用户名: 密码: 验证码:
超细TiO_x夹杂物在钢液凝固过程中析出规律的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非金属夹杂物往往造成钢材表面和内部缺陷,但是目前生产工艺无法将钢中夹杂物完全去除。研究表明:当夹杂物小于3μm、种类适当且分布均匀时能够改善钢的强韧性能。以钛氧化物为主复合了硫化锰和氮化钛的细小夹杂物容易诱发晶内铁素体(IGF),细化晶粒,提高钢材强韧性。因此控制钢液中钛氧化物的析出以使其尺寸小于3μm,并且在钢中弥散分布成为重点研究课题。由于在钢液凝固过程中析出的夹杂物尺寸相对比较细小,本论文系统研究了钢液凝固过程中超细钛氧化物的析出规律,并通过理论计算和定向凝固实验验证了凝固过程中可以析出超细、弥散分布的钛氧化物夹杂。
     本文首先从通过热力学计算分析了控制钛的氧化物在凝固过程中析出所需要的热力学条件以及生成的钛氧化物的类型。钛的氧化物易于成为IGF核心,为了使钢中析出钛的氧化物,必须控制钢液中的铝钛比。在凝固温度范围内,Ti的氧化物中Ti_3O_5是最稳定的。当钢液温度为1873K,钢液中Ti含量为0.02%时,铝浓度要小于34ppm。凝固前氧含量不同时,钢液中的[Mn]会影响钛的氧化物夹杂的类型。平衡氧含量为30ppm时,夹杂物的类型为锰钛复合氧化物;平衡氧含量在20ppm时,凝固前期生成钛的氧化物,后期生成锰钛复合氧化物;氧含量在10ppm时只生成钛的氧化物。
     鉴于钛的氧化物中Ti_3O_5热力学最稳定,本文利用数学模型理论计算了凝固过程中不同氧含量及不同冷速下析出Ti_3O_5的含量及直径。在钢液凝固过程中,由于液相和固相中存在溶解度差异会发生溶质元素的微观偏析,凝固过程中温度的降低,在凝固前沿富集大量溶质,提高了[Ti]和[O]的浓度积,[Ti]、[O]反应生成Ti_3O_5夹杂。计算采用了有限差分法来完成,计算区域为二次枝晶臂间距的一半,溶质的质量传输仅由扩散控制。模型在计算溶质元素的微观偏析的同时考虑了Ti_3O_5的析出对溶质浓度的消耗,使溶质的微观偏析程度和Ti_3O_5析出量的计算更加合理。通过数值模拟表明:凝固前钢液中氧含量越高,生成的Ti_3O_5直径越大:冷速越大,Ti_3O_5直径越小。当冷速为10K/min时,对应于实际生产情况,相当于模铸的冷速,凝固过程中析出的Ti_3O_5尺寸约为2.5μm。在冷速为1000K/min时(薄板坯连铸的冷速),Ti_3O_5的尺寸为0.7μm,非常细小。从理论上证明凝固过程可以形成超细的钛氧化物。
     理论分析的基础上,本文采用定向凝固实验研究了氧位、冷却速率对凝固过程中析出的夹杂物的数量、种类和尺寸的影响。定向凝固实验中溶质元素沿凝固方向一维扩散,在凝固前沿的富集造成夹杂物在凝固前沿液相的析出。实验时分别加入锰铁、硅铁、钛铁或者锰铁/硅铁、锰铁/钛铁的混合物研究不同氧化物在凝固过程中的析出规律。实验结果表明,分别添加锰、硅及硅-锰元素时,凝固过程中生成的夹杂物尺寸为1.3μm、1.2μm、1.1μm。添加锰时,夹杂物数量最多,添加硅时数量最少,分别为1.1×10~5/mm~3和5.8×10~4/mm~3。添加锰、钛元素后生成的夹杂物类型受凝固前氧含量的影响,在10ppm平衡氧含量时,凝固过程中析出的均为钛的氧化物;20ppm氧含量时生成的夹杂物为钛的氧化物和锰钛复合氧化物;30ppm氧含量时生成的夹杂物为锰钛复合氧化物。钛氧化物尺寸受冷速的影响较大。冷速越大,其平均尺寸越小。当冷速为9K/min,89K/min以及143K/min时,其平均直径分别为2.0μm,1.2μm以及1.0μm。从实验证明凝固过程能够形成超细夹杂物。
     针对目前存在的夹杂物检测方法,本文提出了检测超细夹杂物的方法,提取了定向凝固实验得到的试样中的超细钛氧化物。即,酸溶分离;超细孔径的聚碳酸脂膜过滤提取夹杂物;扫描电镜和高分辨透射电镜检测。获得了超细夹杂物的三维形貌、尺寸、化学成分及结构等大量有价值信息。这为进一步分析其晶体长大习性,从而为控制这些夹杂物在钢中的形态打下了基础。通过对钢中夹杂物的结构分析发现,钢中不含锰的钛氧化物的类型为Ti_3O_5:而当钢中含锰时,凝固过程中首先析出Ti_3O_5,然后Ti_3O_5与钢中的[Mn]发生作用生成Ti_2O_3与MnO的超细复合氧化物,为MnS复合和贫锰区形成创造有利条件,而Ti_2O_3周围形成贫锰区有利于IGF的形核。完善了IOF的形成机制。
