用户名: 密码: 验证码:
橡胶集料混凝土的微观解析及其结构理论的探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶集料混凝土是一种“年轻”的新型建筑材料,仅有不到三十年的研究历史,它的诞生是对水泥混凝土科学发展的推进。橡胶集料混凝土表现出了一系列与普通混凝土显著不同的工程性能,基于目前人们对橡胶集料混凝土的认识:
     (1)抗开裂性能显著增强;(2)抗渗、抗氯离子侵蚀性能大幅提高;(3)基体变形能力增强,能够吸收更多应变能。这些独特的宏观性能是与它的微观结构密切相关,并影响到其结构性能。因此,从微观角度进一步“解析”橡胶集料混凝土和探讨橡胶集料混凝土对结构性能的影响具有十分重要的意义。
     本课题取材于国家自然科学基金项目“橡胶集料混凝土的机理研究”和“弹性混凝土工程与力学性能及应用研究”。主要研究了橡胶集料对混凝土中物相结构的影响,橡胶集料混凝土的孔结构,基于应力集中理论的裂缝发展延缓机制,此外,还建立了橡胶集料混凝土梁受弯承载力的计算方法以及延性的评价方法。
     本文所采用的主要研究方法有: (1)试验研究,主要包括SEM试验,X射线衍射试验(XRD),压汞试验(MIP),以及基本力学性能试验;(2)数值计算,采用有限元软件ANSYS进行计算分析;(3)理论分析。
     本文主要研究成果如下:
     (1)XRD试验结果表明,尽管水泥的化学成分复杂,并且水化反应时会释放大量的热,但掺入橡胶集料后,在其水化产物中并没有发现新的物相结构;掺加橡胶集料的水泥净浆的水化产物中氢氧化钙(CH)晶体的衍射峰强度显著降低。据此笔者推断,掺加橡胶集料后,水泥基材料后期强度的提高幅度将增大。并且这一推论初步得到其他研究人员试验数据的支持。笔者认为:这是因为橡胶集料的憎水性在橡胶集料表面外围一定厚度范围内形成了低水灰比环境,该环境使CH、Aft等晶体的发育程度受阻。因此在水泥水化反应的初期阶段在橡胶集料表面由各种晶体“搭建”起来的“框架结构”的体积减小,这可能是导致掺加橡胶集料的水泥基材料后期强度持续大幅提高的原因之一。
     (2)采用压汞试验对橡胶集料混凝土的孔结构和分形特征进行了量化研究。试验结果表明,橡胶集料混凝土的最可几孔径、平均孔径、中值孔径以及孔隙率均增大;但孔径分布更趋于均匀。橡胶集料混凝土的孔隙分形维数D值随着橡胶集料掺量的增加而减小,它表明橡胶集料的引入使得橡胶集料混凝土的孔结构分布更趋于规则。
     (3)橡胶集料对混凝土中裂缝发展的阻碍机制非常复杂,难于具体量化分析。本文建立了含椭圆形孔洞的矩形板有限元分析模型,研究了基于应力集中理论的橡胶集料阻碍裂缝发展的机理,诠释了橡胶集料混凝土在宏观力学上表现出的高延性特点。计算中采用了应力集中系数(SCF)作为研究方法。计算结果表明:随着椭圆形状系数的增加,SCF显著增大;软性填充材料能够显著降低椭圆孔洞处的应力集中,使得孔洞沿x方向和y方向的影响范围都明显减小,因为软性填充物所分担的拉应力随椭圆形状系数的增加而逐渐增大。这些结论成功诠释了低温下橡胶集料混凝土仍能表现出延性破坏的原因。
     (4)提出了橡胶集料混凝土新的应力应变关系曲线;基于这一关系曲线,建立了橡胶混凝土梁的受弯承载力的计算方法。该计算方法中,考虑了橡胶集料混凝土峰值压应变和极限压应变对承载力的影响。橡胶集料混凝土的极限压应变比普通混凝土的显著增大,梁的中和轴明显下移,使得橡胶集料混凝土梁的受压区高度显著增大。计算结果表明,在相同混凝土强度等级下,橡胶集料混凝土梁的受弯承载力比普通混凝土梁提高0~10%(橡胶集料掺量在0~12%之间,即λ_1≤1.5;λ_2≤2.0时)。在影响橡胶集料混凝土梁受弯承载力的各种因素中,橡胶集料混凝土的应变系数λ_2对承载力的影响十分显著,而λ_1对承载力的影响较小。通过一算例,计算了相同截面的橡胶集料混凝土简支梁和普通混凝土简支梁的受弯承载力。该算例表明,前者的受弯承载力比后者提高了7.6%。
     (5)以新建的橡胶集料混凝土应力应变关系曲线为基础,通过梁构件的截面曲率延性系数(CDF)建立了橡胶集料混凝土梁延性的评价方法。在钢筋混凝土梁构件的弯拉设计中,不仅要满足承载力要求,还要满足一定的延性要求。橡胶集料混凝土的诞生开辟了从材料自身角度出发来增加构件延性的新途径。所建立的延性评价方法表明,除了配筋率、钢筋屈服强度外,混凝土的峰值压应变、极限压应变也是影响截面延性的主要因素。最后,本文与其他文献中的延性评价方法进行了比较,证明了本文评价方法的准确性和可行性。此外,运用该方法计算的橡胶集料混凝土梁的延性是普通混凝土的1.64~2.59倍。
Crumb Rubber Concrete (CRC) is one type of“young”building materials, with less than thirty years of history. CRC exhibits many different mechanical behaviors from those of conventional concrete. Current studies reveal that (1) CRC improves its anti-cracking behavior; (2) CRC increases in the resistance to water and chloride penetration; and (3) CRC exhibits large deformability and energy-absorbing capability. These macro properties of CRC have a close relationship with its microstructure and would affect the structural properties. In this regards, it is important to“read”CRC in the view of microscopic scale and explore its influence on structural properties.
