用户名: 密码: 验证码:
缺血缺氧时星型胶质细胞电生理特征及其增殖功能变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分糖氧剥夺对大鼠海马星型胶质细胞膜电位的影响
     目的:观察大鼠海马星型胶质细胞对缺氧缺糖损伤的急性电生理反应。
     方法:采用出生后23天的大鼠建立体外大鼠急性海马脑片的缺氧缺糖模型(OGD模型),应用急性海马切片及膜片钳技术记录星型胶质细胞在正常生理条件下和OGD过程中膜电位的变化。
     结果:正常生理条件下,大鼠海马CA1区成熟的星型胶质细胞呈现低膜电阻(Rm)并且其膜电位呈线性电导,可被一系列的去极化或者超极化电压诱导,星型胶质细胞的静息膜电位由细胞内外钾离子梯度决定。持续灌注OGD溶液30min时,星型胶质细胞膜电位显示多相性去极化,而不是线性去极化。表现为OGD开始至11min的一个小幅度的去极化阶段,此期结束时,膜电位平均值在3.8±1.6mV;紧接着是6min的加速去极化,在17min达到稳定的高峰并且出现幅度6.0±1.8mV的去极化;然后为第二个平台期。OGD后,去极化的膜电位很快恢复到静息电位水平,并会跟随一个短暂的比OGD处理前水平低的超极化3.4±1.6mV。非持续灌流OGD组星型胶质细胞膜电位反应趋势与持续灌注OGD组相似,但其膜电位均值显示更强的去极化(P<0.05)。
     结论:大鼠海马CA1区成熟的星型胶质细胞表达特征性的具有线性I-V关系的被动电传导,并且具有低的膜电位及膜电阻。成熟胶质细胞的膜电位接近钾的平衡电位,表明钾通道参与了其电传导;星型胶质细胞对OGD损伤比神经元具有更强的耐受性,OGD损伤可诱导海马星型胶质细胞膜电位产生多相性去极化,有其独特的电生理反应模式。
     第二部分糖氧剥夺导致大鼠海马星型胶质细胞膜电位反应的机制探讨
     目的:探讨有关星型胶质细胞对氧糖缺失损伤的急性电生理反应的基本机制。
     方法:应用急性海马切片及膜片钳技术记录星型胶质细胞在OGD过程中膜电位的变化以及各种抑制剂干预对其膜电位的变化影响。建立体外大鼠急性海马脑片的缺氧缺糖模型(OGD模型),采用出生后23天的大鼠,分为OGD组、OGD+药物干预组,OGD溶液中加入相应受体的抑制剂:AMPA受体抑制剂(30 mmol/L NBQX)、NMDA受体抑制剂D,L-AP5(50 mmol/L)、谷氨酸转运体受体抑制剂TBOA(100 mmol/L)、P2X受体非选择性受体阻滞剂suramins(100 mmol/L)、GABAA受体的阻滞剂bicuculline(10mmol/L)以及缝隙连接阻滞剂MFA(100mmol/L),以观察星型胶质细胞的缝隙连接、离子受体和转运体的激活对其膜电位变化的影响;OGD溶液中加入iodoacetate(2mmol/L),或antimycin(25 mmol/L)和rotenone(50 mmol/L)来检测糖酵解和线粒体氧化磷酸化对星型胶质细胞膜电位变化作用;
     结果:星型胶质细胞的缝隙连接、离子受体和转运体的抑制剂没有影响OGD诱导的星型胶质细胞去极化膜电位(P>0.05);离子受体和转运体的抑制剂联合应用也没有对星型胶质细胞去极化膜电位产生显著影响(P>0.05);当糖酵解和氧化磷酸化途径被抑制时OGD诱导星型胶质细胞膜电位产生快的去极化。糖酵解抑制剂iodoacetate干预时星型胶质细胞在OGD8分钟时产生一个iodoacetate与antimycin联合应用时相似的膜电位变化。
     结论:OGD诱导的特征性的星型胶质细胞膜电位变化不受星型胶质细胞上的谷氨酸、GABA受体以及转运体激活的影响,说明细胞外钾的变化导致了OGD后星型胶质细胞膜电位变化;糖酵解途径是星型胶质细胞在OGD早期维持细胞膜上钠钾泵功能及保持膜电位的主要能量来源。
     第三部分缺血缺氧对体外培养星型胶质细胞细胞周期和周期相关蛋白的影响
     目的:观察缺血缺氧损伤对星型胶质细胞细胞周期及细胞周期相关蛋白的影响。
     方法:用流式细胞仪及Brdu掺入法检测缺血缺氧后不同时间点星型胶质细胞细胞周期变化和细胞的增殖活力;用荧光免疫细胞化学技术测定胶质细胞纤维酸性蛋白(GFAP)、增殖细胞核抗原(PCNA)及细胞周期蛋白cyclinD1的表达水平
     结果:体外缺血缺氧损伤后星型胶质细胞S期较正常组明显增高,6小时达高峰,Brdu掺入法显示损伤后6小时星型胶质细胞的增殖活力最高,而随后S期细胞数目及细胞增殖活力都呈下降趋势。在缺血缺氧早期,GFAP阳性染色增强,6小时最高;缺血缺氧12h后GFAP阳性染色变弱,PCNA阳性反应损伤后表达增加,6h表达最高,而cyclinD1的表达在损伤后逐渐增加,在24h时达高峰。
     结论:缺血缺氧损伤激活星型胶质细胞,使其进入新的细胞周期,出现细胞的增殖反应;PCNA以及cyclinD1参与了损伤后星型胶质细胞的修复和增殖;细胞周期事件与星型胶质细胞的增殖活化密切相关。
Part One The effections of Oxygen and Glucose Deprivation on the Electrophysiological Characters of Astrocytes in Rat Hippocampus
     Objective:To study the effections of Oxygen and Glucose Deprivation on the electrophysiological characters of astrocytes in rat hippocampus.
     Methods:In this study,acute hippocampal slices were prepared from 23-day-old rats. we applied glucose and oxygen-deficient artificial cerebrospinal fluid(aCSF)(oxygen and glucose deprivation(OGD) solution) to acute rat hippocampus slices and examined astrocyte Vm in the physiological condition and OGD condition by patch-clamp recording.
     Result:In the physiological condition,mature astrocytes predominantly express linearⅠtoⅤconductance that can be evoked by a series of de-and hyperpolarization voltage steps in CA1 area.Such a linear whole-cellⅠtoⅤrelationship is predominately due to the expression of leak K+ channels,When the recording chamber was continually perfused with OGD solution for 30 mins,the astrocyte Vm showed a multiphasic,rather than linear,depolarization.This was characterized by an initial small-amplitude depolarization phase in the first 11min of OGD process.At the end of this phase,the Vm depolarization amounced to an average o(?)mV; followed by a 6min accelerating depolarizing period,and a second plateau.On OGD withdrawal,this depolarized Vm returned rapidly to the resting Vm level and was followed by a transient further 3.4±1.6mV hyperpolarization below the initial pre-OGD level.The mean astrocyte Vm response over 30 mins OGD under this nonperfusion condition showed similar response and a much stronger depolarization(P<0.05).
     Conclusion:Mature astrocytes predominantly express linearⅠtoⅤconductance in CA1 area,and they have a low membrane potential and membrane resistance.The reversal potential of mature astrocytes is much closer to the equilibrium potential of K. This indicated K+ channels were involed in astrocytes conductance;Astrocytes are more resistant to OGD damage than neurons;OGD Induces a multiphase astrocyte membrane potential depolarization,