For steels,many efforts have been made to remove the nonmetallic inclusions because of their harmful effects to material quality.However,fine dispersed nonmetallic inclusions(<3μm) can improve the properties of steel.The fine Ti oxides combined with MnS and TiN may refine the crystal by acting as heterogeneous nucleation sites of intragranular ferrite(IGF),consequently, enhance the strength and toughness of steel.To effectively utilize the ultraflne inclusions,the key issue is to obtain the fine dispersed Ti oxide inclusions.Inclusions precipitated during solidification are relatively small.In the paper,the precipitation of Ti oxides during solidification was studied systematically.The theoretical and experimental results showed that fine dispersed Ti oxide inclusions could be obtained during solidification of steel. The effect of oxygen content,alloying elements contents on the type of inclusion was studied through thermodynamic calculation.Ti oxide is favorable for IGF nucleation,the A1/Ti ratio should be controlled to ensure that Ti oxides precipitate during solidification of steel.Ti_3O_5 is the stablest among all Ti oxides in the range of solidification temperature.[A1]content should be less than 34ppm when[Ti]content is 0.02%at 1873K.[Mn]in liquid steel can affect the type of Ti oxide for given oxygen content.Inclusions are mainly Ti oxide when oxygen content is 10ppm;they are Ti oxide and Mn-Ti oxide when it is 20ppm;Mn-Ti oxide dominates when it is 30ppm.
     The content and diameter of Ti_3O_5 precipitated during solidification were calculated at different oxygen content and cooling rate by a coupled mathematical model.The microsegregation of[Ti] and[O]in front of the liquid-solid interface leads to the precipitation of Ti_3O_5 during solidification of steel.Ti_3O_5 inclusions were engulfed by the solid phase immediately resulting in fine dispersed inclusions in steel.The finite difference method was introduced to the calculation.The calculation domain is half of the secondary dendrite arm spacing.The mass transmission is only controlled by diffusion.The consuming of[Ti]and[O]for the precipitation Ti_3O_5 was considered in the model.Results showed that the diameter of Ti_3O_5 is 2.5μm at cooling rate of 10K/min which is in the condition of In-mode casting and it is 0.7μm at cooling rate of 1000K/min which is in the condition of thin slab continuous casting.It proved theoretically that ultrafine inclusions can be formed during solidification.
