用户名: 密码: 验证码:
连铸结晶器热、力在线检测技术及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结晶器是钢水凝固成型的核心设备,承担着导热、支撑、约束、润滑和脱模等作用,其内部的传热和摩擦直接决定铸坯的表面裂纹和漏钢,是实现高效连铸的关键因素。促进结晶器与铸坯间形成良好、稳定的传热和润滑条件,对钢水的初期凝固和摩擦行为进行在线调控,是保证铸坯质量的工艺要求,同时也是保障连铸机稳定运行、高效生产的前提。今后连铸技术的发展,将更加依赖于生产过程的自动控制水平,因此,开发结晶器热学、力学行为在线检测的新技术、新方法,研究结晶器在线监控的基础理论及其实现途径,对进一步丰富、发展结晶器过程的基础理论及其监控实践,均有重要意义。
     本文以连铸结晶器为研究对象,围绕结晶器热、力在线监控技术的应用基础问题,对结晶器传热和摩擦行为的在线检测、数值计算及其应用方法进行研究。首先,基于结晶器液压振动装置,从理论分析和实验研究两方面入手,研究开发液压振动条件下摩擦力检测的理论模型和检测方法,设计相关的软件和硬件,开发适于现场应用的摩擦力在线检测系统;其次,以实测的结晶器摩擦力数据为基础,探索结晶器摩擦力的应用方法,开发针对摩擦力异常预报的模型及相应软件;最后,依据圆坯连铸结晶器实测的温度和热流数据,借助结晶器传热反问题模型,同时结合人工神经元网络技术,建立符合实际工况条件下的结晶器传热耦合计算模型,研究开发基于实测温度数据的结晶器传热计算方法。
     基于板坯连铸结晶器液压振动装置,从分析结晶器振动的受力状态入手,建立了结晶器振动的受力模型,结合现场具体的检测条件和环境,确立摩擦力在线检测的理论基础和总体思路。运用粒子群优化方法,建立了振动系统空振参数的实时优化模型。针对本文研究的问题,研究了算法的具体实现及收敛性能,并对算法的优化结果进行了测试和评价。以上述工作为基础,自行设计、构建摩擦力检测系统的硬件和软件,开发出适于在线应用的摩擦力在线检测系统,实现了瞬态结晶器摩擦力的在线连续、稳定、自动检测。以现场实测的摩擦力数据为基础,研究了不同参数与振动方式下的摩擦力周期变化行为、特征值、负滑脱等参数的变化规律;同时分析了非正弦振动波形的特点,并对液压振动装置的工作特性及振动状态的评价方法进行了初步探讨。
     基于功率法测得的板坯连铸结晶器摩擦力数据,结合生产现场的异常记录,对各类异常发生时摩擦力的反应及特征进行分析和统计,结果显示,摩擦力能够对漏钢、水口断裂及液位剧烈波动等异常作出反应,其均方根在0.8~4kN范围内变化。以此为基础,采用人工神经元网络技术,并对摩擦力信号的典型特征进行模式识别,建立了摩擦力异常预报模型,开发出摩擦力异常预报软件。对应连铸现场的异常记录,利用软件对各类结晶器异常进行离线预报,结果表明:软件能够对结晶器液位波动、漏钢、水口断裂及其他异常做出预报,并具有一定的提前量,运行速度满足在线预报的要求。
     基于圆坯连铸结晶器温度和热流在线实测数据,开发针对实测数据的结晶器传热计算方法。利用传热反问题模型模拟实际条件下结晶器内部的传热行为,同时采用神经元网络求解结晶器传热反问题,建立了传热反问题—神经网—正问题的结晶器传热计算耦合模型。利用模型对在线检测的连续瞬时数据进行计算,表明将神经元网络与传热数值计算结合的方法可用于结晶器传热计算,能够真实反映圆坯结晶器传热的非均匀特性,计算的精度与速度基本满足在线实时计算的要求。正常工况下,在工艺参数稳定时,圆坯周向的局部热流和坯壳厚度并不恒定,周向导热决定坯壳的厚度分布,结晶器热流与坯壳厚度沿周向呈不均匀分布。
The mould is the core instrument for primary cooling and slab forming of liquid steel, and it takes effect as heat transfer, support, restriction, lubrication and demould during continuous casting (CC). The interior heat transfer and friction of mould have close relationship with the surface defects and breakout, which is very important for the effectively continuous casting. Aiming to control and adjust the initial solidification and frictional behavior online, it is necessary to ensure the conditions of stable heat transfer and lubrication, which is not only the requirement of strand quality, but also the precondition for stable and high efficient production. In the future, the development of continuous casting technology will more strongly depend on the automatic control during producing process. Therefore, it is urgently needed to develop new technologies for online measurement of thermal and mechanical behaviors in continuous casting mould, which is very important in both fundamental study and practical application. Furthermore, investigating on mould measurement methods and their applications, will play a significant role in further understanding of basic theory and monitoring practice for mould process.
     In this dissertation, fundamental studies of mould thermo-mechanical monitoring technologies and their applications are discussed, especially, the online measurement method of mould friction, as well as the numerical simulation of heat transfer and their applications. Based on the slab caster equipped with hydraulic oscillators, the theoretical model, measurement method and monitoring system of mould friction are investigated. In addition, according to the mould friction data measured on slab caster, the application method of mould friction is studied, and the prediction model and software for mould abnormalities are developed. In the last chapter of this dissertation, the calculation method, which combines the online measurement data of mould temperature and heat flux and numerical simulation, is investigated by using the inverse heat transfer model and neural network for the round billet continuous casting.