     Part Two The Underling mechanisms of the Electrophysiological Changes of Rat Hippocampal Astrocytes following Oxygen and Glucose Deprivation
     Objective:To investigate the basical mechanisms of the acute electrophysiological response of astrocytes in rat hippocampus following OGD.
     Methods:In this study,acute hippocampal slices were prepared from 23-day-old rats. we applied glucose and oxygen-deficient artificial cerebrospinal fluid(aCSF)(oxygen and glucose deprivation(OGD) solution) to acute rat hippocampus slices and examined astrocyte Vm in OGD condition and inhibitors interfered condition by patch-clamp recording.We added inhibitors for AMPA receptors(30 mmol/L NBQX), NMDA receptors(50 mmol/L D,L-AP5),glutamate transporters(100 mmol/L TBOA)、P2X receptors antagonist(100 mmol/L suramins)、GABAA receptor antagonist(10 mmol/L bicuculline) and gap junction blocker(100mmol/L MFA) to the OGD solution, then we observed the effections of astrocytic gap junction、ionotropic receptors and transporter on OGD induced astrocyte membrane potential changes;we added iodoacetate(2 mmol/L)、antimycin(25 mmol/L)and rotenone(50 mmol/L) to the OGD solution to investigated the effections of glycolytic and mitochondrial oxidative phosphorylation on OGD induced astrocyte membrane potential changes.
     Result:These inhibitors did not significantly affect OGD-induced astrocyte Vm depolarization(P>0.05);When glycolytic and mitochondrial ATP production was inhibited,astrocytes showed a rapid depolarization,We found that the glycolysis inhibitor iodoacetate(2 mmol/L) produced a similar Vm changes as the three inhibitors applied together for an 8-min OGD treatment.
     Conclusion:OGD induced astrocyte membrane potential changes were not effected by the gap junction、glutamate receptors/transporters and GABA receptors,this indicated extracellular K+ increase was primarily responsible for the astrocytes embrane potential multiphasic.changes following OGD;Glycolysis plays a preferential role in keeping the Vm and Na-K-ATP pump functions in the early period of OGD.
     Part Three Effects of ischemia and anoxia on cell activation and cell cycle of cultured astrocyte in vitro.
     Objective:To study the effects of ischemia and anoxia on cell activation and cell cycle of astrocyte in vitro.
     Methods:We measured the cell cycles and the proliferation of astrocyte in different time after ischemia and anoxia by flow cytometry and Brdu pulse labeling; and detected the expression of GFAP,PCNA and cyclinD1 with the fluorescence immunocytochemistry.
     Result:After ischemia and anoxia in vitro,S phase of astrocyte significantly increased compared with the normal,and the peak appeared at 6h;and the proliferated ability of astrocyte is highest at 6h by Brdu pulse labeling test,but the S phase and proliferated ability is decreased after 6h.At the early of ischemia and anoxia,the positive staining of GFAP increased;but after ischemia and anoxia 12 hours,the positive staining of GFAP is weak,The levels of PCNA increased after the damage,and reached the peak at 6 h.The expression of cyclinD1 is gradually increased after damaged,the peak is appeared at 24h.
     Conclusion:Astrocyte cells are activated to proliferate and enter into new cell cycle events by ischemia and anoxia;PCNA and cyclinD1 counsel the adjustment of astrocyte's proliferation and repairing;The cell cycle events are related with proliferation and activation of astrocyte closely.
引文
1.Nedergaard M,Dirnagl U(2005) Role of glial cells in cerebral ischemia.Glia 50:281-286.
    2.Panickar KS,Norenberg MD(2005) Astrccytes in cerebral ischemic injury:morphological and general considerations.Glia,2005,50:287-98.
    3.Pekny M,Nilsson M(2005) Astrocyte activation and reactive gliosis.Glia.200550:427-434.
    4. Swanson RA, Kauppinen TM (2004) Astrocyte influence on ischemic neuronal death. Curr Mol Med 4:193-205.
    