     Based on theoretical analysis,the effect of oxygen content and cooling rate on number,type and size of inclusions were researched by directional solidification experiment.The solute dements diffused along one direction and the microsegregation of them resulted in the precipitation of inclusions in unidirectional solidification.Mn-Fe,Si-Fe,Ti-Fe or the mixture of Mn-Fe/Si-Fe Mn-Fe/Ti-Fe were added in Fe to investigate the precipitation of oxide inclusions during solidification.The results showed that the diameters of inclusions are 1.3μm、1.21μm、1.1μm when Mn-Fe,Si-Fe and Mn-Fe/Si-Fe were added to steel.The amount of the inclusions is the most with Mn-Fe addition and the least with Si-Fe addition.When Mn-Fe/Ti-Fe was added to steel,the type of Ti oxide was affected by oxygen content.Inclusions are mainly Ti oxide when oxygen content is 10ppm;Ti oxide and Mn-Ti oxide when it is 20ppm;Mn-Ti oxide dominates when it is 30ppm.The size of Ti oxides is mainly affected by cooling rate and it decreases with the increase of cooling rate.The average diameters are about 2.0μm,1.2μm and 1.0μm at the cooling rates of 9K/min,89K/min and 143K/min,respectively.The result is consistent with the calculation result of the coupled model.It proved experimentally that ultrafine inclusions formed during solidification.
     To extract effectively and detect exactly the ultrafine oxide inclusions in steel sample made by directional solidification,Nuclepore Track-Etch Membrane was introduced to improve the traditional acid dissolution and electrical extraction methods in filtering process.Threedimensional morphology and the structure of TiOx inclusions were detected by scanning electromicroscopy(SEM) and transmission electromicroscopy(TEM).Other information such as the size and composition etc.were also obtained.The structural detection results showed that the type of Ti oxide precipitated during solidification is Ti_3O_5 when oxygen content is controlled at a reasonable level.When[Mn]exists in steel,reaction of Ti_3O_5 with[Mn]results in the formation of Ti_2O_3 and MnO ultrafine composite inclusions in the following production process,which is advantageous to the composite of MnS and the formation of Mn depleted zone,which is advantageous for nucleation of IGF.The mechanism for IGF nucleation was developed.
引文
[1]薛小怀,钱百年,国旭明等.高性能管线钢埋弧焊用焊丝的研究进展[J].钢铁研究学报.2003,15(4):73.
    [2]薛小怀,杨淑芳,吴鲁海等.X80管线钢的研究进展[J].上海金属.2004,26(2):45.
    [3]P.L.Harrison and R.A.Farrar.Influence of oxygen-rich inclusions on the γ-α phase transformation in high-strength low-alloy(HSLA) steel weld metals[J].Journal of Materials Science.1981,16:2218-2226.
    [4]J.H.Shim,Y.W.Cho,S.H.Chung et.al..Nucleation of intragranular ferrite at Ti_2O_3 particle in low carbon steel[J].Acta Materialia,1999,47(9):2751-2760.
    [5]J.S.Byun,J.H.Shim and Y.W.Cho.Influence of Mn on microstructural evolution in Ti-killed C-Mn steel[J].Scripta Materialia,2003,48:449-454.
    [6]T.J.Baker.Non-metallic inclusions in maraging steels[J].Journal of the Iron and Steel Institute (London),1972,210(10):793-795.
    [7]R.Kiedssling.Non-metallic Inclusion in Steel.London:Met.Soc.,1978.
    [8]M.Hasegawa and K.Takeshita.Strengthening of Steel by the Method of Spraying Oxide Particles into Molten Steel Stream[J].Metallurgical Transactions.1978,9B(3):383-388.
    [9]赵沛,T.Gladman.用第二相粒子细化HSLA钢晶粒[J].北京科技大学学报,1993,15(5):472-478.
    [10]王国承,方克明,王铁明.高温纯铁熔体中外加氮化钛超细颗粒的研究[J].钢铁钒钛,2006,27(2):21-25.
