响[D].武汉:华中科技大学,2006.
    [122]王云仙.热泵水源水体中藻类和细菌群落的变化[D].重庆:重庆大学,2010.
    [123]叶姜瑜,黄凌,张永莲,等.一株低温高效植物油降解菌的驯化筛选及固定化研究[J].安全与环境学报,2012.12(2):41-44.
    [124]张化青. TGGE法分析人工湿地细菌种群结构与净化效果[D].重庆:重庆大学,2011.
    [125] Arbrige M, Chesbro W R. Very slow growth ofBacillus polymyxa: stringent responses andmaintenance energy [J]. Arch Microbiol,1982,132:338-344.
    [126] Yarmolinsky M B. Programmed cell death in bacterial populations [J]. Science,1995,267:836-837.
    [127] Lewis K. Programmed death in bacteria [J]. MicrobiolMol Biol Rev,2000,64:503-514.
    [128]胡子斌. TTC—脱氢酶活性常温萃取测定法及应用[J].工业水处理,2001.21(10):29-31.
    [129]梁鹏,黄霞.利用LIVE/DEAD Baclight染色测定活性污泥中的活菌水平[J].环境化学,2007,26(5):598-601.
    [130]牛志卿,刘建荣,吴国庆. TTC-脱氢酶活性测定法的改进[J].微生物学通报,1994.21(1):59-61.
    [131] L. Bunetel, J. Guerin, G. Agnani. In vitro study of the effect of titanium on Porphyromonasgingivalis in the presence of metronidazole and spiramycin [J]. Biomaterials,2001,22:3067-3072.
    [132] LIVE/DEAD Baclight Bacterial Viability Kits, Product Information [Z],26,2001School ofChemical Engineering, The University of Birmingham, John Wiley&Sons, Inc..2001.
    [133]周春生,尹军. TTC-脱氢酶活性检测方法的研究[J].环境科学学报,1996.16(4):400-405.
    [134]芦起,杨锡强,余加林等. SYT09/PI荧光探针标记lasR rhlR基因缺陷对铜绿假单胞菌生物膜形成影响的体外实验研究[J].中国微生态学杂志,2011,23(6):493-499.
    [135]金丹,张玉钧,李国刚,等.菲的三维荧光光谱特性研究[J].光谱学与光谱分析,2009,29(5):1319-1322.
    [136]郝晓地,朱景义,曹秀芹,等.污水生物处理系统细菌衰减特征的实验研究[J].环境科学,2008.29(11):3104-3109.
    [137]谢恩.弧形导流板厌氧/限氧循环污泥减量反应器试验研究[D].重庆:重庆大学,2009.
    [138]解军.脱氢酶活性测定水中活体藻含量的研究[D].济南:山东大学博士学位论文,2008.
    [139]刘新文.以工业废水为主的城市污水A/O工艺的启动与运行性能研究[D].杭州:浙江大学硕士学位论文,2005.
    [140] P.W.库切,G.B.罗尔斯顿.生物化学[M].北京:科学出版社,2002.
    [141] D. L. Nelson,M. M. Cox. Lehninger Principles of Biochemistry (Fifth Edition)[M]. NewYork:W.H.Freeman&Co Ltd,2008.
    [142]张自杰,林荣忱,金儒霖.排水工程(第四版)[M].北京:中国建筑工业出版社,2000.
    [143]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,1999.
    [144]张忠祥,钱易主编.废水生物处理新技术[J].清华大学出版社,2004.
    [145]史春龙.富营养化湖泊底泥中反硝化微生物及其反硝化作用的研究[D].南京:南京农业大学硕士学位论文,2003.
    [146]白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及其运行控制条件研究[J].环境科学学报,2001,21(5):570-572.
    [147]罗固源.水污染控制工程[M].北京:高等教育出版社,2006.
    [148]张芳,李光明,徐伟锋. A/DAT-IAT工艺除磷影响因素的试验研究[D].工业水处理,2004,24(8):37-39.
    [149]顾夏生.废水生物处理数学模式[M].北京:清华大学出版社,1982.
    [150] J.Chudoba. V. Ottová and V.Madera. Control of Activated Sludge Filamentous Bulking.Effect of hydraulic regime or degree of mixing in an aeration tank [J]. Water Research.1973,7(9):1163-1182.
    [151] Pasveer. A case of filamentous activated sludge[J]. J.W.P.C.F.1969,41(7):1340-1352.
    [152]孟雪征.冷适应微生物处理寒冷地区低温生活污水的研究[D].哈尔滨工业大学博士学位论文,2001:91-92.
    [153]辛明秀.低温微生物研究进展[J].微生物学报,1998,(5):401-403.
    [154] Zhang Boran. Kazuo Yamamoto, Seasonal change of microbial population and activities ina building wastewater reuse system using a membrane separation activated sludgeprocess[J]. Water Sci.Tech.,1996,34(5):295-302.
    [155]周雪飞,顾国维,张冰.活性污泥数学模型中异养菌产率系数测定方法的研究[J].环境污染与防治,2006,28(7):493-495.
    [156]国际水协废水生物处理设计与运行数学模型课题组著,张亚雷,李咏梅译.活性污泥数学模型[M].同济大学出版社,2002.
    [157]郑宗林,唐敏,何文平,等.一株反硝化聚磷细菌的分离及鉴定[J].水产科学,2011,30(2):74-78.
    [158] R.E.布坎南, N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社.1984.
    [159] MIRAC Y, HALUK S, YAVUZ B. Determination of poly-β-hydroxybutyrate (PHB)production by some Bacillus spp.[J]. World Journal of Microbiology&Biotechnology,2005,21:565–566.
    [160] A ARUN, R ARTHI, V SHANMUGABALAJI, et al. Microbial production of poly-b-hydroxybutyrate by marine microbes isolated from various marine environments [J].Bioresource Technology,2009,2320-2323.
    [161]杨勇光.碳源种类对反硝化除磷系统的影响及反硝化聚磷菌(DPB)的分离[J].重庆:重庆大学,2010.
    [162]马放,杨菲菲,李昂,等.1株高效反硝化聚磷菌的生物学特性研究[J].环境科学,2011,32(9):2710-2715.
    [163]刘晖,孙彦富,贾晓珊,等.一株非发酵反硝化聚磷菌的筛选及其代谢模式研究[D].中国环境科学,2011,31(6):958-964.
    [164] B. Aslim, Z. N. Yüksekdag, Y. Beyatli. Determination of PHB growth quantities of certainBacillus species isolated from soil [J]. Turkish Electronic Journal of Biotechnology,2002,Special Issue,24-30.
    [165] J. H. Law, R. A. Slepecky. Assay of Poly-β-Hydroxybutyric Acid [J]. Law and Slepecky,1961,82:33-36.
    [166] M. Yilmaz, H. Soran, Y. Beyatli. Determination of poly-b-hydroxybutyrate (PHB)production by some Bacillus spp.[J]. World Journal of Microbiology&Biotechnology,2005,21:565-566.
    [167] D.S. Rosa, N.T. Lotto, D.R. Lopes, et al. The use of roughness for evaluating thebiodegradation of poly–β-(hydroxybutyrate) and poly-β-(hydroxybutyrate–co–β-valerate)[J]. Polymer Testing,2004,23:3-8.
    [168]李夕耀,彭永臻,王淑莹,等.聚磷菌厌氧时吸收乙酸和丙酸的代谢模型[J].环境科学与管理,2008,33(8):37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700