     The main methods applied in this paper are: (1) experimental research, including scanning electron microscope (SEM), X-ray diffraction (XRD), and mercury intrusion porosimetry (MIP) as well as some mechanical experiments; (2) numerical analysis; and (3) theoretical analysis.
     The conclusions are made as follows:
     (1) XRD results show that although the chemical constituents of cement is complicated, no new phase is found in the hydration products of the cement paste incorporating crumb rubber; The peak intensity of calcium hydroxide (CH) from the hydration products of the cement paste incorporating crumb rubber is reduced significantly compared to that from the control blends. This suggested that cement-based materials incorporating crumb rubber would have a larger growth in strength in late time, and this suggestion is preliminarily supported with a set of experimental data by other searchers.
     (2) Pore structure and fractal characteristic of CRC is analyzed quantitatively using MIP. The results show that the Mode Pore Diameter, the Mean Pore Diameter, the Median Pore Diameter and the porosity of CRC are increased compared to those of conventional concrete, and the pore distribution scope of CRC becomes wide. The fractal dimension D of the pores in CRC decreases with the increase of the crumb rubber content, which indicates that the pore distribution tends to becomes regular when rubber is added.
     (3) A finite element model for a rectangular plane containing an elliptic hole in the center is established based on stress concentration theory. This model illustrates the mechanism of rubber’s delaying the multiplication of the crack in CRC and explains why CRC exhibits high ductility. Stress concentration factor (SCF) is introduced to measure the stress concentration degree. It is found from the results that SCF increases significantly as the shape factor of the elliptic hole increases. Soft filler decreases the SCF and reduces the affected area of the hole along x and y directions. This research is helpful in explaining why CRC can exhibit ductile failure mode even in low temperature.
     (4) A modified stress-strain relationship for CRC is proposed. Based on this, theoretical formula for the flexural capacity of CRC beam, which take into account the peak compressive strain and the ultimate compressive strain of CRC, is established. The neutral axis moves downward remarkably because of the large ultimate compressive strain of CRC, which results in the compressive zone of CRC beam increases significantly. The calculation results show that with the same grade of concrete strength the flexural capacity of CRC beam is increased by 0~10% (when rubber content is 0~12%, namely,λ_1≤1.5;λ_2≤2.0). An example shows that the flexural capacity of the CRC beam is increased by 7.6%.