    [11]王国承,王铁明,李松年等.高温纯铁熔体中外加氧化铝纳米粉的研究[J].北京科技大学学报,2007,29(6):578-581.
    [12]K.Gloor et al..Non-metallic inclusions in weld metal[J].ⅡW Doc.Ⅱ-A-106-63,1963.
    [13]K.Katoh.Investigation of non-metallic inclusions in mild steel weld metals[J].ⅡW Doc.Ⅱ-A-158-65,1965.
    [14]S.Kanazawa,A.Nakashima,K.Okamoto et.al..Improved toughness of the weld fusion zone by fine tin particles and development of a steel for large heat-input welding[J].Tetsu-to-Hagane,1975,61(11):2589-2603.
    [15]D.J.Abson,R.E.Dolby and P.H.M.Hart.Proc.Int.Conf.on Trends in Steels and Consumables for Welding,London,the Welding Institute,Abington,1978:103.
    [16]R.C.Cochrane and P.R.Kirkwood.Proc.Int.Conf.on Trends in Steels and Consumables for Welding,London,the Welding Institute,Abington,1978:75.
    [17]T.Funakoshi,T.Tanaka,S.Ueda et.al..Improvement in microstructure and toughness of large heatinput welded joints by rare earth metal and boron additions to high strength steel[J].Tetsu-to-Hagane,1977,63(2):303-312.
    [18]H.Terashima and P.H.M.Hart.International Conference on the effects of residual,impurity and micro-alloying elements on weld ability and weld properties[C].London,England:The Welding Institute,1983,Paper 27.
    [19]E.S.Kayali,J.M.Corbett and H.W.Kerr.Observations on inclusions and acicular ferrite nucleation in submerged arc HSLA welds[J],Journal of Materials Science Letters,1983,2:123-128.
    [20]#12
    [21]伊藤庆典,中西睦夫.溶接部の轫性に关する研究(第2報)[J].溶接学会誌,1975,44(10):815-821.
    [22]#12
    [23]#12
    [24]森 直道,本间弘之,大北 茂等.Ti-B系溶接金属にぉける靭性向上机构[J].溶接学会誌,1981,50(2):174-181.
    [25]山本広一ら.大入热溶接用Ti-B系钢のHAZ组织と靭性[J].铁と钢,1985,71:S1512.
    [26]Y.Ohno,Y.Okamura,S.Matsuda et.al..Characteristics of HAZ microstructure in Ti-B treated steel for large heat input welding[J].Tetsu-to-Hagane,1987,73(8):1010-1017.
    [27]J.Takamura and S.Mizoguchi.Roles of oxides in Steels Performance-Metallurgy of Oxides in Steels -I [C].Proc.Sixth Int.Iron and Steel Congress,ISIJ,Tokyo,1990,1:591-597.
    [28]S.Mizoguchi and J.Takamura.Control of oxides as inoculants[C].Proc.Sixth Int.Iron and Steel Congress,ISIJ,Tokyo,1990,1:598-604.
    [29]D.J.Abson.Non-metallic inclusions in ferritic steel weld metals - a review[J].Welding in the World,1989,27(3-4):76-101.
    [30]杨志刚.钢中晶内铁素体在夹杂物上的形核机制及界面能研究[J].第六届全国固态相变、凝固及应用学术会议[C].陕西.西安:中国金属学会材料科学分会相变及凝固学术委员会 2004,(8):23-25.
    [31]B.Bruce.The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J].Metallurgical Transactions,1970,1:1987.
    [32]#12
    [33]刘宗昌,王海燕,任慧平,李文学.贝氏体铁素体形核机理求索[J].材料热处理学报,2007,128(11):53-57.
    [34]A.J.Pacey,E.S.Kayali,H.W.Kerr.Effects of Mo,Zr and Ti additions on submerged arc weld metal:I.Microstructure[J].Canadian Metallurgical Quarterly,1982,21(3):309-318.