     Through theorecally analyzing the loading states during mould oscillation driven by the hydraulic units, the loading model is built and the theory foundation and overall measurement method are established for mould friction monitor in CC. The real-time calculation and optimization model of empty oscillating parameters is built by particle swarm optimization (PSO). The implementation and convergence performance of PSO algorithm are discussed, and the optimized results are also analyzed and evaluated. Based on the above work, both hardware and software for mould friction measurement are designed. The measurement tests show that the system is suitable for monitoring mould friction, and realizes the online detection of transient mould friction continuously, stably, and automatically. In the basis of the mould friction data measured, the periodical variations and characteristic values of mould friction, as well as negative strip parameters are discussed, and the characteristics of non-sinusoidal waveforms are also studied. In addition, by using the measurement data of displacement and cylinder force, the oscillation service state of hydraulic oscillators and its evaluation methods are investigated.
     According to the abnormal records of steel plant, mould friction measured on slab caster by power-method is used to investigate its response to abnormalities in continuous casting. The results show that mould friction can respond to most abnormalities such as breakout, submerged entry nozzle broken, and acute fluctuation of mould level. The root mean square of mould friction ranges from 0.8 to 4 kN before or during the abnormalities. The prediction model for mould friction abnormalities has been built by using artificial neural network models in combination with two pattern recognition algorithms. A set of software to predict the mould friction abnormalities in CC has been developed. The results of simulation prediction for online measurement mould friction data are found to be basically consistent with those collected from the abnormal records of steel plant, such as breakout, submerged entry nozzle broken and acute mould level fluctuations. In some cases, it can make prediction several minutes earlier than the alarm given by temperature breakout detection system. The proposed method can make the system respond fast enough in real time plant prediction, and render sufficient time for online prediction and taking operations against abnormalities.
     Based on the measured data of temperature and heat flux during round billet continuous casting, the calculation method which combines the online measurement data and numerical simulation is investigated. The thermal behavior is analyzed by an inverse heat transfer model, and it reflects the real state of transient heat transfer of mould. In order to decrease the calculation time to meet the online monitor requirement, an artificial neural network model is developed to solve the inverse problem, and the IHTP/ANN/DHTP (inverse heat transfer problem, artificial neural network, and direct heat transfer problem) integrated method of thermal behavior analysis from experimental temperatures is developed. The results show that the neural network is faster for inverse model, and the calculation results by this method can correctly reflect the characteristics of non-uniform heat transfer. Also the calculation accuracy and speed meet basically the requirements of online calculation. Through calculation, it is found that although the operating conditions are stable, the shell thickness may be fluctuated. The shell thickness varies directly with the heat flux at fixed mould circumferential degrees. It is also found that the profile of shell thickness is non-uniform and similar to that of the heat flux along circumference direction.
引文
[1]Savage J,Pritchard W H.The problem of rupture of the billet in the continuous casting of steel.Journal of the Iron and Steel Institute,1954,178(11):269-277.
    [2]Brimacombe J K.Empowerment with knowledge toward the intelligent mold for the continuous casting of steel billets.Iron and Steelmaker,1993,20(11):35-47.
    [3]Emling W H,Mis S D,Simko D J.A Thermocouple-based system for breakout prevention and practice development.Ironmaking and Steelmaking,1988,15(9):47-51.
    [4]Emling W H,Dawson S.Mold instrumentation for breakout detection and control.ISS 71~(st)Steelmaking Conference Proceedings,New York,1991:197-217.
    [5]蔡开科.连铸坯裂纹与钢的高温力学行为.连铸,1990,(6):2-11.
    [6]Brimacombe J K,Samarasekera I V.Future trends in the development of continuous casting moulds.Steelmaking conference proceedings,Pittsurg,1991:153-160.
    [7]Mahapatra R B,Brimacombe J K,Samarasekera I V.Mold behavior and its influence on quality in the continuous casting of steel slabs:Part Ⅰ.Industrial trials,mold temperature measurements,and mathematical modeling.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1991,22B:861-874.
    [8]姚曼.连铸结晶器摩擦力在线监测技术及其应用基础研究:(博士学位论文).大连:大连理工大学,1998.
    [9]Thomas BG,Jenkins M S,Mahapatra R B.Investigation of strand surface defects using mould instrumentation and modelling.Ironmaking and Steelmaking,2004,31(6):485-494.
    [10]殷瑞钰.关于21实际发展连续铸钢的若干认识.连铸,2001,(1):1-3.
    [11]Schwerdtfeger K.Heat withdrawal in the mold in continuous casting of steel.Review and analysis.Steel Research International,2006,77(12):911-920.
    [12]卢盛意.连铸坯质量(第2版).北京:冶金工业出版社,2000.
    [13]Mahapatra R B,Brimacombe J K,Samarasekera I V.Influence of mould design and operation on oscillation-mark formation,heat transfer and quality in the continuous casting of steel slabs.Metallurgia Italiana,1991,83(12):1105-1112.
    [14]Rammerstorfer F G,Jaquemar G,Fisher D F,Wiesinger H.Temperature fields,solidification progress and stress development in the strand during a continuous casting process of steel.Numerical Methods in Thermal Problems,Swansea,U.K.,1979:712-722.
    [15]Mahapatra R B,Brimacombe J K,Samarasekera I V.Mold behavior and its influence on quality in the continuous casting of steel slabs:Part Ⅱ.Mold heat transfer,mold flux behavior,formation of oscillation marks,longitudinal off-comer depressions,and subsurface cracks.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1991,22B:875-888.
