用户名: 密码: 验证码:
密布横梁与混凝土板组合桥面系高速铁路下承式钢桁梁桥的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着高速铁路建设的飞速发展,中国建造了许多高速铁路桥梁。在上跨河流、公路时,受通航、通车对桥下净空和桥头高程的限制,桥梁的建筑高度一般较低,下承式钢桁结合桥是较好的选择。密布横梁与混凝土板组合桥面系下承式钢桁梁桥与其它组合桥面的钢桁梁桥相比建筑高度更低,受力性能更为合理。
     本文受铁道部科技研究开发计划项目《客运专线道碴桥面钢桁梁及轨道结构试验研究》(2006K002-D)的资助,以一座96m跨度的高速铁路桥梁为背景,对密布横梁与混凝土板组合桥面系下承式钢桁梁桥的受力特性和计算方法作了较为深入系统的研究,主要取得了如下创新性成果:
     1.提出了桥面系参与主桁共同作用程度的解析解和简化公式。根据桥面系与主桁下弦杆的变形协调条件,推导了横梁的水平挠曲表达式,提出了桥面系参与主桁共同作用程度的解析解;考察了横梁的面外抗弯刚度、下弦杆截面积、混凝土板宽度和厚度等因素对桥面系参与主桁共同作用程度的影响;通过多元非线性回归分析和简化,得到了桥面系参与主桁共同作用程度的简化公式。试验结果表明,本文的解析解和简化公式具有良好的精度。
     2.提出了桥面系第二系统受力的解析解。将支承在密布钢横梁上的混凝土桥面板作为弹性支承上的连续板,考虑了横梁的竖向挠度和扭转对混凝土板受力的影响,推导了桥面均布荷载和一般荷载作用下,混凝土板的“五弯矩方程”和“五反力方程”,进而求得桥面系第二系统受力的解析解。解析解与有限元结果吻合良好。
     3.基于第2条的研究成果,推导了桥面荷载两条传力途径的传力比和各横梁间传力比的简化计算公式,提出了桥面荷载作用下主桁的受力模式。考察了大横梁(节点横梁)与小横梁(节间横梁)竖向刚度比、横梁间距与混凝土板宽度比等因素对传力比的影响。提出的主桁受力模式对桥梁的初步设计具有指导意义。
     4.对高铁线路上一座96m跨度的密布横梁与混凝土板组合桥面系下承式钢桁梁桥完成了1:6的全桥缩尺模型试验。通过对纯钢模型、半结合模型与全结合模型各种工况下的对比试验,对三种桥面结构的受力特性和参与主桁共同作用的程度作了分析。模型试验和有限元分析计算表明,本文提出的各种计算方法和计算公式具有良好的精度。
     5.提出了横梁组合梁栓钉的设计计算方法,分别推导了第一系统和第二系统作用下栓钉所受剪力的计算公式,考虑横梁与混凝土板结合面的相对滑移,对全桥作了精细的空间有限元分析,考察了各种布置方案中栓钉的受力情况,结果表明本文提出的栓钉设计计算方法切实可行,具有较高的实用性。
     本文的研究成果为下承式钢桁结合桥的设计提供了依据,并已应用于我国高速铁路的桥梁建设,取得了较好的经济效益和社会效益。
In recent years, lots of bridges have been built with the rapid development of high speed railway construction in China. The bridge is required to be low building height if limited by clearance under bridge and elevation at bridgehead when crossing over a river or a road. So steel through truss composite bridge is a good choice. The one with multi-crossbeam and concrete slab composite floor system has lower building height and better mechanical behavior than that with other type of composite floor system.
     This paper is supported by a scientific research project of ministry of railways. Taking a 96m high speed railway bridge as the background, the paper presents an in-depth and systematic study on the calculation theory and mechanical behavior of steel through truss bridge with multi-crossbeam and concrete slab composite floor system. Main innovation achievements are as follows:
     Firstly, the analytical solution and simplified formula for the level of floor system acting together with main truss are put forward. Utilizing the compatibility condition between floor system and bottom chord, the deflection expression of crossbeam is deduced and the analytical solution for the level of floor system acting together with main truss is reached. The influences of cross section area of bottom chord, width and thick of concrete slab, out-plane bending stiffness of crossbeam, and other factors are investigated. The simplified formula is reached by multiple non-linear regression analysis and reasonable simplification. The model test results show that both the analytical solution and simplified formula have good precision.