    [35]E.S.Kayali,A.J.Pacey,H.W.Kerr.Effects of Mo,Zr and Ti additions on submerged arc weld metal:Ⅱ.Toughness[J].Canadian Metallurgical Quarterly,1984,23(2):227-236.
    [36]Y.Ueshima,H.Yuyama,S.Mizoguchi and H.Kajioka.Effect of oxide inclusions on MnS precipitation in low carbon steel[J].Tetsu-to-Hagane,1989,75(3):501-508.
    [37]J.H.Shim,J.S.Byun,Y.W.Cho,et al.Mn absorption characteristics of Ti2O3 inclusions in low carbon steels[J].Scripta Materialia,2001,44:49-54.
    [38]杨志刚.晶内铁素体在夹杂物上形核机制的讨论[J].金属热处理,2005,30(1):20-23.
    [39]M.Enomoto.Nucleation of phase transformations at intragranular inclusions in steel[J].Metals and Materials,1998,4(2):115-123.
    [40]Z.G.Yang and M.Enomoto.Calculation of interfacial energy of B1 type carbides and nitrides with austenite[J].Metallurgical and Materials Transaction,2001,32A(2):267-274.
    [41]Z.G.Yang and M.Enomoto.Discrete lattice plane analysis of Baker-Nutting related B1compound/Ferrite interfacial energy[J].Materials Science and Engineering,2002,A332:184-192.
    [42]Z.G.Yang and M.Enomoto.A discrete lattice plane analysis of coherent FCC/B1 interfacial energy[J].Acta Materialia,1999,47:4515-4524.
    [43]J.L.Lee and Y.T.Pan.The Formation of Intragranular Acicular Ferrite in Simulated Heat-affected Zone[J].ISIJ International,1995,35(8):1027-1033.
    [44]卜勇,胡本芙,高桥平七郎,张莉芹.含钛低合金高强钢焊接热影响区晶内铁素体形核机制研究[J].钢铁,2002,37(11):48-52.
    [45]S.S.Babu,S.A.David,J.M.Vitek et.al..Development of macro- and microstructures of carbonmanganese low alloy steel welds:inclusion formation[J].Materials Science and Technology,1995,11:186-199.
    [46]I.Madariaga,J.L.Romero and I.Gutierrez.Upper acicular ferrite formation in a medium-carbon microalloyed steel by isothermal transformation:Nucleation enhancement by CuS[J].Metallurgical and Materials Transactions A,1998,29A:1003-1015.
    [47]I.Madariaga and I.Gutierrez.Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel[J].Acta Materialia,1999,47(3):951-960.
    [48]K.Yamamoto,T.Hasegawa and J.Takamura.Effect of boron on intra-garnular ferrite formation in Tioxide bearing steels[J].ISIJ International,1996,35(1):80-86.
    [49]中西睦夫,小溝裕一,瀨田一郎,中村昌明,斉藤康之.住友金属,1983,35:133.
    [50]T.N.North,H.B.Bell,A.Koukabi and I.Craig.Notch toughness of low oxygen content submerged arc deposits[J].Welding Journal,1979,58(12):343.s-354.s.
    [51]R.A.Ricks,P.R.Howell and G.S.Barrite.Nature of acicular ferrite in HSLA steel weld metals[J].Journal of Material Science,1982,17:732-740.
    [52]J.M.Cregg and H.K.D.H.Bhadeshia.Titanium-rich mineral phases and the nucleation of bainite[J].Metallurgical Materials and Transactions A,1994,25A(6):1603.
    [53]K.Oikawa,K.lshida and T.Nishizawa.Effect of Titanium Addition on the Formation and Distribution of MnS Inclusions in Steel during Solidification[J].ISIJ International,1997,37(4):332-338.
    [54]K.Yamamoto,S.Matsuda,T.Haze et.al..Proc.Symp.on 'Residual and unspecified elements in steel',Bal Harbour,FL,Nov.1987,ASTM.