    [16]Samarasekera I V,Brimacombe J K.Thermal and mechanical behaviour of continuous-casting billet moulds.Ironmaking and Steelmaking,1982,9(1):1-15.
    [17]Yao M,Yin H B,Wang J C,Fang D C,Liu X,Yu Y,Liu J J.Monitoring and analysis of local mould thermal behaviour in continuous casting of round billets.Ironmaking and Steelmaking,2005,32(4):359-368.
    [18]张立,王俊,孙宝德.宝钢板坯连铸结晶器平均热流.上海交通火学学报,2003,37(12):1891-1894.
    [19]詹慧英.圆坯连铸结晶器/铸坯温度场与浓度场数值模拟:(硕士学位论文).大连:大连理工大学,2006.
    [20]Hanao M,Kawamoto M.Flux film in the mold of high speed continuous casing.Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,2006,92(11):13-18.
    [21]Byrne A,Powell J,Perkins A.Commissioning and work up of the three strand round bloom caster at British Steel Clydesdale Works.Ironmaking and Steelmaking,1990,17(4):288-291.
    [22]Shin H J,Kim S H,Thomas B G,Lee G G,Park J M,Sengupta J.Measurement and prediction of lubrication,powder consumption,and oscillation mark profiles in ultra-low carbon steel slabs.ISIJ International,2006,46(11):1635-1644.
    [23]Dippenaar R,Samarasekera I V,Brimacombe J K.Mold taper in continuous casting billet machines.Ironmaker and Steelmaker(ISS Transactions),1986,(7):331-343.
    [24]Thomas BG.Issues in thermal-mechanical modeling of casting processes.ISIJ International,1995,35(6):737-743.
    [25]蔡开科.浇注与凝固(第1版).北京:冶金工业出版社,1987.
    [26]Zhu L G,Kumar R V.Modelling of steel shrinkage and optimisation of mould taper for high speed continuous casting.Ironmaking and Steelmaking,2007,34(1):76-82.
    [27]Wang B,Walker B N,Samarasekera I V.Shell growth,surface quality and mould taper design for high-speed casting of stainless steel billets.Canadian Metallurgical Quarterly,2000,39(4):441-454.
    [28]杨春政,刘杰,陈建波,梁红兵.高效连铸结晶器的应用实践.河北理工学院学报,2000,(22):65-69.
    [29]陈家祥.连续铸钢手册.北京:冶金工业出版社,1991.
    [30]Li C,Thomas B G.Analysis of the potential productivity of continuous cast molds.Brimacombe Memorial Symposium,Montreal,Canada,2000:595-611.
    [31]杨晓江,白健,杨春政.薄板坯连铸结晶器传热行为的研究.河南冶金,2004,12(3):13-14.
    [32]高泽平.连铸结晶器铜板及镀层的应用进展.特殊钢,2007,28(4):39-41.
    [33]万安元.国内外板坯结晶器镀层情况简介.材料保护,2001,34(4):37-37.
    [34]盛桂军,唐贤军,王宝国,李颖,许文.板坯结晶器铜板材料及表面镀层技术的发展.山东冶金,2004,26(6):23-25.
    [35]Mills K C.欧洲煤钢联盟提供基金的结晶器保护渣研究的综述.第一届欧洲连铸会议论文集,佛罗伦萨,1991:30-39.
    [36]久保田淳,全荣.高速浇铸板坯浇铸条件对连铸结晶器内钢水流动的影响.国外钢铁,1994,19(6):30-35.
    [37]市川健治,李超.保护渣膜对其行为和结晶器内传热速度的影响.国外钢铁,1994,19(8):36-39.
    [38]Mills K C,Fox A B,Li Z,Thackray R P.Performance and properties of mould fluxes.Ironmaking and Steelmaking,2005,32(1):26-34.
    [39]王文华.连铸板坯结晶器摩擦力计算以及影响因素的研究:(硕士学位论文).大连:大连理工大学,2004.
    [40]Suzuki M,Mizukami H,Kitagawa T,Kawakami K,Uchida S,Komatsu Y.Development of a new mold oscillation mode for high-speed continuous casting of steel slabs.ISIJ International,1991,31(3):254-261.
    [41]卢盛意.高碳钢连铸坯质量的控制.连铸,1997,(5):25-31.
    [42]Meng Y,Thomas B G.Modeling transient slag-layer phenomena in the shell/mold gap in continuous casting of steel.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2003,34(5):707-725.
    [43]张兴中.连铸结晶器非正弦振动理论谐振技术及动力学特性研究:(博士学位论文).燕山:燕山大学,2005.
    [44]Brovman M Y.Investigation of friction forces between strand and mould in continuous casting of steel.Steel in the USSR,1988,18(10):474-475.
    [45]Emling W H.Breakout prevention.Iron and Steelmaker,1994,21(7):47-48.
    [46]干勇,陈栋梁,杨文改.连铸结晶器瞬态摩擦阻力的实验研究.钢铁,1999,34(4):16-19.
    [47]Hashio M,Watanabe T,Yamamoto T,Marukawa K,Kawasaki M.Effect of mould oscillation conditions on surface quality of continuous casting slabs.Transactions of the Iron and Steel Institute of Japan,1982,23(3):82-88.
    [48]Bo K T,Cheng G G,Wu J,Zhao P,Wang J.Mechanism of oscillation mark formation in continuous casting of steel.Journal of University of Science and Technology Beijing,2000,7(3):189-192.
    [49]Haers F,Thornton S G.Application of mould thermal monitoring on the two strand slab caster at Sidmar.Ironmaking and Steelmaking,1994,21(5):390-398.