     Secondly, the analytical solution for the second system force of bridge floor is put forward. The concrete slab supported on crossbeams is taken to be the elastic supporting continuous slab. The effects of vertical flexibility and torsion of crossbeams are taken into consideration, "Five-moment Equation" and "Five-force Equation" under uniform distributed load and general load are deduced, and then the analytical solution is reached. The solution is verified by finite element results.
     Thirdly, the simplified calculation formula for the force-delivering ratio of two load transfer path and each crossbeam is deduced, and the bearing mode of main truss is put forward based on the research results in subparagraph 2. Several factors influencing the force-delivering ratio are investigated, such as the vertical-stiffness ratio of large crossbeam (node crossbeam) to small crossbeam (internode crossbeam), the ratio of the distance between crossbeams to the width of concrete slab, and so on. The conclusion of the bearing mode of main truss can be used in guiding the preliminary design of bridge.
     Fourthly, the 1:6 reduced-scale model tests of a 96m steel through truss bridge with multi-crossbeam and concrete slab composite floor system for high speed railway has been completed. The stress characteristic and the level of floor system acting together with main truss are researched, according to comparative tests by several loading cases for pure steel model, semi-composite model, and full-composite model. The model tests and finite element results reveal the fine accuracy of the calculation methods and formulas in this paper.
     Finally, the design and calculation method of stud in composite crossbeam is put forward, and the calculation formulas of stud shear force in the first and second force system are deduced respectively. Refined finite element analysis for the whole bridge is completed, simulating the relative slip between crossbeam and concrete slab. The stud force conditions in several layout schemes are investigated, which show that the design and calculation method of stud is highly practical and applicable.
     The research results in the paper provide evidence for design of steel through truss composite bridge and have been applied in bridge construction for high speed railway with remarkable economic returns and social benefits.
引文
[1]刘家锋,刘春彦.秦沈客运专线桥梁综述及高速铁路桥梁建设的思考.铁道标准设计,2004,(07):134-137
    [2]王召祜.客运专线桥梁设计研究.铁道标准设计,2005,(04):26-30
    [3]李义兵.客运专线铁路桥梁设计新理念.铁道标准设计,2007,(02):1-4
    [4]郑健.中国高速铁路桥梁.北京:高等教育出版社,2008.1-13
    [5]吕志涛.高速铁路桥梁建设中的结构问题.建筑科学与工程学报,2006,23(03):1-6
    [6]孟莎.客运专线常用跨度桥梁技术特点.桥梁建设,2007,(S1):1-3