     (5) Based on the modified stress-strain relationship of CRC, ductility evaluation method is proposed by means of curvature ductility factor (CDF). The method indicates that the peak compressive strain and the ultimate compressive strain of concrete affect the ductility of concrete beam significantly as well as reinforcement ratio and yield strength of steel. In the end, a comparison shows that the calculated ductility of a reinforced CRC beam is about as 1.64~2.59 times as that of a conventional concrete beam.
引文
[1]Zhu H., Crumb rubber concrete. Rapra Handbook on Polymers Use in Construction. Shawbury, UK: Rapra Technology, 2004: 389-405
    [2]Kaloush K. E., Way, G. B., and Zhu H., Properties of crumb rubber concrete. Transportation Research Record. 2005, 1914: 8-14
    [3]Zhu H., On building crumb CRC test sites. Key Engineering Materials. 2006, 302-303: 411-417
    [4]Sukontasukkul Piti., Use of crumb rubber to improve thermal and sound properties of pre-cast conrete panel. Construction and Building Materials. 2009, 23: 1084-1092
    [5]朱涵,新型弹性混凝土的研究综述,天津建设科技,2004, 14(02):35-37
    [6]李悦,王玲,橡胶集料混凝土研究进展综述,混凝土,2006, 04: 91-94
    [7]Eldin N. N., Senouci A. B., Rubber-tired particles as concrete aggregate. Journal of Materials in Civil Engineering. 1993, 05(04): 478-496
    [8]Top?u B.I., The properties of rubberized concrete. Cement and Concrete Research. 1995, 25(02): 304-310
    [9]Savas B.Z., Ahmad S., Fedroff D., Freeze-Thaw durability of concrete with ground waste tire rubber. Transportation Research Record. 1997, 1574: 80-88
    [10]Ganjian E., Khorami M., and Maghsoudi A.A., Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials. 2009, 23(05): 1828-1836
    [11]Siddique Rafat, Naik T.R., Properties of concrete containing scrap-tire rubber- an overview. Wast Management. 2004, 24: 563-569
    [12]Hernádez-Olivares F., Barluengaalet G., Static and dynamic behaviour of recycled tyre rubber-filled concrete. Cement and Concrete Research. 2002, 32: 1587-1596.
    [13]Reda Taha M.M., EI-Dieb A.S., Mechanical, fracture, and microstructal investigations of rubber concrete. Journal of Materials in Civil Engineering. 2008,20(10): 640-649
    [14]宋少民,轲红娟,金树新,橡胶粉改性的高韧性混凝土研究,混凝土与水泥制品,1997, 01: 10-12
    [15]黄政宇,江伏,肖岩等,橡胶粉混凝土动力抗压性能试验研究,自然灾害学报,2007,16(05):135-142
    [16]陈波,张亚梅,陈胜霞等,橡胶混凝土性能的初步研究,混凝土,2004, 12: 37-39
    [17]陈振富,柯国军,胡绍全等,橡胶混凝土小变形阻尼研究,噪声与振动控制,2004,06:32-34
    [18]田薇,郑磊,袁勇,橡胶混凝土脆性的试验研究,混凝土,2007,12:37-40.
