用户名: 密码: 验证码:
环氧沥青及其混合料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨径钢箱梁桥面铺装问题一直是国内外工程界广泛关注的问题。环氧沥青混凝土具有优良的高温稳定性、低温抗裂性和抗疲劳性能,是一种较好的钢桥面铺装材料。但是,环氧树脂是极性物质,沥青是非极性物质,两者混合时相容性较差。普通的环氧树脂固化后的脆性高,导致延展性能较差。在桥面铺装应用时,为了提高铺装层抗渗性能,都选用了密级配沥青混合料,这导致了环氧沥青铺装层抗滑性能较差。而且,室内研究时的固化工艺与实际应用时环氧沥青混凝土强度增长工艺存在较大的差异,影响对环氧沥青混合料性能的准确评价。因此,如何改善环氧沥青的相容性、确定合理的室内研究方法、改善环氧沥青混合料级配组成对保证环氧沥青混凝土的铺装质量,提高钢桥面铺装层耐久性具有重要意义。本文在总结国内外环氧沥青铺装材料研究与应用的基础上,采用国产环氧树脂和沥青为原料,通过改善环氧树脂与沥青的相容性,提高环氧沥青的延展性的研究,制备了性能优良的桥面铺装用环氧沥青,通过对环氧沥青混合料的级配组成的优化和合理的实验室内固化工艺的研究,提出了同时具有密实性和抗滑性能的环氧沥青混合料的级配组成及其固化工艺,并研究了环氧沥青的流变特性和混合料的粘弹特性和疲劳特性,主要得出以下结论:
     1、研究发现表面活性剂可以降低环氧树脂与沥青间的界面张力,改善环氧树脂在沥青中的分散与稳定,使环氧树脂与沥青能够形成均一、稳定的混合物,从而改善环氧树脂与沥青间的相容性;
     2、将苯乙烯-丁二烯-苯乙烯三元嵌段共聚物(SBS)用于改善环氧沥青的柔韧性,显著提高了环氧沥青的变形适应能力,实现了以普通双酚A型环氧树脂制备出强度高、柔韧性好、热稳定性优良的环氧改性沥青,并明显降低了环氧沥青的成本;
     3、选用甲基六氢邻苯二甲酸酐(MTHPA)作为环氧沥青固化剂,MTHPA固化的环氧沥青不仅具有固化反应速度慢,使用期较长,利于环氧沥青混合料的施工,而且环氧沥青还具有常温下继续固化的能力,可以保证环氧沥青混合料在铺装后,环氧沥青能够完全固化;
     4、环氧树脂掺量与改性沥青力学性能呈非线性变化关系。当环氧树脂掺量小于30 wt%时,环氧沥青拉伸强度缓慢增大;掺量大于30 wt%以后,拉伸强度迅速增加;
     5、环氧树脂对沥青的高温性能改善作用明显。当20wt%环氧树脂加入到沥青中后,沥青PG(Performance Grade)高温等级将提高30℃左右,环氧沥青的复数模量比原样沥青(SBS改性沥青)的复数模量大1~2个数量级;
     6、在30℃~100℃范围内,环氧沥青的流变特性可以用Arrhenius方程和WLF方程进行描述,环氧树脂加入后可以有效提高沥青在高温条件下的粘弹特性,采用Burgers模型可以较好的描述环氧沥青的粘弹性能,环氧树脂可以明显改善沥青的高温抗变形能力,从而提高环氧沥青混合料的抗车辙能力;
     7、制备的环氧沥青及其混合料在室内120℃烘箱中养护与室外自然养护时性能的增长趋势存在一定差异,在室内高温条件固化时,力学性能在初始阶段增加缓慢,然后迅速增大;而在室外自然养护时,力学性能随着时间平稳的增大;
     8、在相同油石比条件下,随着环氧树脂掺量的增加,环氧沥青混合料的马歇尔稳定度和劈裂强度明显增大;环氧树脂掺量对混合料的空隙率、矿料间隙率和沥青饱和度影响较小;
     9、随着环氧树脂掺量的增加,环氧沥青混合料疲劳寿命明显增大。在设计交通量为1×10~7时,SBS改性沥青混合料抗拉结构强度系数为3.64,掺加20 wt%环氧树脂的环氧沥青混合料的抗拉结构强度系数为1.81,表明采用环氧沥青混合料进行钢桥面铺装时,不仅提高铺装层的高温性能和疲劳性能,而且可以大大降低桥面铺装层的厚度;
     10、随着环氧树脂掺量的增加,环氧沥青混合料抗变形能力明显增大。分别掺加20 wt%、35 wt%和50 wt%环氧树脂的环氧沥青混合料的总变形分别为SBS改性沥青混合料的40.7%、26.4和21.0%,永久变形分别为SBS改性沥青混合料的45.2%、20.0%和16.1%。
An extensively concerned problem in engineering is how to design pavement on long span steel deck. Epoxy asphalt concrete, with better high-temperature stability, low-temperature anti-cracking performance and fatigue resistance, is a comparatively good materials for paving orthotropic steel decks. But there are the obvious differences between asphalt and epoxy resin such as polarity, molecular weight, density, viscosity, solubility coefficient and so on. It leads to low compatibility between epoxy resin and asphalt. Common epoxy resin is a brittle materials and lack ductility after cured. Dense gradation asphalt mixture was selected to pave steel decks for good anti-permanent deformation and anti-water damage. Thus, the paving layer show bad skid resistance. In addition, the processing technology difference between laboratory test and field construction make it is difficult to evaluate the epoxy asphalt mixture performance. Therefor, it is very importance to improve the ductility of epoxy asphalt, the compatibility betweent epoxy resin and asphalt, the curing processing in laboratory, the anti-skid performance of epoxy asphalt mixture, and the durable of paving layer on orthotropic steel decks. The primary goal of the present study is to prepare a epoxy asphalt with better pavement performance using the homemake epoxy resin and asphalt, improve compatibility and elongation at break of epoxy asphalt. Epoxy asphalt mixture with better close-grained and anti-skid performance was prepared by optimizing the aggregate blending and curing processing. And the rheological character of asphalt, viscoelastic properties and fatigue of epoxy asphalt mixture was investigated. The following conclusions are obtained:
     1. The surfactant was employed to decrease the interfacial tension of epoxy resin/asphalt and improve the compatibility between epoxy resin and asphalt. An epoxy asphalt with better compatibility and homogeneous was prepared.
     2. The styrene-butadiene-styrene triblock copolymer(SBS) was adopt to improve the flexility of epoxy asphalt. Preparation of epoxy asphalt with high strength, good high-temperature stability and ductility using common domestic diglycidyl ether of bisphenol A epoxy resin and asphalt become reality. And the cost of epoxy asphalt production was reduced.
     3. Methyl tetrahydro phthalic anhydride (MTHPA) with slow reaction and long using period was employed to prepare epoxy asphalt. It is favourable to pave epoxy asphalt mixture. And the curing reaction of epoxy asphalt occure not only at high temperature but also at room temperature. It is important to assure epoxy asphalt mixture fully cured after paving.
     4. The relation between epoxy resin contents and mechanical properties is nonlinear. The mechanical properties revealed that the tensile strength increased slowly when the contents of epoxy resin less than 30 wt %. when epoxy resin contents more than 30 wt %, the tensile strength increased significantly.
     5. The high-temperature performance of apshalt was improved remarkably by epoxy resin. The performance grade at high temperature enhance approximate 30℃when 20 wt% epoxy resin added in asphalt. Compared to SBS modified asphalt, the complex modulus of epoxy asphalt have increased by roughly one or two order of magnitude.
     6. The relationship of complex modulus and temperature can be charcterized by Arrhenius equal and WLF equal in the temperature range from 30 to 100℃. The viscoelastic of epoxy asphalt was improved by epoxy resin. Burgers model is more suitable for the viscoelastic property research of epoxy asphalt, the model demonstrate that epoxy resin can improve the high-temperature anti-permanent deformance.
     7. The performance of epoxy asphalt and its mixture showed different trend growth between laboratory curing in oven at 120℃and field curing. The mechanical properties increase slowly in the earliest stages of curing, then increase rapidly. But it is increase steadily throughout the curing.
     8. Marshall stability and indirect tensil strength increase with epoxy resin contents increasing under the same ratio of asphalt to aggregate. The effect of the ratio of asphalt to aggregate on void, voids in mineral aggregate and voids filled with asphalt is little.
     9. If the traffic volume in road design was set 1×10~7, the tensile strength structure parameter of SBS modified asphalt mixture is 3.64 and it is 1.81 for 20 wt% epoxy resin modified asphalt mixture. It demonstrated that the high-temperature performance and anti-fatigue of paving layer on steel decks was improved, and the thickness of paving layer was decreased remarkably.
     10. The deformation resistance of asphalt mixture was improved by epoxy resin. The totall deformation of epoxy asphalt with 20, 35 and 50 wt% epoxy resin is 40.7%, 26.4% and 21.0%, respectively. Compared with SBS modified asphalt, the permanent deformation is 45.2%, 20.0% and 16.1%.