    [7]王喜军,王孟钧,陈帆.铁路客运专线新型桥梁结构与施工技术.铁道科学与工程学报,2007,4(06):83-87
    [8]吴克俭.铁路客运专线工程技术的发展与创新.中国铁路,2008,(04):1-6
    [9]辛学忠,张晔芝.铁路钢-混凝土结合梁桥技术发展研究.中国铁路,2007,(12):27-30
    [10]Subcommittee on Composite Steel and Concrete Floor Systems of the Committee on Composite Construction of the Technical Administrative Committee on Metals. Construction Considerations for Composite Steel-and-Concrete Floor Systems. Journal of Structural Engineeilng,2002,128(09):1099-1110
    [11]Banfi Mike. Steel and composite structures. Structural Engineer,2005, 83(21):30-31
    [12]楼庄鸿.几种有特色的组合梁桥.交通科技,2001,(05):3-6
    [13]陈玉骥.高速铁路下承式钢桁结合梁桥的计算理论及其应用研究:[博士学位论文].长沙:中南大学,2004
    [14]叶梅新,陈佳.下承式简支钢桁—混凝土组合桥的研究.中南大学土木建筑学院,2009
    [15]安燕玉.客运专线简支下承式纵横梁体系钢桁结合梁桥的研究:[硕士学位论文].长沙:中南大学,2009
    [16]吴斌,侯杰平,陈佳,等.下承式钢桁结合梁桥面系的对比分析研究.中国西部科技,2008,7(33):16-17
    [17]张晔芝.下承式铁路钢桁结合桥的桥式结构比较.铁道学报,2005,27(05):107-110
    [18]张晔芝.高速铁路下承式钢桁结合桥研究.铁道学报,2004,26(06):71-74
    [19]张晔芝,张敏.高速铁路纵横梁体系结合桥面横梁面外弯曲问题的研究.铁道学报,2010,32(01):59-64
    [20]周胜利,林亚超.日本北陆新干线犀川桥.国外桥梁,1996,(03):1-11
    [21]李明华,高宗余.武汉天兴洲公铁两用长江大桥正桥的设计.中国铁路,2006,(03):38-41
    [22]秦顺全.武汉天兴洲公铁两用长江大桥关键技术研究.工程力学,2008,25(S2):99-105
    [23]徐伟.武汉天兴洲公铁两用长江大桥主桥钢梁设计.桥梁建设,2008,(01):4-7
    [24]侯杰平.客运专线96m下承式密布横梁体系钢桁简支结合梁桥模型试验研究:[硕士学位论文].长沙:中南大学,2009
    [25]杨斐.客运专线下承式密布横梁体系简支钢桁结合梁桥的研究:[硕士学位论文].长沙:中南大学,2009
    [26]叶梅新,杨斐,陈佳,等.106m下承式钢桁结合梁桥面系结合形式的比较研究.中国西部科技,2008,7(35):1-2
    [27]叶梅新,周德,陈佳.高速铁路下承式大跨度系杆拱桥无碴轨道桥面结构形式的对比研究.铁道科学与工程学报,2008,5(02):1-6
    [28]彭岚平,徐升桥,高静青.钢桁梁有碴桥面结构设计研究.铁道勘察,2007,(S1):14-19
    [29]马坤全,吴定俊,曹雪琴.高速铁路钢结构桥梁桥面结构布局探讨.铁道标准设计,2003,(12):56-58
    [30]陈列,李小珍,刘德军,等.高速铁路下承式结合梁系杆拱桥桥面结合方式.中国铁道科学,2007,28(05):37-42
    [31]高静青.双线下承式钢桁结合梁桥面系构造研究.铁道标准设计,2005,(05):73-75
    [32]刘春彦.法国地中海线高速铁路桥梁的技术特点及建议.铁道标准设计,2005,(05):38-42
    [33]徐军,陈忠延.正交异性钢桥面板的结构分析.同济大学学报(自然科学版),1999,27(02):170-174
    [34]叶梅新,张扬.桁梁正交异性整体钢桥面结构受力分析.铁道标准设计,2008,(02):37-39
    [35]刘桂红,易伦雄.采用正交异性钢桥面板的铁路钢桁梁设计.桥梁建设,2007,(S2):8-10
    [36]张敏,叶梅新,张晔芝.密布横梁正交异性板整体桥面受力行为.中国 铁道科学,2010,31(03):28-34
    [37]胡光伟,钱振东,黄卫.正交异性钢箱梁桥面第二体系结构优化设计.东南大学学报(自然科学版)2001,31(03):76-78
    [38]林广平,黄卫,刘振清.正交异性钢桥面板第一体系受力状态对铺装层的影响.公路交通科技,2006,23(01):64-66
    [39]杨义东,胡定成.厄勒海峡大桥的详细设计.国外桥梁,1993,(03):8-1 1
    [40]左明福.厄勒海峡大桥的设计与施工.中国港湾建设,2001,(01):5-9
    [41]刘桂红,刘承虞,肖海珠.南京大胜关长江大桥2×84m连续钢桁梁设计.铁道勘察,2007,(S1):27-29
    [42]易伦雄.大胜关长江大桥工程特点与关键技术.钢结构,2007,22(05):78-80
    [43]肖海珠,高宗余.郑州黄河公铁两用桥主桥结构设计.铁道勘察,2007,(S1):30-34
    [44]周外男,毛伟琦.郑州黄河公铁两用大桥主桥钢梁架设方案研究.桥梁建设,2008,(03):59-62
    [45]张剑英.黄浦江大桥结合梁混凝土桥面板的计算方法.华东公路,1995,(03):3-7
    [46]陈忠延.钢结合梁计算理论的现状及发展.重庆交通学院学报,1986,(04):32-41
    [47]Lindsay Edward Klein. Finite element analysis of a composite bridge deck: [Bachelor degree thesis]. Toowoomba:University of Southern Queensland,2006