    [19]Turatsinze A., Garros M., On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates. Conservation and Recycling. 2008,52(10):1209-1215
    [20]Toutanji A.H., The use of rubber tire particles in concrete to replace mineral aggregates. Cement & Concrete Composites. 1996,18:135-139
    [21]Eldin N.N., Senouci A.B., Measurement and prediction of the strength of rubberized concrete. Cement Concrete Compos. 1994,16(04):287-298
    [22]Zheng L., Huo X.S., Yuan Y., Strength, Modulus of Elasticity, and Brittleness Index of rubberized concrete. Journal of Materials in Civil Engineering. 2008, 20(11): 692–699
    [23]Top?u B.I., Assessment of the brittleness index of rubberized concretes. Cement and Concrete Research. Cement and Concrete Research. 1997, 27(02): 177-183
    [24]陆永其,我国废橡胶资源利用行业的现状与发胀,中国橡胶,2004, 20(12): 3-7
    [25]钱伯章,美国废旧轮胎回收利用现状,橡塑资源利用,2007, 05:34-35
    [26]何永峰,刘玉强,胶粉生产及其应用—废旧橡胶资源化新技术,北京:中国石化出版社, 2001
    [27]Batayneh M.K., Marie Iqbal, Asi Ibrahim, Promoting the use of crumb rubber concrete in developing countries. Wast Management. 2008, 28: 2171-2176
    [28]Pierce C.E., Blackwell M. C., Potential of scrap tire as lightweight aggregate in flowable fill. Waste Management. 2003, 23: 197-208
    [29]Zheng L., Huo X.S., Yuan Y., Experimental investigation on dynamic properties of rubberized concrete. Construction and Building Materials. 2008, 22: 939-947
    [30]连永祥,废橡胶的粉碎方法及设备,中国资源综合利用,1993, 12: 14-15
    [31]陈叔平,谢振刚,陈光奇等,基于液化天然气(LNG)冷量的废旧橡胶,低温工程,2009, 1: 46-48
    [32]Fattuhi N.I.,Clark L.A.,Cement-based materials containing shredded scrap truck tyre rubber. Construction and Building Materials. 1996, 10(4): 229-236
    [33]亢景付,张振利,韩春翠,等强条件下橡胶粉对碾压混凝土强度与变形性能的影响,复合材料学报. 2009, 26(2): 155-159
    [34]袁勇,郑磊,橡胶混凝土动力性能试验研究,同济大学学报(自然科学版). 2008, 36(9): 1186-1190
    [35]Khaloo A.R., Dehestani M., Rahmatabadi P., Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Management. 2008, 28: 2472-2482
    [36]Ganjian E., Khorami M., Maghsoudi A.A., Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials. 2008, doi:10.1016/j.conbuildmat.2008.09.020
    [37]Raghavan D., Huynh H., Workalility, mechanical properties, and chemical stability of a recycled tyre rubber-Filled cementitous composite. Journal of Material Science. 1998, 22: 1745-1752
    [38]Khatib Z.K., Bayomy F.M., Rubberized portland cement concrete. Journal of Materials in Civil Engineering. 1999, 08: 206-213
    [39]Bignozzi M.C., Sandrolini F., Tyre rubber waste recycling in self-compacting concrete. Cement and Concrete Research. 2006, 36: 735-739
    [40]刘爱军,朱涵,王旻,橡胶微粒对混凝土可泵性的影响,济南大学学报(自然科学版),2007, 21(1): 31-33
    [41]Fattuhi N.I., Clark L.A., Cement-based materials containing tire rubber. Journal of Construction and Building Materials. 1996, 10(4): 229-236
    [42]Wang Sook-fun, Ting Seng-kiong, Use of recycled rubber tires in normaland high-strength concretes. ACI materials journal. 2009, 106(4): 325-332
    [43]Eldin N.N., Senouci A.B, Observations on rubberized concrete behavior. Cem Concr Aggregates. 1993, 15(1): 74-84
    [44]刘春生,橡胶集料混凝土的研究与应用:[硕士学位论文],天津;天津大学, 2006