    5. Martin RL, Lloyd HJE, Cowan Al (1994) The early events of oxygen and glucose deprivation: setting the scene of neuronal death? Trends Neurosci 17:251-7
    
    6. Allen NJ, Ka'radottir R, Attwell D (2005) A preferential role for glycolysis in preventing the anoxia depolarization of rat hippocampa! area CA1 pyramidal cells.J Neurosci 25:848-59
    
    7. Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y (2006) Cortical d receptors potentate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 1:1-13
    
    8. Volterra A , Meldolesi J . As rocytes from brain glue to communication elements :the revolution continues[J ]. Nat Rev Neurosci ,2005 , 6 (8) :626 —640.
    
    9. Yu AC , Lau L T. Expression of interleukini alpha , tumor necrosis factor alpha and interleukin 6 genes in ast rocytes under ischemic injury [J ] . Neurochem Int ,2000 ,36 (4 - 5) :369 —377.
    
    10. Gabryel B , Trzeciak HI. Role of astrocytes in pathogenesis of ischemic brain injury[J ]. Neurotox Res ,2001 ,3 (2) :205 —221.
    
    11. Bambrick L , Kristian T , Fiskum G. Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection[J ] . Neurochem Res ,2004 ,29 (3) :601—608.
    
    12. Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768-87
    
    13. Picker S, Pieper CF, Goldring S (1981) Glial membrane potentials and their relationship to [K+]o in man and guinea pig. J Neurosurg 55:347-63
    
    14. Walz W. 2004. Potassium homeostasis in the brain at the organ and cell level.Adv Mol Cell Biol 31:595-6C9.
    
    15. Reichenbach A. 1991. Glial Kt permeability and CNS Kt clearance by diffusion and spatial buffering. Ann NY Acad Sci. 633:272-286.
    
    16. Feustel PJ , Jin Y, Kimelberg HK. Volume regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke , 2004 , 35 :1164 -1168.
    
    17. Rossi DJ , Oshima T , Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature , 2000 , 403 : 316 - 321.
    
    18. Phillis JW, Smith Barbour M, Perkins LM, et al . Characterization of glutamate ,aspartate , and GABA release from ischemic rat cerebral cortex. Brain Res Bull ,1994,34:457-466.
    
    19. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibian. J Neurophysiol 29:788-806
    
    20. Luo J, Wang Y, Chen H, Kintner OB, Cramer SW, Gerdts JK, Chen X, Shull GE,Philipson KD, Sun D. A concerted role of Na+ -K+ -Cl- cotransporter and Na+/Ca2+ exchanger in ischemic damage. J Cereb Blood Flow Metab. 2008 Apr;28(4):737-46.
    
    21. Chen X, Kintner DB, Luo J, Baba A, Matsuda T, Sun D.Endoplasmic reticulum Ca2+ dysregulation and endoplasmic reticulum stress following in vitro neuronal ischemia: role of Na+-K+-CI- cotransporter.J Neurochem. 2008 Aug;106(4): 1563-76.
    