    [48]Yarnold M T., Wilson J L, Wan-Chun Jen, 等. Local buckling analysis of trapezoidal rib orthotropic bridge deck systems. Bridge Structures,2007,3(02): 93-103
    [49]王荣辉邱波,刘光栋.桁梁结构空间计算的三节点截面桁段有限元法.湖南大学学报(自然科学版),2001,28(06):92-96
    [50]李乔,何畏.板桁组合结构体系受力特性及计算方法研究.中国铁道科学,2001,22(5):65-72
    [51]铁道部大桥工程局勘测设计院.TB10002.2-2005.铁路桥梁钢结构设计规范.北京:中国铁道出版社,2005-06-14
    [52]裘伯勇,盛兴旺,乔建东,等.桥梁工程.北京:中国铁道出版社,2002.211-213
    [53]陈玉骥.钢桁梁桥面系第一体系纵向力分配情况.铁道科学与工程学报,2006,3(05):17-20
    [54]叶梅新,陈玉骥.单线钢桁梁桥桥面系、主桁架相互作用问题研究.长沙铁道学院学报,1996,14(02):1-5
    [55]张敏,叶梅新,韩衍群.下承式半结合钢桁结合梁桥第一系统受力性能.中南大学学报(自然科学版),2010,41(03):1146-1151
    [56]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001.167-181
    [57]小西一郎.钢桥(第一分册),朱立东,译.北京:中国铁道出版社,1980.20-131
    [58]樊启武.正交异性桥面系第二体系应力计算方法研究:[硕士学位论文].成都:西南交通大学,2005
    [59]小西一郎.钢桥(第二分册),朱立东,译.北京:中国铁道出版社,1980.111-134
    [60]Edmund C Hambly.桥梁上部构造性能,郭文辉,译.北京:人民交通出版社,1982.47-88
    [61]Xiong Ren, Liu Ai-rong, Yu Qi-cai. A study about transverse load distribution of the hinged joint cellular slab bridge with Beam grid method. In:2010 International Conference on Mechanic Automation and Control Engineering (MACE). Wuhan:IEEE,2010.4233-4237
    [62]Wu Wei-hong, Shu Chun-sheng, Wu Ya-ping. Spatial effect analysis of flat shell bridge structure based on beam-grid theory. Journal of (?)anzhou University of Technology,2008,34(5):135-138
    [63]叶梅新,易伦雄,张哗芝,等.南京大胜关长江大桥关键技术的研究.中南大学土木建筑学院科研报告,2006
    [64]陈玉骥.下承式钢桁结合梁在双线对称荷载作用下的近似解.铁道学报,2008,30(01):48-52
    [65]叶梅新,陈玉骥,张晔芝,等.下承式钢桁结合桥的试验研究.中南大学土木建筑学院科研报告,2003
    [66]叶梅新,张晔芝,郭向荣,等.高速铁路下承式钢桁结合梁的空间有限元分析.中南大学土木建筑学院科研报告,2003
    [67]郑凯锋,刘春彦,王应良,等.铁路板桁桥梁的结构空间计算及其应用发展研究.铁道工程学报1997,(03):17-21
    [68]周惟德,陈辉求.组合桁架内力和变形的有限元计算与测试比较.工业建筑,1996,26(07):20-27
    [69]周惟德,金建新.组合桁架中同时考虑滑移和掀起影响的理论公式.工业建筑,1996,26(07):3-8
    [70]周惟德,金建新.组合桁架中同时考虑滑移和掀起影响的理论与测试比较.工业建筑,1996,26(07):9-13
    [71]周惟德,金建新.组合桁架中同时考虑滑移和掀起影响的理论分析——关于钢—砼组合桁架系列研究之七.合肥工业大学学报(自然科学版),1995,18(04):127-133
    [72]Deb A, Deb M K, Booton M. Analysis of orthotropically modeled stiffened plates. International Journal of Solids and Structures,1991,27(5):647-664
    [73]Venkatesh A, Rao K P. Analysis of laminated shells with laminated stiffeners using rectangular shell finite elements. Computer Methods in Applied Mechanics and Engineering,1983,38(03):255-272
    [74]Sinha G, Sheikh A H, Mukhopadyay M. New finite element model for the analysis of arbitrary stiffened shells. Finite Elements in Analysis and Design,1992, 12(3-4):241-271
    [75]刘忠.样条有限条板梁结合单元.重庆交通学院学报,1991,10(04):2-14
    [76]李富文.双向加肋的正交异性钢桥面板单元的刚度矩阵.桥梁建设,1980,1(03):39-53
    [77]章向明,王安稳.复合材料大变形任意加筋板单元.工程力学,2001,20(5):134-138
    [78]陈玉骥.带肋板单元及其在构造正交异性板分析中应用.佛山科学技术学院学报(自然科学版),2006,24(02):6-9