    [45]Ghaly A.M., Cahill IV J.D.,Correlation of strength, rubber content, and water to cement ratio in rubberized concrete. Can. J. Civ. Eng. 2005,32: 1075-1081
    [46]杨林虎,朱涵,王庆余,路面橡胶集料混凝土抗折强度的试验研究.工业建筑. 2007, 37(09):97-100
    [47]Li G.Q., Stubblefield M.A., Garrick Gregory, Development of waste tire modified concrete. Cement and Concrete Research. 2004,34: 2283-2289
    [48]Top?u B.I., Nuri A.I., Analysis of rubberized concrete as a composite material. Cement and Concrete Research. 1997,27(8):1135-1139
    [49]Li G.Q., Stubblefield M.A., Garrick Gregory, Development of waste tire modified concrete. Cement and Concrete Research. 2004,34: 2283-2289
    [50]Top?u B.I., Assessment of the brittleness index of rubberized concretes. Cement and Concrete Research. 1997, 27(02): 177-183
    [51]朱涵,刘春生,张永明等,橡胶集料掺量对混凝土压弯性能的影响,天津大学学报,2007, 40(7):761-765
    [52]Hernádez-Olivares F., Barluenga G., Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements. Construction and Building Materials. 2007, 21: 1918-1927
    [53]许静,朱涵,刘春生,等,橡胶集料混凝土阻尼比的初步试验研究,混凝土,2005, 11:40-42
    [54]胡鹏,朱涵,王旻,橡胶集料混凝土渗透性能的研究,天津理工大学学报, 2006, 22(4): 8-12
    [55]刘春生,橡胶集料混凝土的耐久性能及在桥面铺装上的应用研究,[博士学位论文],天津;天津大学,2009
    [56]欧兴进,朱涵,橡胶集料混凝土氯离子渗透性试验研究,2006, 03:46-49
    [57]欧兴进,朱涵,于新文,CRC抗氯离子侵蚀研究及其使用寿命评估,武汉理工大学学报, 2006, 29(2):29-32
    [58]王开惠,朱涵,祝发珠,氯盐侵蚀环境下橡胶集料混凝土的力学性能研究,长沙交通学院学报,2006, 22(4):38-42
    [59]张亚梅,赵志远,陈胜霞,等,橡胶粉对混凝土在水和NaCl溶液中抗冻性的影响,东南大学学报(自然科学版),2006, 36, Sup(II): 48-52
    [60]祝发珠,橡胶集料混凝土抗盐冻性能试验研究,[硕士学位论文],天津;天津大学, 2006
    [61]王媛俐,姚燕,重点工程混凝土耐久性,北京:中国建材工业出版社, 2000
    [62]Zhu H.,Crumb rubber blends in noise absorption study. Materials and Structures. 2007, DOI 10.1617/s11527-007-9252-y
    [63]Yesilata B.,Is?ker Y., Turgut P., Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Construction and Building Materials. 2008, doi:10.1016/j.conbuildmat.2008.09.014
    [64]Hernádez-Olivares F., Barluenga G., Fire performance of recycled rubber-filled high-strength concrete. Cement and Concrete Research. 2004, 34: 109-117
    [65]赵旭涛,刘大华,合成橡胶工业手册,北京:化学工业出版社, 2006
    [66]Lee B.I. Tyre rubber/cement matrix composites. J Mater Sci Lett. 1993 , 12(13):967-968
    [67]Li Z., Li F., Li J.S.L., Properties of concrete incorporating rubber tyre particles. Mag Concr Res. 1998,50(4): 297-304
    [68]Rostami H., Use of recycled rubber tyres in concrete. Proceedings of the international conference on concrete 2000. 1993: 391-399
    [69]Segre N., Joekes I., Use of tire rubber particles as addition to cement paste. Cement and Concrete Research. 2000, 30(9):1421-1425
    [70]亢景付,王秀芬,韩春翠,等,碾压橡胶混凝土强度特性,天津大学学报,2008, 41(7): 763-768
    [71]Kang J.F., Han C.C. , Zhang Z.L. , Strength and shrinkage behaviors of roller-compacted concrete with rubber additives. Materials and Structures. 2009, 42: 1117-1124
    [72]李仕群,胡佳山,水泥-粉煤灰和水泥-硅粉浆体的XRD及SEM研究,山东建材学院学报,1989,3(2): 1-5
    [73]杨淑珍,宋汉唐,谢荣,XRD法研究水泥水化反应速度,分析测试学报. 1996, 15(5):73-76
    [74]中国建筑材料科学研究总院,水泥化学分析手册,北京:中国建材工业出版社, 2007
    [75]Mehta P.K.,混凝土的结构、性能与材料(祝永年等译),上海:同济大学出版社, 1991
    [76]申爱琴,水泥与水泥混凝土,北京:人民交通出版社, 2000
    [77]本斯迪德J.,巴恩斯P.,水泥的结构和性能(廖欣译),北京:化学工业出版社, 2008
    [78]郭成举,混凝土的物理和化学,北京:中国铁道出版社, 2004.