    [50]Thornton S G,周国忠.板坯连铸结晶器传热监控的应用.国外钢铁,1991,(9):33-41.
    [51]Normanton A S,Hewitt P N,Hunter N S,Scoones D,Harris B.Mould thermal monitoring:a window on the mould.Ironmaking and Steelmaking,2004,31(5):357-363.
    [52]Gilles H L.Breakout protection by automatic mold heat removal control.Proceedings of 2nd annual AIME process technology conference,Chicago,US,1982:205-212.
    [53]Amano H.Development of solidificaiton condition detecting system in CC Mold.电气制钢,1997,68(1):35-44.
    [54]Watzinger J,Pesek A,Huebner N,Pillwax M,Long O.MoldExpert - operational experience and future development.Ironmaking and Steelmaking,2005,32(3):208-212.
    [55]寇新民,邹铁鹏.基于漏钢预报的连铸拉速模糊控制模型.钢铁研究学报,1997,9(8):51-54.
    [56]郝培峰,徐心和.连铸漏钢与漏钢预报研究近况及问题.冶金自动化,1993,17(6):3-6.
    [57]Ozgu M R,孔金满.最新连铸检测仪表概述(一).国外钢铁,1997,22(9):33-39.
    [58]Wang B F,Samarasekera I V.Thermal response of mould in high speed casting of stainless steel billet.Journal of Iron and Steel Research International,2002,9(2):15-20.
    [59]雷作胜,任忠鸣,张邦文,邓康.连铸结晶器振动下弯月面处温度波动的模拟实验.金属学报,2002,38(8):877-880.
    [60]张富强,王军,梁祥远.中薄板坯高拉速连铸结晶器平均热流研究.钢铁,2002,37(12):19-20.
    [61]尹合壁.圆坯连铸结晶器内热-力行为的分析:(博士学位论文).大连:大连理工大学,2005.
    [62]Yin H B,Yao M,Wang J C,Fang D C.Analysis of variability and non-uniformity of mould heat extraction for round billet continuous casting in plant trials.Ironmaking and Steelmaking,2006,33(4):299-305.
    [63]张慧,陶红标,刘爱强,张振彪,王进步,庄汉洲.薄板坯连铸结晶器铜板温度及热流密度分布.钢铁,2005,40(7):25-28.
    [64]刘立文,刘爱强,仇圣桃,张慧,干勇,张振彪,王进步,王中丙.连铸结晶器温度场在线监测技术.连铸,2006,(3):41-43.
    [65]Savage J.A theory of heat transfer and air gap formation in continuous casting moulds.Journal of the Iron and Steel Institute,1962,200(1):41-47.
    [66]Irving W R.Heat transfer in continuous casting moulds.Journal of Iron and Steel Institute,1967,205(3):271-277.
    [67]Lair J,Brimacombe J K,Weinberg F.Mathematical modeling of heat flow in the continuous casting of steel.Ironmaking and Steelmaking,1974,1(2):90-97.
    [68]Samarasekera I V,Brimacombe J K.The Influence of mold behavior on the production of continuously cast steel billets.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1982,13B:105-116.
    [69]金俊泽,郑贤淑,郭可切,钟汉,王政,张宗民.连铸钢坯凝同进程的数值模拟.钢铁,1985.20(5):19-27.
    [70]Seppo L,Mika M,Sami V,Tuomo R,Jukka L.3D steady state and transient simulation tools for heat transfer and solidification in continuous casting.Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing,2005,413-414:135-138.
    [71]杨秉俭,郭岚.钢板坯连铸初拉阶段凝固过程数值模拟.西安交通大学学报,1994,28(1):9-15.
    [72]Takawa T,Takamoto T,Tomon H.Initial solidification analysis in the vicinity of meniscus in continuous casting mold.ISIJ International,1988,74(11):2130-2136.
    [73]王恩刚,杨泽宽,陈海耿,宁宝林.结晶器内连铸坯凝固过程的有限元数值模拟.东北大学学报(自然科学版),1996,17(4):384-387.
    [74]王哲,沈厚发,柳百成.连铸结晶器中坯壳生长有限元分析.清华大学学报(自然科学版),2004,44(11):1448-1451.
    [75]杨秉俭,苏俊义,朱宪华.连铸结晶器中的凝固壳厚度的计算及验证.西安交通大学学报,1997,31(10):72-77.
    [76]Asai S,Szekely J.Turbulent flow and its effects in continuous casting,Ironmaking and Steelmaking,1975,2(3):205-213.
    [77]Thomas B G,Mika L J,Najjar F M.Simulation of fluid flow inside a continuous slab-casting machine.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1990,21B:387-400.
    [78]Flint P J.Fluid flow and heat transfer in slab continuous casting mold.73rd Steelmaking Conference Proc,ISS,Warrendale,PA,1990:481-490.
    [79]Huang X,Thomas B G,Najjar F M.Modeling superheat removal during continuous casting of steel slabs.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1992,23B:339-356.
    [80]Aboutalebi M R,Hasan M,Guthrie R I L.Guthrie,Coupled turbulent flow,heat and solute transport in continuous casting processes.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1995,26B:731-744.
    [81]Yang H L,Zhao L G,Zhang X Z.Mathematical simulation on coupled flow,heat,and solute transport in slab.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1998,29B:1345-1356.
    [82]雷方,赫冀成,李宝宽,连铸结晶器内钢液流动与传热过程的计算.东北大学学报(自然科学版),1994,15(4):408-412.