    [79]韩衍群.高速铁路三主桁道碴整体桥面板桁组合桥受力特性及计算理论研究:[博士学位论文].长沙:中南大学,2006
    [80]Azizinamini A. Full scale testing of old steel truss bridge. Journal of Constructional Steel Research,2002,58(5-8):843-858
    [81]Thomas E Boothby, Richard J Craig. Experimental Load Rating Study of a Historic Truss Bridge. Journal of Bridge Engineering,1997,2(01):18-26
    [82]Pedro Albrecht, Akhrawat Lenwari. Design of Prestressing Tendons for Strengthening Steel Truss Bridges. Journal of Bridge Engineering,2008,13(05): 449-454
    [83]陈玉骥,叶梅新.简支下承式桁梁结合梁的模型试验.中国铁道科学,2004,25(06):82-87
    [84]陈玉骥,叶梅新.高速铁路下承式板桁结合梁的受力分析.中南大学学报(自然科学版),2004,35(05):849-855
    [85]De Zhou, Mei-xin Ye, Jia Chen. Experimental study on composite deck of through tired-arch bridge. In:Xian-Yan Z, Guo-Jing H, Hong-Bin X等., eds. The 4th International Symposium on Lifetime Engineering of Civil Infrastructure. Chang sha:Science Press,2009.545-554
    [86]侯文崎,叶梅新.南京大胜关长江大桥三主桁钢正交异性板整体桥面结构受力特性的试验研究.铁道科学与工程学报,2008,5(03):11-17
    [87]Jia Chen, Mei-xin Ye. Section model test of large steel-concrete composite bridge. In:Yong-Bo S, Xin-Gang Z, Chat-Tim T, eds. The 12th International Conference on Inspection, Appraisal, Repairs and Maintenance of Structures. Yan tai: CI-PREMIER PTE LTD,2010.213-218
    [88]叶梅新,胡文军,陈佳.南京大胜关长江大桥桁拱部分节段模型试验研究.铁道标准设计,2008,(03):73-76
    [89]叶梅新,陈佳.京沪高速大胜关桥钢桁梁段节段模型试验方法.铁道科学与工程学报,2009,6(01):16-20
    [90]崔鑫,张玉玲,潘际炎.大跨度桥梁桥面系与主桁共同作用研究.钢结构,2007,22(05):39-43
    [91]郑凯锋,吴臻旺,文曙东.大跨加劲弦钢桁梁桥减小桥面系共同作用技术措施研究.钢结构,2007,22(05):44-47
    [92]陈佳,叶梅新,周德.下承式密布横梁体系钢-混组合桥受力状态研究.中南大学学报(自然科学版),2010,41(02):775-783
    [93]徐芝纶.弹性力学(上).北京:高等教育出版社,2006.1-25
    [94]丁大钧,刘忠德.弹性地基梁计算理论和方法.南京:南京工学院出版社,1986.104-142
    [95]龙驭球.弹性地基梁的计算.北京:人民教育出版社,1981.6-27
    [96]陈玉骥,叶梅新.结合钢桁梁活载作用下钢与混凝土弹性模量比的试验研究.铁道学报,2001,23(03):76-81
    [97]铁道部专业设计院.TBJ24-89.铁路结合梁设计规定.北京:中国铁道出版社,1990-05-01
    [98]何晓群,刘文卿.应用回归分析.北京:中国人民大学出版社,2001.58-84
    [99]曲庆璋,章权,季求知.弹性板理论.北京:人民交通出版社,2000.89-91
    [100]R. Szilard.板的理论和分析:经典法和数值法,陈太平,译.北京:中国铁道出版社,1984.73-85
    [101]Gupta S, Degrande G. Modelling of continuous and discontinuous floating slab tracks in a tunnel using a periodic approach. Journal of Sound and Vibration, 329(08):1101-1125
    [102]Ma Y, Wang Xu, Zang X,等. Investigations on the transient mould friction force in slab continuous casting based on fast fourier transformation. Steel Research International,2009,80(03):235-240
    [103]徐芝纶.弹性力学(下).北京:高等教育出版社,2006.1-25
    [104]同济大学数学教研室.高等数学(下册).北京:高等教育出版社,1996.293-317
    [105]B.C奥西波夫.弹性支承连续梁,史尔毅,梁宗哲,译.北京:人民交通出版社,1953.47-59
    [106]钟朋,刘铮,张文普,等.弹性支承连续梁的计算.上海:上海科学技术出版社,1959.6-18
    [107]铁道第四勘察设计院.新建时速300~350公里客运专线铁路设计暂行规定.北京:中国铁道出版社,2007-03-15
    [108]郭在田.薄壁杆件的弯曲与扭转.北京:中国建筑工业出版社,1989.323-332