    [79]廉慧珍,童良,陈恩义,建筑材料物相研究基础,北京:清华大学出版社, 1996
    [80]南京化工学院,陶瓷材料研究方法,北京:中国建筑工业出版社, 1980
    [81]周胜波,李庚飞,侯新凯,矿渣水泥浆体中结晶矿物的XRD分析,中国矿业,2008, 17(1):88-93
    [82]施惠生,施韬,陈宝春等,掺矿渣活性粉末混凝土的抗氯离子渗透性研究,同济大学学报(自然科学版),2006,34(1): 93-96
    [83]吴中伟,廉慧珍,高性能混凝土,北京:中国铁道出版社,1999
    [84]魏国强,詹炳根,孙道胜,混凝土集料—浆体界面过渡区微观结构表征技术综述.安徽建筑工业学院学报(自然科学版). 2008,16(4): 80-85
    [85]解松善,水泥基复合材料中界面粘结的研,硅酸盐学报,1983,11(4):489-497.
    [86]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素,硅酸盐学报,2004, 32(1):70-79
    [87]Shah S.P., Li Z., Lange D.A., Properties of aggregate-cement interface for high performance concrete. New York:Proceedings of Engineering Mechanics. 1992, 852-855
    [88]Grandet J., Ollivier J.P., The 7th international congress on the chemistry of cement. Pairs: 1980
    [89]Maso J.C., The bond between aggregates and hydrated cement paste. Paris: 7 th Intern Congr on the Chem of Cem. 1980, Vol.ⅠⅦ-1/3
    [90]吴科如,周建华,粗集料与硬化水泥浆体界面结合对混凝土力学性能的影响,上海建材学院学报,1989,2(3): 211-217
    [91]陈惠苏,孙伟,Stroeven,Piet,水泥基复合材料集料与浆体界面研究综述(一):实验技术,硅酸盐学报,2004, 32(1): 63-69
    [92]陈惠苏,孙伟,赵庆新等,截面分析法对界面过渡区厚度的放大作用,硅酸盐学报,2003, 31:1130-1134
    [93]陈惠苏,孙伟,赵庆新,截面分析法对任意凸形粒子周围界面过渡区厚度过高估计的解析解,复合材料学报,2006, 23(4): 0155-0163
    [94]Hoshino S., Yamada K., Hirao H., XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. Journal of Advanced Concrete Technology. 2006, 4(3): 357-367
    [95]马一平,提高水泥石-集料界面粘结强度的研究,建筑材料学报,1999,2(1): 29-32
    [96]王振军,沙爱民,水泥混凝土浆体-集料界面区结构与性能,重庆建筑大学学报,2008,30(6):0155-0160
    [97]胡曙光,王发洲,丁庆军,轻集料与水泥石的界面结构,硅酸盐学报,
    [98]王嘉,水泥石-石灰石集料界面过渡层结构和性能的研究,硅酸盐学报,1987, 15( 2): 114-121
    [99]水中和,万惠文,老混凝土中骨料—水泥界面过渡区(界面过渡区)(Ⅰ) -元素与化合物在界面过渡区的富集现象,武汉理工大学学报,2002, 24(4): 21-24
    [100]李绍政,快硬硫铝酸盐水泥浆体-石灰石集料界面的微结构,硅酸盐学报, 1992, 20(1): 88-94
    [101]Buckand A.D.,Dolch W.L., Am. Concrete Inst. 1966, 63(7):755
    [102]Monteiro P.J.M.,Maso J.C., Ollivier J.P., The aggre-gate-mortar interface. Cement and Concrete Research. 1985, 15: 953-958
    [103]Lea F.M.,The Chemistry of Cement and Concrete. London : Edward Amold Ltd, 1970
    [104]胡明德,集料与硅酸盐水泥石界面区的若干研究,武汉工业大学学报,1992, 14(2): 11-18
    [105]杨人和,刘宝元,吴中伟,水泥石与石灰石集料界面过渡区孔结构及其CH晶体亚微观结构的研究,硅酸盐学报,1989, 17(4): 302-307
    [106]Bentz D.P.,Garboczi E.J.,Experimental and simulation studies of the interface zone in concrete. Cement Concrete Research. 1992, 22(5):891-902
    [107]唐明,李晓,混凝土分形特征研究的现状与进展,混凝土,2004, 12: 8-11
    [108]Mandelbrot B.B., How Long is the Coast of Britain,Statistical Self Similarity and Fractional Dimension. Science. 1967,155: 636-638
    [109]沙震,阮火军,分形与拟合,杭州:浙江大学出版社,2005
    [110]Falconner K.,Fractal Geometry-Mathematical Foundations And Applications. England: John Wiley and Sons, 1990