    [83]李中原,赵九州.薄板坯连铸凝固过程中宏观偏析的数值模拟.特种铸造及有色合金,2005,25(1):23-25.
    [84]金昕,任廷志,关杰,李强.薄板坯连铸结晶器内钢液凝固行为的研究.铸造技术,2007,28(1):78-81.
    [85]康丽,王洋,王恩刚,赫冀成.结晶器内连铸坯的热和应力状态数值模拟.中国冶金,2007,17(5):30-34.
    [86]那贤昭,王锡钢,张兴中,干勇.软接触电磁连铸过程中结品器及初生坯壳的传热.钢铁研究学报,2005,17(5):31-34.
    [87]张琦,李丘林,李廷举,郑贤淑,金俊泽.管坯电磁连铸内结晶器侧换热系数的模拟与研究.中国有色金属学报,2004,14(12):2073-2078.
    [88]朱立光,王硕明,金山同.连铸结晶器内保护渣渣膜状态的数学模拟.北京科技大学学报,1999.20(1):13-16.
    [89]杜波.连铸结晶器内润滑与摩擦计算和实测数据分析:(硕士学位论文).大连:大连理工大学,2004.
    [90]刘旭东,朱苗勇,程乃良.板坯连铸结晶器热行为研究.金属学报,2006,42(10):1081-1086.
    [91]Spitzer K H,Harste K,Weber B,Monheim P,Schwerdtfeger K.Mathematical model for thermal tracking and on-line control in continuous casting.ISIJ International,1992,32(7):848-856.
    [92]Pinheiro C A M,Samarasekera I V,Brimacombe J K.Mould heat transfer and continuously cast billet quality with mould flux lubrication Part1:mould heat transfer,Ironmaking and Steelmaking,2000,27(1):37-54.
    [93]Chow C,Samarasekera I V,Walker B N.High speed continuous casting of steel billets.Part2:Mould heat transfer and mould design.Ironmaking and Steelmaking,2002,29(1):61-69.
    [94]孙冀,潘德惠.基于实测温度推算铸坯表面热流量分布.东北大学学报(自然科学版),1998,19(1):66-68.
    [95]王宝峰,Samarasekera I V.不锈钢高速连铸中结晶器的热流计算.包头钢铁学院院报,2000,19(1):28-33.
    [96]尹合壁,姚曼.圆坯连铸结晶器传热的反算法.金属学报,2005,41(6):638-644.
    [97]Yao M,Yin H B,Fang D C.Real-time analysis on non-uniform heat transfer and solidification in mould of continuous casting round billets.ISIJ International,2004,44(10):1696-1704.
    [98]郭亮亮,姚曼,尹合壁,王旭东,方大成,刘晓,于艳.连铸圆坯结晶器的热流计算与讨论.金属学报,2006,42(9):983-988.
    [99]李岗,刘伟涛,许云华.板坯结晶器传热反算方法研究.特种铸造及有色合金,2007,27(4):267-270.
    [100]Mairy B,Wolf M.在连续铸钢中控制结晶器摩擦力的重要性.见:中国金属学会连续铸钢学会编.现代连铸理论与实践.北京:中国金属学会连铸钢学会出版社,1988:207-217.
    [101]Alvarez G T,Ciriza J,Laraudogoitia J J.Abnormal transient phenomena in the continuous casting process:Part 1.Ironmaking & Steelmaking,2003,30(5):353-359.
    [102]Bakshi I A,Brendzy J L,Walker N.Mould-strand interaction in continuous casting of steel billets.Ironmaking and Steelmaking,1993,20(1):54-62.
    [103]中森幸雄.连续铸造の铸型ヒ铸片间の摩擦力测定ヒ解析结果.铁ヒ钢,1984,70(9):278-284.
    [104]李彦峰,李强,袁欢媚,刘新.板坯连铸机结晶器铜板与铸坯摩擦阻力的测试与分析.重型机械,1999,(3):14-16.
    [105]刘新,赵连刚.高拉速条件下板坯连铸拉坯阻力测试与研究.重型机械,2001,(1):15-17.
    [106]Yao M,Fang D C.On line measuring method for mould friction in continuous casting.Ironmaking and Steelmaking,1996,23(6):522-527.
    [107]张立,陈亚贤,姚曼,王旭东.连铸结晶器拉坯阻力异常数据分析及应用方法研究.钢铁,2004,39(7):24-27.
    [108]Wang X D,Yao M,Du B,Fang D C,Zhang L,Chen Y X.Online measurement and application of mould friction in continuous stab casting.Ironmaking and Steelmaking,2007,34(2):138-144.
    [109]郑群.板坯连铸机新技术的发展与研究.河北冶金,2003,(1):5-10.
    [110]Watzinger J,Flick F.VAI's online mold friction monitoring system in continuous casting.CCC'2000 Slab Casting Session,Linz,Austria,2000:Paper 17.
    [111]Carlos C,Constanino C,Angel C,Mauel B,Luis F.Analysis of mold friction in a continuous casting machine of round bars.Iron and Steel Technology,2006,(7):45-51.
    [112]Wang X D,Yao M,Chen X F.Development of prediction method for abnormalities in slab continuous casting using artificial neural network models.ISIJ International,2006,46(7):1047-1053.
    [113]李纯忠.第四届连续铸钢学会会议论文选集.第四届连续铸钢学会会议,桂林,1990.
    [114]刘明延,李平.板坯连铸机设计与计算(上册).北京:机械工业出版社,1990.
    [115]俞钢强,潘毓淳.板坯连铸机拉坯阻力的计算方法.北京科技大学学报,1994,S2:61-66.