    [55]R.Dekkers.Deoxidation in Low Carbon Steel killed With Aluminium[D].Katholieke Universitiet Leuven,Leuven,Belgium,2002:43-56.
    [56]J.M.Dowling,J.M.Corbett and H.W.Kerr.Inclusion phases and the nucleation of acicular ferrite in submerged arc welds in high strength low alloy steels[J].Metallurgical Transactions A,1986,17A:1611-1623.
    [57]Powder Diffraction File,J.C.P.D.S.,International Centre for Diffraction Data,1980.
    [58]J.M.Gregg and H.K.D.H.Bhadeshia.Solid-state nucleation of acicular ferrite on minerals added to molten steel[J].Acta Materialia,1997,45(2):739-748.
    [59]C van der Eijk,φ Grong and J Walmsley.Effects of Deoxidation practice on the inclusion formation in low alloy structural steels[C].Sixth International Conference on Molten Slags,Fluxes and Salts Stockholm,Sweden-Helsinki,Finland,12-17 June 2000:1-23.
    [60]Use of fine inclusions in microstructure control of steels.Final Report of Fine Inclusions Committee.The Iron and Steel Institute of Japan,Tokyo,1995.
    [61]H.Mabuchi,R.Uemori and M.Fujioka.The Role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels[J].ISIJ International,1996,36(11):1406-1412.
    [62]J.S.Byun,J.H.Shim,Y.W.Cho,D.N.Lee.Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J].Acta Materialia,2003,51:1593-1606.
    [63]J.H.Shim,Y.J.Oh,J.Y.Suh,et al..Ferrite nucleation potency of non-metallic inclusions in medium carbon steels[J].Acta Materialia,2001,49:2115-2122.
    [64]A.O.Kluken and O.Grong.Mechanisms of inclusion formation in Al-Ti-Si-Mn deoxidized steel weld metals[J].Metallurgical Transactions A,1989,20A(8):1335-1349.
    [65]H.Goto,K.Miyazawa and K.Tanaka,Effect of Oxygen Content on Size Distribution of Oxides in Steel[J].ISIJ International,1995,35(3):286-291.
    [66]H.Goto et al..Effect of cooling Rate on Oxide Precipitatition during Solidification of Low Carbon Steel [J].ISIJ International,1994,34(5):414-419.
    [67]E.Scheil.Retrograde Saturation Curves[J],Z.Metallkd,1942,34(3):70 -72.
    [68]H.D.Brody,M.C.Flemings.Solute redistribution during dendritic solidification[J].Trans.Met.Soc.AIME,1966,236:615.
    [69]G.Lesoult,Ch.A.Gandin,N.T.Niane.Segregation during solidification with spongy deformation of the mushy zone[J].Acta Materialia,2003,(51):5263-5283.
    [70]T.Himemiya and T.Umeda.Solute Redistribution Model of Dendritic Solidification Considering Diffusion in Both the Liquid and solid Phases[J].ISIJ International,1998,38(7):730-738.
    [71]Z.Z.Liu,J.Wei and K.K.Cai.A Coupled Mathematical Model of Microsegregation and Inclusion Precipitation during Solidification of Silicon Steel[J].ISIJ International,2002,42(9):958-963.
    [72]Y.Ueshima,K.Isobe,S.Mizoguchi,H.Maede and H.Kajioka.Analysis of the rote of crystallization and precipitation of MnS in the resulphurized free-cutting steel[J].Tetsu-To-Hagane,1988,74(3):465-472.
    [73]张会全.钢液凝固过程中微观偏析和Ti-O夹杂生成的耦合研究[D].上海:上海大学硕士学位论文,2006.
    [74]王利伟.钢液凝固过程中钛基超细复合夹杂物形成机理研究[D].上海:上海大学硕士学位论文,2007.