    [111]Mandelbrot B.B., Fractal character of fracture surfaces of metals. Nature. 1984, 308:721-72
    [112]谢和平,分形一岩石力学导论,北京:科学出版社, 1997
    [113]Lang D.A.,Relationship between fracture surface roughness and fracturebehavior of cement paste and mortar. Journal of America Ceramic Society. 1993,76 (3): 589-597
    [114]Saottma V.C.,Barton C.C., Fractals,fracture and size effect in concrete. J.of Engng Mechanics ASCE. 1994,120(4): 835-854
    [115]Brunett M.B.,Scaling phenomena due to fractal contact in concrete and rock fractures. Intenational Journal of Fracture. 1999,95:221-238
    [116]唐明,宁作君,混凝土断裂面的复型重构及其分形特征的评价,沈阳建筑工程学院学报,2003, 02: 1-4
    [117]吴国雄,姚令侃,水泥路面开裂破坏的非线性机制,土木工程学报,2004, 37(7): 73-77
    [118]Mohsen A.Issa, Mahmoud A.Issa, Md.S.Islam, Fractal dimension-a measure of fracture roughness and toughness of concrete. Engineering Fracture Mechanics. 2003, 70:125-137
    [119]唐明,傅柏权,张戚,聚丙烯纤维混凝土早期塑性开裂特征及分形评价,沈阳建筑大学学报,2007, 23(4): 602-605
    [120]Carpinteri A., Lacidogna G., Niccolini G., Fractal analysis of damage detected in concrete structural elements under loading. Chaos, Solitons and Fractals. 2009,42 (4):2047-2056
    [121]李祝龙,梁乃兴,聚合物水泥混凝土断裂的分形特征,西安公路交通大学学报,2000, 20(1): 20-22
    [122]Dougan L.T., Addison P.S., Estimating the cut-off in the fractal scaling of fractured concrete. Cement and Concrete Research. 2001,31(7): 1043-1048
    [123]唐明,王甲春,李连君,沈阳建筑工程学院学报,压汞测孔评价混凝土材料孔隙分形特征的研究,2001, 17(4): 272-275
    [124]韦江雄,余其俊,曾小星等,混凝土中孔结构的分形维数研究,华南理工大学学报(自然科学版),2007, 35(2): 121-124
    [125]刘小艳,李文伟,梁正平,分形理论在混凝土断裂面研究中的应用,三峡大学学报(自然科学版),2003,25(6): 495-499
    [126]杨志远,刘转年,普通混凝土断口分形维数测定与影响因素研究,西安建筑科技大学学报(自然科学版),2008, 40(2): 80-83
    [127]李维涛,孙洪泉,邢君,分形几何理论在混凝土研究中的应用,河北工业大学学报,2003,32(6): 13-16
    [128]Zhang H., Wei D.M., Fractal effect and anisotropic constitutive model for concrete. Theoretical and Applied Fracture Mechanic. 2009,51(3): 167-173
    [129]Mandelbrot, B.B.,分形:形、机遇和维数(文志英,苏虹译),北京:世界图书出版公司,1999
    [130]Mandelbrot, B.B.大自然的分形几何学(陈守吉,凌复华译),上海:上海远东出版社, 1998
    [131]李水根,分形,北京:高等教育出版社, 2004
    [132]褚武扬,材料科学中的分形,北京:化学工业出版社, 2004
    [133]田正宏,白凯国,朱静,透水模板布改善混凝土表层质量试验研究,东南大学学报(自然科学版),2008,38(1): 146-150
    [134]杨淑雁,张强,万惠文等,引气高性能混凝土显微结构研究,武汉理工大学学报,2008,30(9): 16-18
    [135]曾正明,实用工程材料技术手册,北京:机械工业出版社,2000
    [136]Hanus J.B.,Burger C.P., Stress-concentration factors for elliptical holes near an edge, 1981
    [137]萨文Г.H.孔附近的应力集中,北京:科学出版社,1958
    [138]Kubair D.V., Bhanu-Chandar B., Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. International Journal of Mechanical Sciences. 2008,50(4): 732-742