    22. Zhang H, Schools GP, Lei T, Wang W, Kimelberg HK, Zhou M. Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation. Exp Neurol. 2008 Jul,212(1):44-52.
    
    23. Camacho A, Massieu L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res. 2006 Jan;37(1):11-8.
    1.Seki Y,Feustel PJ,Keller RW,Jr,Tranmer BI,Kimelberg HK(1999) Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker.Stroke 30:433-40
    2.Szatkowski M,Barbour B,Attwell D(1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake.Nature 3489:443-7
    3.Kimelberg HK,Goderie SK,Higman S,Pang S,Waniewski RA(1990) Swelling induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci Methods 10:1583-91
    
    4. Feustel PJ, Jin Y, Kimelberg H K (2004) Volume regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35:1164-8
    
    5. Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 21:7001—8
    
    6. Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11-21
    
    7. Cavaliere F, Florenzano F, Amadio S, Fusco FR, Viscomi MT, D'Amobrosi N,Vacca F, Sancesario G, Bernardi G, Molinari M, Volonte C (2003) Up-regulation of P2X2,P2X4 receptor and ischemic cell death: prevention by P2 antagonists.Neuroscience 120:85-98
    
    8. Runde'n-Pran E, Tans+ R, Haug FM, Ottersen OP, Ring A (2005) Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogenactivated protein kinase cascade: a quantita'.ive analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.Neuroscience 136:795-810
    
    9. Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids.Trends Pharmacol Sci 11:462-8
    
    10. Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452:589-97
    
    11 Globus MYT, Busto R, Martinez E, Valde's I, Dietrich WD, Ginsberg MD (1991) Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and g-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem 57:470-8
    12. Fleidervish IA, Gebhardt C, Astman N, Gutnick MJ, Heinemann U (2001) Enhanced spontaneous transmitter release is the earliest consequence of neocortical hypoxia that can explain the disruption of normal circuit function. J Neurosci 21:4600-8
    
    13. Fraser DD, Buffy S, Angelides KJ, Perez-Velazquez JL, Kettenmann H, MacVicar BA (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J Neurosci 15:2720-32
    
    14. Kuffier SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768-87
    
    15. Picker S, Pieper CF, Goldring S (1981) Glial membrane potentials and their relationship to [K+]o in man and guinea pig. J Neurosurg 55:347-63
    
    16. Verkhratsky A, Kettenmann H (1996) Calcium signaling in glial cells. Trends Neurosci 19:346-52
    
    17. Zhou M, Kimelberg HK (2004) Expression and function of glutamate and GABA receptors in glial cells from the hippocampus. In: Neuronal/gliai signaling (Hatton Gl and Parpura V, eds), Chapter 5, pp 163-85, Kluwer Academic/Plenum Publishers: Norwell, MA, USA
    
    18. Muller M, Somjen GG (2000) Na+ and K+ concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol 83:735-45
    
    19. Leblond J, Krnjevic K (1989) Hypoxic changes in hippocampal neurons. J Neurophysiol 62:1-14
    
    20. Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159-77
    
    21. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101-48
    
    22. Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y (2006) Cortical receptors potentate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 1:1-13
    
    23. Walz W. 2004. Potassium homeostasis in the brain at the organ and cell level.Adv Mol Cell Biol 31:595-609.
    
    24. Reichenbach A. 1991. Glial Kt permeability and CNS Kt clearance by diffusion and spatial buffering. Ann NY Acad Sci. 633:272-286.
    
    25. Feustel PJ , Jin Y, Kimelberg HK. Volume regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke , 2004 , 35 : 1164 -1168.
    
    26. Rossi DJ , Oshima T , Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature , 2000 , 403 : 316 - 321.
    
    27. Phillis JW, Smith Barbour M, Perkins LM, et al . Characterization of glutamate ,aspartate , and GABA release from ischemic rat cerebral cortex. Brain Res Bull ,1994,34:457-466.
    
    28. Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281-6
    
    29. Allen N.J, Ka'rado' ttir R, Attwell D (2005) A preferential role for gly(?)olysis in preventing the anoxia depolarization of rat hippocampal area CA1 pyramidal cells.J Neurosci 25:848-59
    
    30. Brown AM, Baltan Tekkok S, Ransom BR (2004) Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int 45:529-36(?)
    
    31. Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804-10
    
    32. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis.Science 305:99-103
    33. Lopachin RM, Gaughan CL, Lehning EJ, Weber ML, Taylor CP (2001) Effects of ion channel blockade on the distribution of Na, K, Ca, and other elements in oxygen-glucose deprived CA1 hippocampal neurons. Neuroscience 103:971-83
    
    34. Martin RL, Lloyd HJE, Cowan Al (1994) The early events of oxygen and glucose deprivation: setting the scene of neuronal death? Trends Neurosci 17:251-7
    