引文
[1]Medani T.O.Asphalt Surfacing Applied to Orthotropic Steel Bridge Decks,Report 7-01-127-1.In commission of the Dutch Ministry of Transport,Public Works and Water Management,1999.
    [2]周巍,胡松.大跨径钢桥面铺装类型选择.中外公路,2006,26(5):62-64.
    [31邓强民,倪富健,顾兴宇,陈荣生.非均布轮载下钢桥面铺装力学响应分析.公路交通科技,2008,25(2):59-63.
    [4]黄卫,张晓春,胡光伟.大跨径钢桥面铺装理论与设计的研究进展.东南大学学报(自然科学版),2002,32(3):480-487.
    [5]刘国杰,黄晓明.特大桥梁沥青铺装层层间稳定性试验研究.公路交通科技,2007,24(6):29-32.
    [6]邓学钧,顾兴宇,周世忠.钢桥面沥青铺装层裂缝破坏趋势研究.公路交通科技,2002,19(4):4-7.
    [7]吕伟民.热拌高强沥青混凝土的配制原理及其力学特性.同济大学学报,1995,23(5):519-523.
    [8]Chen Xianhua,Huang Wei,Qian Zhendong.Interfacial behaviors of epoxy asphalt surfacing on steel decks.Journal of Southeast University(English Edition),2007,23(4):594-598
    [9]Chen Zhiming,Kang Yang,Min Zhaohui,Huang Wei.Preparation of and characterization of epoxy asphalt binder for pavement of steel deck bridge.Journal of Southeast University(English Edition),2006,22(4):553-558
    [10]Yang Jun,Lu Haizhu,Yuan Dengquan,Wang Jianwei.Evaluation of modification effect of epoxy resin based on performance of asphalt mixtures.Journal of Southeast University(English Edition),2007,23(1):122-126
    [11]宗海.环氧沥青混凝土钢桥面铺装病害修复技术研究.[硕士学位论文].南京:东南大学,2005
    [12]吕伟民.国内外环氧沥青混凝土材料的研究与应用.石油沥青,1994,(3):11-15
    [13]吕伟民.热拌环氧沥青混凝土的配制原理及其力学特性.石油沥青,1995,(1):1-5
    [14]王晓,程刚,黄卫.环氧沥青混凝土性能研究.东南大学学报(自然科学版),2001,31(6):1-4
    [15]吕伟民,郭忠印,黄彭等.冷拌环氧沥青混凝土的特性及其应用.华东公路,1996,(2):64-68
    [16]黄卫,钱振东,程刚,杨军.大跨径钢桥面环氧沥青混凝土铺装研究.科学通报,2002,47(24):1894-1897
    [17]闵召辉,黄卫,王晓.环氧沥青混凝土钢桥面铺装层温度应力研究.公路交通科技,2003,20(4):12-15
    [18]黄卫,钱振东,程刚.环氧沥青混凝土在大跨径钢桥面铺装中的应用.东南大学学报(自然科学版),2002,32(5):783-787
    [19]杨若冲,程刚.环氧沥青混合料性能及其应用.中外公路,2004,24(2):81-83
    [20]闵召辉,张翔,詹炳根.环氧沥青与石料的粘附性能研究.合肥工业大学学报(自然科学版),2005,28(11):1452-1455
    [21]李宇峙,吴国平,邵腊庚.环氧沥青混凝土材料在钢桥面铺装中的应用.中南公路工程,2005,30(3):168-170
    [22]Fan Long Jin,Soo Jin Park.Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer.Materials Science and Engineering:A,2008,478(1-2):402-405
    [23]Mizunuma,Tatsuya,et.al.Asphalt additive and asphalt composition:United States,US5721296.1996
    [24]刘大梁,刘小燕.环氧沥青混凝土性能试验研究.公路交通科技,2005,22(4):13-15
    [25]季节,罗晓辉.环氧沥青混凝土在钢桥桥面铺装中的应用研究.北京建筑工程学院学报,2005,21(1):21-23
    [26]陈小周,王建伟,陈先华.理论密度对环氧沥青混合料中沥青用量的影响.山西建筑,2005,31(4):90-91
    [27]许庆.环氧沥青桥面铺装施工技术.中国市政工程,2006,(6):26-27
    [28]Nakajima,Shigeo et.at.Asphalt composition:United States,US20050171251.2005
    [29]Hayashi,Shigeyuki,Isobe,Masao,Yamashita,Tadakazu.Asphalt compositions:United States,US4139511.1979
    [30]Tanaka,Shingo,Ikenaga,Takayuki.Asphalt modifier composition and asphalt composition:United States,US5990206.1999
    [31]Prejean,George Wyatt et.al.Composition comprising asphalt and epoxy(Meth)acrylate copolymer:United States,US20070027261.2007