    [139]Moharatra K., SIMHA S.S., Stress concentration around irregular holes using complex variable method. Sadhana. 1998, 23, Part 4, 04:393-412
    [140]Babu R.N., Ramana K.V., Rao K.M., Determination of Stress Concentration Factors of a Steam Turbine Rotor by FEM. Proceedings of world academy of science , engineering and technology. 2008,29, 1307-6884:302-306
    [141]中华人民共和国建设部, GB/T 50081-2002,普通混凝土力学性能试验方法标准,北京:中国建筑工业出版社, 2003
    [142]闫东明,林皋,王哲等,不同环境下混凝土动态直接拉伸特性研究,大连理工大学学报,2005, 45(3): 416-421
    [143]张玉龙,孙敏,橡胶品种与性能手册,北京:化学工业出版社, 2006
    [144]Eivind H., Norma W.H., Douglas M.H., Concrete Stress Distribution in Ultimate Strength Design. ACI Journal, Proceedings. 1955, 52(4): 475-479
    [145]Bignozzi M.C.,Sandrolini F., Tyre rubber waste recycling in self-compacting concrete. Cement and Concrete Research. 2006,36: 735-739
    [146]袁琳,橡胶集料钢筋混凝土梁受弯性能初探,混凝土,2005, 6: 70-76
    [147]杨林虎,朱涵,李强,橡胶集料钢筋混凝土梁截面的延性,济南大学学报(自然科学版),2007,21(1): 28-30
    [148]中华人民共和国建设部, GB 50010-2002,混凝土结构设计规范,北京:中国建筑工业出版社,2003
    [149]王铁成,混凝土结构原理,天津:天津大学出版社,2002
    [150]Pam H.J., Kwan A.K.H., Islam M.S., Flexural strength and ductility of reinforced normal- and high-strength concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings,. 2001, 146(4): 381-389
    [151]Kwan A.K.H., Chau S.L., Au F.T.K., Improving flexural ductility of high-strength concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings. 2006,159(6):339-347
    [152]Park R., Ductility evaluation from laboratory and analytical testing. Proceedings of the 9th World Conference on Earthquake Engineering. 1988, Vol.(Ⅷ):605-616
    [153]Chen C.C., Hsu S.M., Formulas for curvature ductility design of doubly reinforced concrete beams. Journal of Mechanics. 2004,20(4):257-265
    [154]Ho J.C.M., Kwan A.K.H., Pam H.J., Minimum flexural ductility design of high-strength concrete beams. Magazine of Concrete Research. 2004,56(1):13-22
    [155]Du J.S., Au F.T.K., Cheung Y.K., et al, Ductility analysis of prestressed concrete beams with unbonded tendons. Engineering Structures. 2008, 30: 13-21
    [156]Zhu H., CRC: A Preliminary Engineering and Business Prospective. Scrap Tire News. 2001, 3:16-18
    [157]Huang B.S., Investigation into Waste Tire Rubber-Filled Concrete. Journal of Materials in Civil Engineering. 2004,16(3):187-194
    [158]李悦,吴玉生,杨玉红等,钢筋橡胶集料混凝土结构性能研究,北京工业大学学报,2008,34(12):1280-1285
    [159]ACI, ACI(318R-02),Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02). Part 3. 2008
    [160]孙占国,林宗凡,戴瑞同,菱形配筋剪力墙连梁的受力性能,建筑结构学报:1994,15(5):14-23
    [161]王慧芳,钢筋砼梁截面延性的计算分析,福建建筑,2000,1:29-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700