    35. Walz W, Hertz L. Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocyte and neurons in primary cultures[J].J Neurochem,1982,39:70-77
    1.Ridet JL,Malhotra SK,Privat A,et al.Reactive astrocytes:cellular and molecular cues to biological function.Trend Neurosci,1997,20(12):570-577
    2.Dusart I,Marty S,Peschanski M.Glial changes following an excitotoxic lesion in the CNS.Ⅱ.Astrocytes,Neuroscience,1991,45(3):541-549
    3.Wang Y,Lin SZ,Chiou AL,et al.Glial cell line-derived neurotrophic factor protects against ischemia-induces injury in the cerebral cortex.J Neurosci,1997,17(11):4341-4348
    4.D.G.Johnson,C.L.Walker.Cyclins and cell cycle checkpoints.Annu Rev Pharmacol Toxicol.1999,39:295-312
    5.Petito CK,Babiak T.Early proliferative changes in post-ischemia noninfarted rat brain.Ann Neurol,1982,11(5):510-518
    6.Murphy EJ,Haun SE,Rosenberger TA,et al.Altered lipid metabolism in the presence and absence of extracellular Ca2+ during combined oxygen-glucose deprivation in primary astrocyte cultures.J Neurosci Res,1995,42(1):109-116
    7.Duffy S,MacVicar BA.In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes.J Neurosci,1996,16(1):71-81
    8.H.Imai,J.Hariand,J.McCulloch,et al.Specific expression of the ce(?)cle regulation proteins,GADD34 and PCNA,in the peri-infarct zone after focal cerebral ischemia in the rat.European J of Neurosci,2002,15:1929-1936
    9.Wiessner C,Brink I,Lorenz P,et al.Cyclin D1 messenger RNA is induced in microglia rather than neurons following transient forebrain ischemia.Neuroscience,1996,72(4): 947-958
    
    10. Eddleston M, Mucke L. Molecular profiloe of reactive astrocytes implications of their role in neurologic disease. Neurosci, 1993, 34(5):539-545
    
    11. Petito CK,Morgello S,Felix LC,et al. The two patterns of reactive astrocytosis in postischemic rat brain.J Cereb Blood Flow Metab, 1990,10(6):850-859
    
    12. Bartkova J,Lukas J,Muller H,et al.Cyclin D1 protein expression and function in human breast cancer.lnt J Cancer.1994,57(3):353~ 361
    
    13. Osuga H, Osuga S, Wang F,et.al.Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci U S A. 2000 Aug 29; 97(18):10254-9.
    
    14. Wang F, O'Hare MJ, Park DS.Cyclin-dependent kinases and stroke. Expert Opin Ther Targets. 2001 Oct; 5(5): 557-567.
    
    15. O'Hare M, Wang F, Park DS.Cyclin-dependent kinases as potential targets to improve stroke outcome. Pharmacol Ther. 2002 Feb-Mar; 93(2-3): 135-43.
    
    16. Love S.Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett. 2003 Dec 15; 353(1): 29-32.
    
    17. Dietrich WD, Damon G, Hopkins AC, et al. Thromboembolic events predispose the brain to widespread cerebral infarction after delayed transient global ischemia in rats. Stroke, 1999,30(4):855-861
    
    18. Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden Al. (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102:8333-8338
    
    19. Panickar KS, Norenberg MD. (2005) Astrocytes in cereb(?)al ischemic injury:(?) morphological and general considerations. Glia 50:287-298
    
    20. Swanton C. (2004) Cell-cycle targeted therapies. Lancet Oncol 5:27-36
    
    21. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue.J Cell Biol 85:890-902.
    22.Kliot M,Smith GM,Siegal JD,Silver J.(1990) Astrocyte-polymer implants promote regeneration of dorsal root fibers into the adult mammalian spinal cord.Exp Neurol 109:57-69
    23.缺氧培养主动脉和肺动脉内皮细胞的形态改变及对川芎嗪黄芪的影响,蔡晓莉.周传农.王秀琴.阮英茆.中华病理学杂志1995年01期
    24.缺氧脑微血管内皮细胞的脂质过氧化与764—3的效应,陈厚兰.严徽瑾.赵惠敏.中华神经外科杂志1995年S1期
    25.Matsuo N,Ogawa S,Imai Y,et al.Cloning of a novel RNA binding polypeptide (RA301) induced by hypoxia reoxygenation.J Biol Chem,1995;270(47):28216
    26.细胞周期调控对大鼠全脑缺血后海马迟发性神经元死亡的影响,陈晨,谢敏杰,王伟,中国组织化学与细胞化学杂志,2005,14(1),1-6
    27.Cyclin D1基因敲除对小鼠脑缺血边缘区胶质细胞增殖及神经元凋亡的影响,中华神经科杂志,2005,38(9),570-574.
    28.H.Imai,J.Harland,J.McCulloch,et al.Specific expression of the cell cycle regulation proteins,GADD34 and PCNA,in the peri-infarct zone after focal cerebral ischemia in the rat.European J of Neurosci,2002,15:1929-1936
    1. Walz W. Chloride/anion channels in glial cell membranes. Glia. 2002 Oct;40(1):1-10.
    