    [109]刘光好,周建彬,陈福存,等.刚架三柱端弯矩方程与三跨弯矩方程.河北工业大学学报,2007 36(03):32-35
    [110]刘光好.对连续梁三弯矩方法证明、表达式及其分解的认识.工程力学,2003,((增刊)):262-266
    [111]韩衍群,叶梅新,罗如登.整体桥面钢桁梁桥桥面荷载传递途径的研究.铁道学报,2008,30(01):65-69
    [112]刘自明.桥梁结构模型试验研究.桥梁建设,1999,12(04):1-7
    [113]Abdullah Redzuan, Samuel Easterling W, ASCE F. Determination of Composite Slab Strength Using a New Elemental Test Method. Journal of Structural Engineering,2007,133(09):1268-1277
    [114]Sung-Hoon Kim, Jun-Hyeok Choi. Experimental study on shear connection in unfilled composite steel grid bridge deck. Journal of Constructional Steel Research,2010,66(11):1339-1344
    [115]J Nadaskay Anthony, Dale Buckner C. Direct Model Test of Stub Girder Floor System. Journal of Structural Engineering,1985,111(7):1504-1516
    [116]张晔芝.下承式钢桁半结合桥桥面系的受力状态及改善方法.中国铁道科学,2008,29(02):53-58
    [117]Feng Fu, Dennis Lam, Jianqiao Ye. Parametric study of semi-rigid composite connections with 3-D finite element approach. Engineering Structures, 2007,29(6):888-898
    [118]Piskunov V, Grinevitskii B, Finkelshtein I. Experimental and theoretical investigation of a composite beam for bridge structures. Mechanics of Composite Materials,2006,42(04):315-324
    [119]Yezhi Zhang, Xiaohui Xie. The mechanical behaviors and improvement measures of railway grand bridge during incremental launching of the steel box girder. Zhongguo Tiedao Kexue/China Railway Science,2009,30(03):21-26
    [120]叶梅新,江锋.芜湖桥板桁组合结构的研究.铁道学报,2001,23(05):65-69
    [121]谭莹,田启贤.板桁组合结构的受力特性及其空间分析方法.铁道建筑,2001,(08):2-5
    [122]Elghazouli A Y, Izzuddin B A. Realistic Modeling of Composite and Reinforced Concrete Floor Slabs under Extreme Loading. Ⅱ:Verification and Application. Journal of Structural Engineering,2004,130(12):1985-1996
    [123]朱聘儒.钢-混凝土组合梁设计原理.北京:中国建筑工业出版社,2006.139-170
    [124]刘玉擎.组合结构桥梁.北京:人民交通出版社,2004.19-46
    [125]AMGAD GIRGIS SAMEH S. BADIE. Development and Application of Large-Size Shear Studs to Steel Girder Bridges. Engineering Journal,2007, Second Quarter:79-90
    [126]侯文崎.铁路钢-混凝土组合桥及剪力连接件的研究:[博士学位论文]:中南大学,2009
    [127]Carden Lyle P, Buckle Ian G, Itani Ahmad M. Transverse displacement capacity and stiffness of steel plate girder bridge superstructures for seismic loads. Journal of Constructional Steel Research,2007,63(11):1546-1559
    [128]Lee Pil-Goo, Shim Chang-Su, Chang Sung-Pil. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges. Journal of Constructional Steel Research,2005,61(9):1270-1285
    [129]Su R K L, Pam H J, Lam W Y. Effects of shear connectors on plate-reinforced composite coupling beams of short and medium-length spans. Journal of Constructional Steel Research,2006,62(1-2):178-188
    [130]Park K T. Analytical verification of a composite level of bolted GFRP bridge deck-to-girder connection system. Composite Structures,2009,89(03): 484-491