    [116]姜时荣.方坯连铸机拉坯阻力的计算.重型机械,1995,(5):43-51.
    [117]Takeuchi E,Brimacombe J K.The formation of oscillation marks in the continuous casting of steel slabs.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1984,15B:493-509.
    [118]张洪波,王海之.连铸结晶器振动参数与保护渣物化性能的关系.钢铁,1995,30(11):17-20.
    [119]Royzman S E.Coefficient of friction between strand and mould during continuous casting:mathematical model.Ironmaking and Steelmaking,1997,24(6):484-488.
    [120]Yamauchi A,Emi T,Seetharaman S.A mathematical model for prediction of thickness of mould flux film in continuous casting mould.ISIJ International,2002.42(10):1084-1093.
    [121]张玉文,朱立光,丁伟中.连铸保护渣润滑行为的数学模拟.钢铁研究学报,2002,14(4):21-25.
    [122]Rving,W.R.,On line quality control for continuous cast semis,Ironmaking and Steelmaking,1990.17(3):197-202.
    [123]赵兴武.国外板坯高速连铸技术.钢铁钒钛,1996,17(2):42-50.
    [124]姚曼,王文华,方大成.连铸结晶器与铸坯间保护渣润滑行为的研究.钢铁,2001,36(3):26-29.
    [125]姚曼,王文华,魏树立.板坯连铸结晶器摩擦力计算与影响因素研究.大连理工大学学报,2002,42(2):195-199.
    [126]孟祥宁,朱苗勇,刘旭东,程乃良,江中块.拉速连铸结晶器非正弦振动频率的研究.铸造技术,2007,28(4):523-526.
    [127]孟祥宁,朱苗勇,刘旭东,程乃良,江中块.高拉速连铸结晶器非正弦振动因子研究.金属学报,2007,43(2):205-210.
    [128]吴夜明,杜挺.连铸结晶器保护渣稳态润滑作用的简化数学分析.化工冶金,1997,18(2):187-191.
    [129]许光明,崔建忠,常守威.铸拉工艺中摩擦力的计算.铸造技术,1997,5(3):3-5.
    [130]Yao M.,Wang X D,Du B.Study on lubrication and friction between strand and mould in continuous slab casting.Development in chemical engineering and mineral processing,2006,14(3/4):459-472.
    [131]Yin H B,Yao M.Analysis of the nonuniform slag film,mold friction,and the new cracking criterion for round billet continuous casting.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2005,36(6):857-864.
    [132]Stephan D.Software Visualization- visualizing the structure,behaviour and evolution of software.Springer,2007.
    [133]Federick P,Brooks J.The computer scientist as toolsmith Ⅱ.Communications of the ACM,1996,39(3):61-68.
    [134]Gershon N.From perception to visualization.In:Rosenblum L,Earnshaw R A,Encamacao J,Hagen H,Kaufman A,Klimenko S,Nielson G,Post F,Thalmann D,eds.Scientific visualization-advances and challenges:Academic Press,New York,1994:129-139.
    [135]温庆庆.可视化技术及其应用初探.科技情报开发与经济,2007,17(28):226-228.
    [136]Wu Q,Zhu M X,Rao N S V.System design for on-line distributed computational visualization and steering.Technologies for E-Learning and Digital Entertainment,Proceedings,Hangzhou,China, 2006:1121-1130.
    [137]Nishihara K,Amitani H,Fukuda Y,Honda T,Kawata Y,Ohashi Y,Sakagami H,Sizuki Y.Parallelization,vectorization and visualization of large scale plasma particle simulations and its application to studies of intense laser interactions.High Performance Computing,Proceedings,Bangalore,India,2000:535-536.
    [138]Aharon S,Cameron B M,Robb R A.Computation of efficient patient specific models from 3-D medical images:Use in virtual endoscopy and surgery rehearsal.Information Processing in Medical Imaging,1997,1230:429-434.
    [139]王仲生,雒宝鹏,姜洪开,冯今朝.可视化监测诊断技术及其应用.航空制造技术,2007,(11):52-55.
    [140]Kang G.P,Shin G,Kang C G.Development of new model of mold oscillator in continuous casting.Journal of Mechanical Science and Technology,2007,21(3):421-425.
    [141]米源.板坯连铸结晶器非正弦振动技术的应用.炼钢,2006,22(3):6-9.
    [142]王子亮,郭世宝,王广林,石中雪.非正弦振动在板坯连铸机上的应用.钢铁,2005,40(1):31-34.
    [143]张兴中,李宪奎.连铸结晶器非正弦振动系统模糊神经网络跟踪控制.中国机械工程,2005,16(2):112-114.
    [144]郭世宝,石中雪,高新军.结晶器液压振动装置在板坯连铸机上的应用及实践.连铸,2002,(2):6-8.
    [145]方一鸣,焦晓红,庄开宇,李宪奎,液压伺服驱动连铸结晶器振动控制系统的设计.冶金自动化,2000,(1):43-45.
    [146]Edward S.Overview of mould oscillation in continuous casting.Iron and Steel Engineer,1996,(7):29-37.
    [147]焦志明.连铸结晶器振动方式的探讨.炼钢,1999,(4):30-33.
    [148]李宪奎,朱清香,郑学然,张德明.结晶器非正弦振动波形及参数研究.钢铁,1998,33(11):26-29.
    [149]胡军宏,周亚君.宝钢连铸试验平台结晶器电液伺服振动系统研究.冶金自动化,2005,(6):6-10.