    2. Verkhratsky A, Steinhauser C.lon channels in glial cells.Brain Res Brain Res Rev.2000 Apr;32(2-3):380-412.
    
    3. Thomzig A.WenzelM, Karschin C, et al. Kir6. 1 is the principal pore - forming subunit of astrocyte but not neuronal p lasma membrane K - ATP channels [J].Mol Cell Neurosci, 2001,18(6) :671 - 690.
    
    4. RoyML, SaalD, Perney T, et al. Manipulation of the delayed rectifier Kv1. 5 potassium channel in glial cells by antisense oligodeoxynucleotides[J]. Glia,1996, 18 (3): 177-184.
    
    5. Bordey A, Sontherimer H. Ion channel exp ression by astrocytes in situ: comparison of different CNS regions [J]. Glia, 2000, 30(1): 27 - 38.
    
    6. Reyes - Haro D,Miledi R, Garcia - Colunga J. Potassium currents in primary cultured astrocytes from the rat corpus callosum [J]. J Neurocytol, 2005, 34 (6) :411 - 420.
    
    7. Gebremedhin D, Yamaura K, Zhang C, et al. Metabotrop ic glutamate recep tor activation enhances the activities of two types of Ca2 + activated K+ channels in rat hippocampal astrocytes[J]. J Neurosci, 2003, 23 (5):1678 -1687.
    
    8. Yamaura K, Gebremedhin D, Zhang C, et al. Contribution of poxyeicosatrienoic acids to the hypoxia - induced activation of Ca2 +-activated K+ channel current in cultured (?) hippocampal astrocytes[J] .Neuroscience, 2006,143 (3): 703 - 716.
    
    9. Butt AM, Kalsi A. Inwardly rectifying potassium channels ( Kir) in central nervous system glia: a special role for Kir4. 1 in glial functions[J]. J CellMolMed, 2006, 10 (1):33-44.
    
    10. Benfenati V, Cap riniM, NobileM, et al. Guanosine p romotes the up - regulation of inward rectifier potassium current mediated by Kir4. 1 in cultured rat cortical astrocytes[ J]. J Neurochem, 2006 , 98 (2): 430 - 445.
    
    11. Perillan PR,Li X, Potts EA, et al. Inward rectifier K(+) channel Kir2. 3 (IRK3) in reactive astrocytes from adult rat brain [J]. Glia, 2000, 31 (2): 181 -192.
    
    12. Noma A. ATP - regulated K+ channels in cardiac muscle [J]. Nature, 1983, 305 (5930): 147-148.
    
    13. Zhou M, Tanaka O. SuzukiM, et al. Localization of pore - forming subunit of the ATP - sensitive K+ - channel, Kir6. 2, in rat brain neurons and glial cell[J]. Brain ResMol Brian Res, 2002, 101 (1- 2): 23 - 32.
    
    14. Leis JA, Bekar LK, Walz W.Potassium homeostasis in the ischemic brain.Glia. 2005 Jun;50(4):407-16.
    
    15. Brockhaus J, Deitmer JW. Developmental downregulation of ATP- sensitive potassium conductance in astrocytes in situ [J]. Glia., 2000, 32 (3): 205 - 213.
    
    16. Reichenbach A. 1991. Glial Kt permeability and CNS K+ clearance by diffusion and spatial buffeting. Ann NY Acad Sci. 633:272-286.
    
    17. Newman EA. 1987. Distribution of potassium conductance in mammalian Muller (glial) cells: a comparative study. J Neurosci 7:2423-2432.
    
    18. Ransom CB, Sontheimer H. 1995. Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. J Neurophysiol 73:333-346.
    
    19. D'Ambrosio R, Gordon DS, Winn HR. 2002. Differential role of KIR channel and Na+/K+pump in the regulatirn of extracellular K+ in rat hippocampus. J Neurophysiol 87:87-102.
    
    20. Kreisman NR, Smith ML. 1993. Potassium-induced changes in excitability in the hippocampal CA1 region of immature and adult rats. Dev Brain Res 76:67-73.
    21. Naus CC, Ozog MA, Bechberger JF, Nakase T. 2001. A neuroprotective role for gap junctions. Cell Commun Adhes 8:325-328.
    
    22. Enkvist MOK, McCarthy KD. 1994. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J Neurochem 62:489-495.
    
    23. Pina-Benabou MH, de Srinivas M, Spray DC, Scemes E. 2001. Calmodulin kinase pathway mediates the Kt-induced increase in gap junctional communication between mcuse spinal cord astrocytes. J Neurosci 21:6635-6643.
    