    [75]方克明,熊仲明,张鑫.钢中夹杂物研究方法的探索.冶金物理化学论文集[C].北京:冶金工业出版社,1997,15-18.
    [76]Y.Furusaki et al..Production of clean steel by bloom easter[C].Steelmaking Conference Proceesing.1992,397-403.
    [77]H.Suito and R.Inque.Thermodynamics on control of inclusions composition in ultra clean steels[J].ISIJ International,1996:528-536.
    [78]K.Jong et al..Formation mechanism of Ca-Si-Al-Ti-O inclusions in Type304 stainless steel[J].ISIJ International,1996:140 - 147.
    [79]Standard test method for acid-solute content of copper and iron powders.ASTM designation:E194-90.Pennsylvania:American Society for Testing Materials -ASTM,1990:1-2.
    [80]G.R.Fitterrer,Trans.AIME,Iron & Steel Division,1931:197-205.
    [81]H.Hoffs,et.al.Untersuchung be rdie Art und Verteilung von nichtmetallischen Einschlssen in Rohblcken aus unberu-higtem,weichem Siemens Martin Stahl[J].Stahl u Eisen,1956,76(22):1422-1452.
    [82]#12
    [83]#12
    [84]王永生,富平原.采用大样电解方法分析钢中夹杂物研究[J].山西冶金,1999,(4):36-42.
    [85]李宏等.阳极泥法分离提取钢中夹杂物方法的评价[J].物理测试,2005,23(3):46-48.
    [86]尚德礼,王习东,王国承,方克明.无损伤提取分析钢中非金属夹杂物的实验研究[J].冶金标准化与质量,2005,43:28-30.
    [1]S.S.Babu,S.A.David,J.M.Vitek et.al..Development of macro- and microstructures of carbonmanganese low alloy steel welds:inclusion formation[J].Materials Science and Technology,1995,11:186-199.
    [2]E.T.Turkdogan,Fundamentals of Steelmaking[M].Cambridge:The Institute of Materials,1996:94.
    [3]L.F.Zhang,W.Pluschkell and B.G.Thomas.Nucleation and growth of alumina inclusions during steel deoxidation[C].85th Steelmaking Conference,2002,85:463-476.
    [4]孔君华,郭斌,刘昌明等.高钢级管线钢X80的研制与发展[J].材料导报,2004,18(4):23-26.
    [1]J.S.Byun,J.H.Shin,Y.W.Cho and D.N.Lee.Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J].Acta Materialia,2003,51:1593-1606.
    [2]M.Suzuld,R.Yamaguchi,K.Murakami and M.Nakada.Inclusion Particle Growth during Solidification of Stainless Steel[J].ISIJ International,2001,41(3):247-256.
    [3]H.Goto,K.Miyazawa,W.Yamada and K.Tanaka.Effect of cooling rate on composition of oxides precipitated during solidification of steels[J].ISIJ International,1995,35(6):708-714.
    [4]H.Goto,K.Miyazawa,K.Yamaguchi,S.Ogibayashi and K.Tanaka.Effect of cooling rate on oxide precipitation during solidification of low carbon steels[J].ISIJ International,1997,34(5):414-419.
    [5]Y.Ueshima,S.Mizoguchi,T.Matsumiya and H.Kajioka Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification[J].Metallurgical Transactions B,1986,17B (4):845-859.
    [6]孔君华,郭斌,刘昌明等.高钢级管线钢X80的研制与发展[J].材料导报,2004,18(4):23-26.
    [7]Z.T.Ma and D.Janke.Characteristics of Oxide Precipitation and Growth during Solidification of Deoxidized Steel[J].ISIJ International,1998,38(1):46-52.
    [8]E.T.Turkdogan,Fundamentals of Steelmaking[M].Cambridge:The Institute of Materials,1996:94.
    [9]Revised ed.by The Japan Soc.for the Promotion of Science,The 19th Committee on Steelmaking,Steelmaking Data Sourcebook[M].New York:Gordon and Breach Science Publishing,1988:235.