    [150]刘延柱,陈文良,陈力群.振动力学.北京:高等教育出版社,1998。
    [151]王忆,杨玉屏,赵健生.受迫阻尼振动系统动力学性质的研究.大学物理,2001,20(7):22-25.
    [152]姜耕华.机械传动设计手册(上册).北京:煤炭工业出版社,1992.
    [153]Eberhart R,Kennedy J.New optimizer using particle swarm theory.Proceedings of the Sixth International Symposium on(1995),Nagoya,Japan,1995:39-43.
    [154]Kennedy J,Eberhart R.Particle swarm optimization.IEEE Int'l.Conf.on Neural Networks,Perth,Australia,1995:1942-1948.
    [155]Kennedy,J.and R.C.Eberhart.Discrete binary version of the particle swarm algorithm.Proceedings of the IEEE International Conference on Systems,Man and Cybernetics,Orlando,USA,1997:4104-4108.
    [156]Kawata K,Fukuyama Y,Takayama S,Nakanishi Y.A particle swarm optimization for reactive power and voltage control considering voltage security assessment.IEEE Transactions on Power Systems, 2000, 15(4): 1232-1239.
    [157] Lu W Z, Fan H Y, Lo S M. Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong. Neurocomputing, 2003, (51): 387-400.
    [158] Zhang F, Xue D. Optimal concurrent design based upon distributed product development life-cycle modeling. Robotics and Computer-Integrated Manufacturing, 2001, 17(6): 469-486.
    [159] Jiang J Q, Liang Y C, Shi X H, Lee H P. A hybrid algorithm based on PSO and SA and its application for two-dimensional non-guillotine cutting stock problem. Computational Science - ICCS 2004, Krakow, Poland, 2004: 666-669.
    [160] Liu Y, Zheng Q, Shi Z W, Chen J Y. Training radial basis function networks with particle swarms. Advances in Neural Networks - ISNN, Dalian, China, 2004: 317-322.
    [161] Parsopoulos K E, Papageorgiou E I, Groumpos P P, Vrahatis M N. Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. Genetic and Evolutionary Computation - Gecco 2004, Seattle, US, 2004: 402-413.
    [162] Xie X F, Zhang W J. SWAF: Swarm algorithm framework for numerical optimization. Genetic and Evolutionary Computation - Gecco 2004, Seattle, US, 2004: 238-250.
    [163] Zhang L P, Yu H J, Chen D Z, Hu S X. Application of neural networks based on particle swarm algorithm for modeling quantitative structure-activity relationships of herbicides. Chinese Journal of Analytical Chemistry, 2004, 32(12): 1590-1594.
    [164] Chang J F, Chu S C, Roddick J F, Pan J S. A parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 2005, 21(4): 809-818.
    [165] Huang C M, Huang C J, Wang M L. A particle swarm optimization to identifying the ARMAX model for short-term load forecasting. IEEE Transactions on Power Systems, 2005, 20(2): 1126-1133.
    [166] Ge H W, Liang Y C. A hidden markov model and immune particle swarm optimization-based algorithm for multiple sequence alignment. Australian Joint Conference on Artificial Intelligence, Sydney, Australia 2005: 756-765.
    [167] Mohamed S S, Youssef A M, Saadany E F, Salama M M A. Artificial life feature selection techniques for prostrate cancer diagnosis using TRUS images. Image Analysis and Recognition, 2005,3656:903-913.
    [168] Pan H, Wang L, Liu B. Particle swarm optimization for function optimization in noisy environment. Applied Mathematics and Computation, 2006, 181(2): 908-919.
    [169] Luis V S Q, Noel R S, Carlos A, Coello C, Julian M L, Alfredo G H D. A new proposal for multiobjective optimization using particle swarm optimization and rough sets theory. Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, Reykjavik, Iceland, 2006: 483-492.
    [170] Wang X D, Zhang H R, Zhang C J, Cai X S, Wang J S, Ye M Y. Time series prediction using LS-SVM with particle swarm optimization. Advances in Neural Networks - ISNN 2006, Chengdu, China, 2006: 747-752.
    [171] Perez J R, Basterrechea J. Particle swarm optimization with tournament selection for linear array synthesis. Microwave and Optical Technology Letters, 2008, 50(3): 627-632.
    [172] Selvakumar A I, Thanushkodi K. Anti-predatory particle swarm optimization: Solution to nonconvex economic dispatch problems.Electric Power Systems Research,2008,78(1):2-10.
    [173]Peter V,Christan B,Horn A C.Friction forces between mould and strand shell during billet casting.Steel Research International,2004,75(10):666-671.
    [174]朱立光,金山同.结晶器与铸坯间气隙内保护渣流动行为的数学解析.钢铁研究学报,1998,10(4):9-12.
    [175]Rumelhart D E.Learning representation by BP errors.Nature,1986,7:149-154.
    [176]Abhijit S.神经网络模式识别及其实现(第一版).徐勇,荆涛译.北京:电子工业出版社,1999.
    [177]杨自厚.神经网络技术及其在钢铁工业中的应用,第7讲,人工神经网络在钢铁工业中的应用(上).冶金自动化,1997,21(4):52-55.
    [178]阎平凡.人工神经网络与模拟进化计算.北京:清华大学出版社,2000.
    [179]黄琪.神经元网络在宝钢连铸漏钢预报系统中的应用.宝钢技术,1999,(1):40-43.
    [180]职建军.宝钢板坯连铸漏钢预报系统的开发与应用.钢铁,2001,36(9):25-27.