    24. Duffy HS, Ashton AW, O'Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC.2004. Regulation of connexin43 protein complexes by intracellular acidification.Circ Res 94:215-222.
    
    25. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K,Bukauskas FF, Bennett MVL, Saez JC. 2002. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495-500.
    
    26. Cotrina ML, Kang J, Lin JHC, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M.1998. Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18:2520-2537.
    
    r 27. Koller H, Schroeter M, Jander S, Stoll G, Siebler M. 2000. Time course of inwardly rectifying Kt current reduction in glial cells surrounding ischemic brain lesions. Brain Res 872:194-198.
    
    28. Walz W, Wuttke WA. 1999. Independent mechanisms of potassium clearance by astrocytes in gliotic tissue. J Neurosci Res 56:595-603.
    
    29. Fonseca CG, Green CR, Nicholson LF. 2002. Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res 929:105-116.
    
    30. Wang K, Walz W. 2003. Unusual topographical pattern of proximal astrogliosis around a cortical devascularizing lesion. J Neurosci Res 73:497-506.
    
    31. Ito U, Kuroiwa T, Hanyu S, Hakamata Y, Kawakami E, Nakano I, Oyanagi K.2003. Temporal profile of experimental ischemic edema after threshold amount of insult to induce infarction ultrastructure, gravimetry and Evans' blue extravasation.Acta Neurochir (Wien) 86(suppl):131-135.
    
    32. Russell JM. 2000. Sodium-potassium-chloride cotransport. Physiol Rev 80:211-276.
    
    33. Walz W. 1987. Swelling and potassium uptake in cultured astrocytes. Can J Physiol Pharmacol 65:1051-1057.
    
    34. Rose CR, Ransom BR. 1996. Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci 16:5393-5404.
    
    35. Su G, Kinter DB, Flagella M, Shull GE, Sun D. 2002. Astrocytes from Na+-K+-CI_cotransporter-null mice exhibit absence of swelling and decrease in EAA release.Am J Physiol 282:C1147-C1160. :
    
    36. Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielson S, Kurachi Y,Otterson OP. 1999. Immunogold evidence suggests that coupling of Kt siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of K(?)4+.1 and AQP4 in specific membrane domains. Glia 26:47-54.
    
    37. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA. 2000. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phe(?)typic impact in retina. J Neurosci 20 5733-5740.
    
    38. Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y. 2001. An inwardly rectifying Kt channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physio! 281 :C922-931.
    39. Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Otterson OP. 2001. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045-3051.
    
    40. Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC,Nagelhus EA, Adams ME, Froehner SC, Agre P, Otterson OP. 2003. Delayed Kt clearance associated with AQP4 mislocalization: phenotypic defects in brains of a-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615-13620.
    
    41. Saadoun S, Papadopouios MC, Krishna S. 2003. Water transport becomes uncoupled from Kt siphoning in brain contusion, bacteria! meningitis, and brain tumours: immunohistochemical case review. J Clin Pathol 56:972-975.
    
    42. Taniguchi M, Yamashita T, Kumura E, Tamatani M, Kobayashi A, Yokawa T,Maruno M, Kato A, Ohnishi T, Kohmura E, Tohyama M, Yoshimine T. 2000.Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat.Mol Brain Res 78:131-137
    
    43. Vizuete ML, Venero JL, Vargas C, llundain AA, Echevarria M, Machado A, Cano J. 1999. Differential upregulation of aquaporin- 4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurob(?)ol Dis 6:245-258.
    
    44. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. 2000. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159-163.
    
    45. Jackson PS, Morrison R, Strange K. 1994. The volume-sensitive organic osmolyte-anion channel VS,OAC is regulated by nonhydrolytic ATP binding. Am J Physiol 267:01203-1209.
    
    46. Dietzel I, Heinemann U, Hofmeier G, Lux HD. 1980. Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40:432-439.
    
    47. Kimelberg HK, Rutledge E, Goderie S, Charniga C. 1995. Astrocytic swelling due to hypotonic or high Kt medium causes inhibition of glutamate and aspartate uptake and increases their release. J Cereb Blood Flow Metab 15:409-416.
    
    48. Rutledge EM, Aschner M, Kimelberg HK. 1998. Pharmacological characterization of swelling-induced D-[3H]aspartate release from primary astrocyte cultures. Am J Physiol 274:C1511-1520.
    
    49. Strange K. Molecular identity of the outwardly rectifying swellingactivated anion channel: time to reevaluate pICIn. 1998. J Gen Physiol 111:617-622.
    