    [32]Statz,Robert Joseph et.al.Epoxy functionalized ethylene copolymer asphalt reaction products:United States,US20030087997.2003
    [33]吕伟民,郭忠印.环氧沥青混凝土的蠕变特性.石油沥青,1995,9(4):1-3
    [34]闵召辉,黄卫,钱振东.环氧沥青玛蹄脂粘弹性能的细观研究.公路交通科技,2004,21(7):9-11
    [35]Perviz Ahmedzade,Mehmet Yilmaz.Effect of polyester resin additive on the properties of asphalt binders and mixtures.Construction and Building Materials,2008,22(4):481-486
    [36]沈金安主编.沥青与沥青混合料路用性能.北京:人民交通出版社,2001
    [37]孙曼灵主编.环氧树脂应用原理与技术.北京:机械工业出版社,2002
    [38]Moran,Lyle E.Using branched polymers to improve the storage stability of acid treated polymer modified asphalts(PNE-577):United States,US5095055.1992
    [39]Goodrich J.L.,Statz R.J.Polymer and asphalt reaction process and polymer-linked-asphalt product:United States,US5306750.1991
    [40]Engber,Steven L.,Reinke,Gerald H.Acid-reacted polymer-modified asphalt compositions and preparation thereof:United States,US6117923.2000
    [41]Doyle,Michael P.High shear asphalt compositions:United States,US5749953.1998
    [42]Gallagher,Kevin P.,Vermilion,Donn R.Thermosetting asphalt:United States,US5576363.1998
    [43]Gallagher,Kevin P,Vermilion,Donn R.Thermosetting asphalt having continuous phase polymer:United States,US5604274.1997
    [44]朱义铭,钱振东,王晓.环氧沥青混凝土空隙率控制及其影响因素研究.交通运输工程与信息学报,2005,3(2):97-100
    [45]王治流,刘全伟,杨琥,程镕时.红外光谱法对环氧沥青固化机理的研究.高分子材料科学与工程,2005,21(3):93-95
    [46]张兴龙,黄卫.环氧沥青混凝土钢桥面铺装的施工质量控制.施工技术,2005,34(5):59-61
    [47]Lehureau,Jean,Rieux,Jean-philippe.Bituminous compositions comprising diepoxidized hydrogenated bisphenol A:United States,US3915730.1975
    [48]宗海,王建伟,吕斌.时温对环氧沥青混合料的影响分析.公路,2006,(11):135-138
    [49]曹雪娟,郝增恒,皮育晖.环氧沥青混凝土材料及其性能试验研究.公路交通科技,2006,(5):37-39
    [50]Kluttz,Robert Q.Asphalt amine functionalized polymer composition:United States,US5322867.1994
    [51]Okada,Sadashige.Modified asphalt-epoxy resin composition:United States,US4499215.1985
    [52]王洪敢,陈富勇.环氧沥青钢桥面铺装技术.山东交通科技,2006,(3):19-21
    [53]周巍,李素莹.环氧沥青混凝土材料性能的试验研究.中外公路,2006,26(5):65-67
    [54]闵召辉,黄卫.环氧沥青的粘度与施工性能研究.公路交通科技,2006,23(8):5-8
    [55]郭永明.环氧沥青混凝土钢桥面铺装施工技术和工艺.天津建设科技,2006,(2):52-53
    [56]曹雪娟,雷运波.环氧沥青混凝土施工工艺要点.中外公路,2006,26(2):189-191
    [57]周晓华,宗海,童义和,于力.环氧沥青混凝土钢桥面铺装层病害分析.公路交通科技(应用技术版),2006,(3):105-108
    [58]宗海,周晓华,王晓,王建伟.环氧沥青混凝土钢桥面铺装鼓包病害修复研究.公路交通科技(应用技术版),2006,(2):119-22
    [59]亢阳,陈志明,闵召辉,黄卫,程刚,王晓.顺酐化在环氧沥青中的应用.东南大学学报(自然科学版),2006,36(2):308-311
    [60]张镇,曾石发,姜涛.环氧沥青混凝土性能和应用研究.山西建筑,2006,32(5):153-154
    [61]姜厚荣,李春雷.环氧沥青混凝土在钢桥面铺装层中的应用研究.交通标准化,2006,(Z1):64-67
    [62]周晓华,宗海,王晓,王建伟.环氧沥青混合料低温性能研究.公路,2006,(1):179-182
    [63]罗志强.钢桥桥面铺装构建环氧沥青混凝土的研究.广东工业大学学报,2007,24(4):100-103
    [64]段葭,高畅.环氧沥青混凝土的特点及施工工艺研讨.山西建筑,2007,33(35):177-178
    [65]朱义铭.国产环氧沥青混合料性能研究.东南大学,2006
    [66]王珏.环氧沥青混凝土和SMA沥青混凝土的应用.山西建筑,2007,33(34):169-170