    [181]胡志刚.板坯连铸漏钢预报神经元网络专家系统的研究.武汉冶金科技大学学报(自然科学版).1999.22(3):228-232.
    [182]Wang X D,Yao M,Chen X F,Application of BP neural network for the abnormity monitoring in slab continuous casting.Advances in Neural Networks - ISNN 2004,Dalian,China,2004:601-606.
    [183]Hanao M,Kawamoto M,Tanaka T,Nakamoto M.Evaluation of viscosity of Mold flux by using neural network computation.ISIJ International,2006,46(3):346-351.
    [184]Zietsman J H,Kumar S,Meech J A,Samarasekera I V,Brimacombe J K.Taper design in continuous billet casting using artificial neural networks.Ironmaking and Steelmaking,1998,25(6):476-483.
    [185]Watanabe T,Omura K,Konishi M,Watanabe S,Furukawa K.Mold level control in continuous caster by neural network model.ISIJ International,1999,39(10):1053-1060.
    [186]李亮.应用神经网络技术预报VD炉终点钢水温度.钢铁研究学报,2003,15(3):56-59.
    [187]Santos C A,Fortaleza E L,Ferreira C R F,Spim J A,Garcia A.A solidification heat transfer model and a neural network based algorithm applied to the continuous casting of steel billets and blooms.Modelling and Simulation in Materials Science and Engineering,2005,13(7):1071-1087.
    [188]Neural Application Corp.Brimingham Steel.Intelligent arc furnace operation at Birmingham Steel.Steel Times International,1996,20(1):20-21.
    [189]Liu J T.Prediction of the flow ash fusion of high-speed steel during hot deformation using a BP artificial neural network.Journal of Materials Processing Technology,2000,103:200-205.
    [190]Vannucci M,Colla V.A novel classification method for predicting the casting behaviour in the steelmaking practice.Proceedings of the 24th IASTED international conference on Artificial intelligence and applications,Innsbruck,Austria,2006:173-178.
    [191]Miller W M,Throop J A,Upchurch B L.Pattern recognition models for spectral reflectance evaluation of apple blemishes.Postharvest Biology and Technology,1998,14(1):11-20.
    [192]Goh A T C.Back propagation neural networks for modeling complex-systems.Artificial Intelligence in Engineering,1995,9(3):143-151.
    [193]Beksac M S,Basaran F,Eskiizmirliler S,Erkmen A M,Yorukan S.A computerized diagnostic system for the interpretation of umbilical artery blood flow velocity waveforms.European Journal of Obstetrics Gynecology and Reproductive Biology,1996,64(1):37-42.
    [194]Goh A T C,Kulhawy F H.Neural network approach to model the limit state surface for reliability analysis.Canadian Geotechnical Journal,2003,40(6):1235- 1244.
    [195]虞和济.基于神经网络的智能诊断.北京:冶金工业出版社,2000.
    [196]Pantazopoulos,D,Karakitsos P,Iokim L A,Pouliakis A,Botsoli S E,Dimopoulos C.Back propagation neural network in the discrimination of benign from malignant lower urinary tract lesions.Journal of Urology,1998,159(5):1619-1623.
    [197]易继铠.智能控制技术.北京:北京工业大学出版社,1999.
    [198]杨建华.基于拉坯阻力的板坯连铸结晶器漏钢预报.仪器仪表学报,2002,(6):505-506.
    [199]陈兴福.拉坯阻力异常情况分析:(学士学位论文).大连:大连理工大学,2003.
    [200]Lippman,B S.C++ Primer.潘爱民译.北京:中国电力出版社,2002.
    [201]Santos C A,Garcia A,Frick C R,Spim J A.Evaluation of heat transfer coefficients along the secondary cooling zones in the continuous casting of steel billets.Inverse Problems in Science and Engineering,2006,14(6):687-700.
    [202]徐安军,田乃媛,许中波,崔健,汪宁.传热反问题研究方法在钢水温度预定中的应用.炼钢,1996,12(3):36-40.
    [203]Nawrat A,Skorek J.Inverse finite element technique for identification of thermal resistance of gas-gap between the ingot and mould in continuous casting of metals.Inverse Problems in Engineering,2004,12(2):141-155.
    [204]Berdnik V V,Mukhamedyarov R D.Application of the method of neural networks to solution of the inverse problem of heat transfer.High Temperature,2003,41(6):839-843.
    [205]Shiguemori E H,Velho H F D,Silva J D S D,Carvalho J C.Neural network based models in the inversion of temperature vertical profiles from radiation data.Inverse Problems in Science and Engineering,2006,14(5):543-556.
    [206]Noroozi S,Sewell P,Vinney J.The application of a hybrid inverse Boundary Element Problem engine for the solution of potential problems.Cmes-Computer Modeling in Engineering &Sciences,2006,14(3):171-180.
    [207]Santos C A,Cheting N,Garcia A,Spim J A.Application of a solidification mathematical model and a genetic algorithm in the optimization of strand thermal profile along the continuous casting of steel.Materials and Manufacturing Processes,2005,20(3):421-434.
    [208]寇蔚,孙丰瑞,杨立.神经网络求解传热反问题的可行性研究.激光与红外,2004,34(5):347-349.
    [209]Sablani S S,Kacimov A,Perret J,Mujumdar A S,Campo A.Non-iterative estimation of heat transfer coefficients using artificial neural network models.International Journal of Heat and Mass Transfer,2005,48(3-4):665-679.
    [210]Aquino W,Brigham J C.Self-learning finite elements for inverse estimation of thermal constitutive models.International Journal of Heat and Mass Transfer,2006,49(15):2466-2478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700