    50. Feustel PJ, Jin Y, Kimelberg HK. 2004. Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35:1164-1168.
    
    51. Kimelberg HK. 2004. Increased release of excitatory amiho acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem Int 45:511-519.
    1.Rossi DJ,Osh(?),Attwell D.Glutamate release in severe brain ische(?) is mainly by reversed uptake.Nature,2000,403:316-321.
    2.Rutledge EM,Aschner M,Kimelberg HK.Pharmacological characterization of swelling induced D-[3H]aspartate release from primary astrocyte cultures.AmJ Physiol, 1998 , 274 : C1511 - C1520.
    
    3. Seki Y, Feustel PJ , Keller RW, et al . Inhibition of ischemia induced glutamate release in rat striatum by dihydrokainate and an anion channel blocker. Stroke ,1999,30:433-440.
    
    4. Phillis JW, Smith Barbour M, Perkins LM, et al . Characterization of glutamate ,aspartate , and GABA release from ischemic rat cerebral cortex. Brain Res Bull ,1994,34:457-466.
    
    5. Takagi K, Ginsberg MD , Globus MY, et al . Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology.J Cereb Blood Flow Metab , 1993 ,13: 575 - 585.
    
    6. Rao VL , Dogan A , Todd KG, et al . Antisense knockdown of the glial glutamate transporter GLT21, but not the neuronal glutamate transporter EAAC1 ,exacerbates transient focal cerebral ischemia induced neuronal damage in rat brain. J Neurosci, 2001 ,21 :1876 -1883.
    
    7. Zhang Y, Zhang H, Feustel PJ, Kimelberg HK. DCPIB, a specific inhibitor of volume regulated anion channels (VRACs), reduces infarct size in MCAo and the release of glutamate in the ischemic cortical penumbra. Exp Neurol. 2008 Apr;210(2):514-20.
    
    8. Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand. 2003 Feb;177(2):119-47.
    
    9. Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA.Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cui(?)ured rat astrocytes.J Physiol. 2006 May 1;572(Pt3):677-89.
    
    10. Orthmann-Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci. 2008 May;35(1):101-16.
    11. Kielian T. Glial connexins and gap junctions in CNS inflammation and disease. J Neurochem. 2008 Aug;106(3):1000-16.
    
    12. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C,Stahlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I,Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N,Nilsson M, Pekny M. Protective role of reactive astrocytes in brain ischenra.J Cereb Blood Flow Metab. 2008 Mar;28(3):468-81.
    
    13. Rami A, Volkmann T, et al. Effective reduction of neuronal death by inhibiting gap junctional intercellular communication in a rodent model of global transient cerebral ischemia. Exp[J]. Neurol, 2001,170:297-304
    
    14. Siushansian R ,Bechberger JF, et al. Connexin43 null mutation increase infarct size after stroke[J] J Comp Neurol,2001,440:387-394
    
    15. Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA,Nedergaard M. Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci. 2007 Jun;10(6):754-62.
    
    16. Mareins-Ferreira H, Medergaurd M, et al. perspectives on spreading depression[J]. Brain Res Rev, 2000,32:215-234
    
    17. Smith JM, Bradley DP, James MF, Huang CL. Physiological studies of cortical spreading depression.Biol Rev Camb Philos Soc. 2006 Nov;81 (4):457-81.
    
    18. Rwarduzy A,Hansen, et al .Effective reduction of infarct volume by gap junction blockade in a rodent model stroke[J]. J Neurosurg,1997,87:916-920
    
    19. Venero JL,Vizuete ML,et al. Aquaporins in the central nervous system[J]. Prog Neurobiol ,2001,63:321 -336
    
    20. Manley ,GT, Fujimura M, et al . Awuaporin-4 deletion in mice re(?)uces brain edema after acute water intoxication and ischemia stroke[J] .Nat Mel ,2000,6:159-163
    
    21. Luo J, Wang Y, Chen H, Kintner DB, Cramer SW, Gerdts JK, Chen X, Shull GE, Philipson KD, Sun D. A concerted role of Na+ -K+ -Cl- cotransporter and Na+/Ca2+ exchanger in ischemic damage. J Cereb Blood Flow Metab. 2008 Apr;28(4):737-46.
    
    22. Chen X, Kintner DB, Luo J, Baba A, Matsuda T, Sun D.Endoplasmic reticulum Ca2+ dysregulation and endoplasmic reticulum stress following in vitro neuronal ischemia: role of Na+-K+-CI- cotransporter.J Neurochem. 2008 Aug;106(4):1563-76.
    
    23. Fukuyama,N, Takizawa S, et al. Peroxynitrite formation in focal cerebral ischemia -reperfusion in rats occurs predominatly in the peri-infarct region[J].J Cere Blood Flow Metab,1998,18:125-129
    
    24. Mizui T, Kinouehi. Depletion of brain glutathione by buthionive sulfoximine enhances cerebral ischemic injury in rat[J].Am J Physiol, 1992,262:H313-H317.
    
    25. Nedergaard M, DirnagI U.Role of glial cells in cerebral ischemia. Glia. 2005 Jun;50(4):281-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700