    [10]张承甫,龚建森,黄杏蓉.液态金属的净化与质变[M].上海:上海科学技术出版社,1989:12.
    [11]张海林,宋强,李成栋等.X射线衍射法测定液态纯铁的密度[J].光谱实验室,2003,20(1):28-30.
    [12]化工引擎.物质性质信息[EB].http://www.hellochem.com/xz/xz6/52007clano.htm,2007.
    [1]A.Ohno,T.Motegi and H.Soda.Origin of the equiaxed crystals in castings[J].Transactions of the Iron and Steel Institute of Japan,1971,11(1):18-23.
    [2]A.Ohno and T.Motegi.Formation mechanism of equiaxed zones in cast metals[J].AFS International Cast Metals Journal,1977,2(1):28-36.
    [3]G.S.Cole and W.C.Winegard.The transition from plane to cellular interface in solidifying tin-lead-antimony alloys[J].Journal Institute of Metals,1963,92:322-326.
    [4]季诚昌.巨磁致伸缩材料TbDyFe的定向凝固与取向生长[D].上海交通大学博士学位论文,2003:40.
    [5]T.Himemiya and T.Umeda.Solute Redistribution Model of Dendritic Solidification Considering Diffusion in Both the Liquid and solid Phases[J].ISIJ International,1998,38(7):730-738.
    [6]G.Forward and J.E Elliott.Nucleation of Oxide Particles during Solidification[J].Journal of Metals,1967,May,54-59.
    [7]S.Kimura,K.Nakajima,S.Mizoguchi and H.Hasegawa.In-situ observation of the precipitation of manganese sulfide in low-carbon magnesium-killed steel[J].Metallurgical and Materials Transactions A,2002,33(2):427-436.
    [8]陈家祥.炼钢常用图标数据手册[M].北京:冶金工业出版社.1984:661.
    [9]H.Hasegawa,K.Nakajima and S.Mizoguchi.The growth of MnS precipitates in Fe-Si alloys[J].Tetsu-to-Hagane,2002,88(9):493-499.
    [10]刘自立.X80管线钢超细夹杂物及其三维形貌研究[D].上海:上海大学,2006.
    [11]R.T.DeHoff and F.N.Rhines.Quantitative Microscopy[M],New York:McGraw-Hill Book Company,1968:128.
    [12]H.Goto,K.Miyazawa,and K.Tanaka.Effect of oxygen content on size distribution of oxides in steel [J].ISIJ International,1995,35(3):286-291.
    [13]H.Goto,K.Miyazawa,K.Yamaguchi,S.Ogibayashi and K.Tanaka.Effect of cooling rote on oxide precipitation during solidification of low carbon steels[J].ISIJ International,1994,34(5):414-419.
    [14]H.Goto,K.Miyazawa,W.Yamada and K.Tanaka.Effect of cooling rate on composition of oxides precipitated during solidification of steels[J].ISIJ International,1995,35(6):708-714.
    [1]J.H.Shim,Y.W.Cho,S.H.Chung et.al..Nucleation of intragranular ferrite at Ti_2O_3 particle in low carbon steel[J].Acta Materialia,1999,47(9):2751-2760.
    [2]卜勇,胡本芙,高桥平七郎,张莉芹.含钛低合金高强钢焊接热影响区晶内铁素体形核机制研究[J].钢铁,2002,37(11):48-52.
    [3]M.Enomoto.Nucleation of phase transformations at intragranular inclusions in steel[J].Metals and Materials,1998,4(2):115-123.
    [4]J.S.Byun,J.H.Shim,Y.W.Cho,D.N.Lee.Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J].Acta Materialia,2003,51:1593-1606.
    [5]尚德礼,王习东,王国承,方克明.无损伤提取分析钢中非金属夹杂物的实验研究[J].冶金标准化与质量,2005,43:28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700