    [131]Oehlers D J. The Shear Stiffness of Stud Shear Connections in Composite Beam. Journal of Construction and Steel Research,1986,6(04):273-284
    [132]Gattesco N. Analytical modeling of nonlinear behavior of composite beams with deformable connection. Journal of Constructional Steel Research,1999,52(2): 195-218
    [133]Bursi O S, Gramola G. Behaviour of headed stud shear connectors under low-cycle high amplitude displacements. Materials and Structures,1999,32(218): 290-297
    [134]Roberts T M, Dogan O. Fatigue of welded stud shear connectors in steel-concrete-steel sandwich beams. Journal of constructional steel research,1998, 45(03):301-320
    [135]Seracino R, Oehlers D J, Yeo M F. Behaviour of Stud Shear Connectors Subjected to Bi-directional Cyclic Loading. Advances in Structural Engineering,2003, 6(01):65-75
    [136]Chang-Su Shim, Pil-Goo Lee, Tae-Yang Yoon. Static behavior of large stud shear connectors. Engineering Structures,2004,26(12):1853-1860
    [137]侯文崎,叶梅新.芜湖公铁两用长江大桥受压区桁梁结合梁试验研究成果简介.工程力学,1999,(增刊):214-219
    [138]叶梅新,罗如登.组合梁钢与混凝土板相对滑移及栓钉受力状态研究.铁道学报,2002,24(3):57-61
    [139]吏林山,叶梅新.混凝土受拉状态下钢—混凝土组合结构中栓钉的承载力的研究.长沙铁道学院学报,2003,21(01):8-12
    [140]宗周红,车惠民.剪力连接件静载和疲劳试验研究.福州大学学报(自然科学版),1999,27(06):62-66
    [141]宗周红,车惠民.预应力钢-混凝土组合梁的疲劳性能.铁道学报,2000,22(03):92-95
    [142]白光亮,蒲黔辉,袁万城,等.栓钉在斜拉桥索塔锚固区中的试验研究与非线性分析.铁道学报,2009,31(03):75-81
    [143]侯文崎,叶梅新.低温下钢-混凝土组合结构疲劳试验和极限承载力.中南大学学报(自然科学版),2004,35(6):25-30
    [144]王景全,孙宝俊,陈娟.钢-FRP桥面板结合梁桥剪力连接件的试验研究.世界桥梁,2003,(02):40-43
    [145]周安,戴航,刘其伟.栓钉连接件极限承载力及剪切刚度的试验.工业建筑,2007,37(10):84-87
    [146]白玲.超静定组合结构桥梁受力特性的3D-FEM模拟分析:[博士学位论文].北京:铁道科学研究院,2003
    [147]聂建国,郑洁.钢板混凝土组合抗弯加固中滑移分布分析.清华大学学报(自然科学版),2007,47(12):2085-2088
    [148]万臻,毛学明,赵人达.钢-混凝土组合梁界面纵向剪力重分布.西南交通大学学报,2006,41(02):174-178
    [149]孙文彬.部分剪力连接钢—混凝土组合梁考虑滑移效应的曲率分析.城市道桥与防洪,2001,(04):31-33
    [150]孙文彬.部分剪力连接钢—混凝土简支组合梁的滑移性能分析.长沙交通学院学报,2001,17(04):55-59
    [151]孙文彬.部分剪力连接钢—混凝土组合梁曲率的理论分析.长沙大学学报,2002,16(02):57-59
    [152]孙文彬.部分剪力连接钢—混凝土组合梁附加变形计算.城市道桥与防洪,2003,(03):31-33
    [153]孙文彬,韦芳芳,吕志涛.部分剪力连接钢—混凝土组合梁的非线性有限元分析.工业建筑,2003,33(09):78-79
    [154]徐业愚,孙文彬.部分剪力连接钢—混凝土简支组合梁变形计算的积分法.吉林建筑工程学院学报,2002,17(03):29-31
    [155]张晔芝,叶梅新.桁架结合梁及其剪力连接件试验研究.铁道学报,1999,21(01):67-71
    [156]张晔芝,黄辉宇.桁梁结合梁栓钉上拔力的研究.长沙铁道学院学报,1999,17(02):86-89
    [157]Jia Chen, Mei-xin Ye. Stud calculation and layout in plate-truss composite structure. In:Xian-Yan Z, Guo-Jing H, Hong-Bin X et al., eds. The 4th International Symposium on Lifetime Engineering of Civil Infrastructure. Chang sha:Science Press,2009.603-609
    [158]刘鸿文.材料力学(上).北京:高等教育出版社,2001.15-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700