    [67]陈先华,陈妍,黄卫.环氧沥青混凝土钢桥面铺装的弯曲特性.公路交通科技,2007,24(11):5-8
    [68]何长江,钱振东,王建伟,韩光义.环氧沥青混凝土钢桥面铺装病害处治技术研究.交通科技,2007,224(5):42-44
    [69]杨彦辉.环氧沥青混凝土钢桥面铺装的施工控制要点.山西建筑,2007,131(29):131-132
    [70]黄晖,刘文忠.湛江海湾大桥钢桥面环氧沥青混凝土施工混合料温度控制与检测.公路交通科技,2007,(5):66-68
    [71]章登精.南京长江第三大桥环氧沥青桥面铺装工程.公路,2007,(9):21-25
    [72]傅丽梅,付雪梅.环氧沥青混凝土主要施工工艺.民营科技,2007,(1):76
    [73]Ahmedzade P.,Tigdemir M.,S.F.Kalyoncuoglu.Laboratory investigation of the properties of asphalt concrete mixtures modified with TOP-SBS.Construction and Building Materials,2007,21(3):626-633
    [74]闵召辉,张占军,钱振东,黄卫.环氧沥青混合料强度的时温依赖性.中国公路学报,2007,20(3):1-4
    [75]Hiromitsu N.,Takara O,Koji G.:The Structural Evaluation for an Asphalt Pavement on a Steel Plate Deck,World of Asphalt Pavements,session 2B,Sydney,February,2000.
    [76]黄俊强,何丽芳,慕海瑞.环氧沥青钢桥面铺装施工控制技术.山西建筑,2008,34(2):311-312
    [77]Burak Sengoz,Giray Isikyakar.Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods.Journal of Hazardous Materials,2008,150(2):424-432
    [78]Fu Haiying,Xie Leidong,Dou Daying,Li Linfan et.al.Storage stability and compatibility of asphalt binder modified by SBS graft copolymer.Construction and Building Materials,2007,21(7):1528-1533
    [79]Zora V.,Chaminda W.,Jiri S.,Ludo Z..Creep characteristics of asphalt modified by radial styrene-butadiene-styrene copolymer.Construction and Building Materials,2007,21(3):567-577
    [80]王新明,闵召辉,黄卫.环氧沥青混合料的弹性性能预测.公路交通科技,2007,24(7):35-38
    [90]Ouyang Chunfa,Wang Shifeng,Zhang Yong,Zhang Yinxi.Improving the aging resistance of styrene-butadiene-styrene tri-block copclymer modified asphalt by addition of antioxidants.Polymer Degradation and Stability 91(2006)795-804
    [91]Lu Xiaohu,Isacsson U.Effect of ageing on bitumen chemistry and rheology.Construction and Building Materials,16(2002):15-22
    [92]Siddiqui M.N.,Ali M.F..Studies on the aging behavior of the Arabian asphalts.Fuel,78(1999):1005-1015
    [93]Yang Peng,Liu Daosheng,Yan Feng,Wei Yi,Liu Guomin,Dai Yueling,Huo Kaifu and Liao Kejian.Application of the compatibility theory and the solubility parameter theory in SBS modification asphalt.Petroleum Science and Technology,20(3-4),(2002):367-376
    [94]Mull M.A.,StuarT K.,Yehia A..Fracture resistance characterization of chemically modified crumb rubber asphalt pavement.Journal of Materials Science,2002,37,557-566
    [95]Yvonne B.,Alejandro J.Mu 1.,Yajaira R..Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts.Journal of Applied Polymer Science,2003,90:1772-1782
    [96]Wu Shaopeng,Cong Peiliang,Yu Jianying et.al.Experimental investigation of related properties of asphalt binders containing various flame retardants.Fuel 85(2006)1298-1304
    [97]闵召辉,王晓,黄卫.环氧沥青混凝土的蠕变特性试验研究.公路交通科技,2004,21(1):1-4
    [98]Chavez L.E.,Alonso E.,Manzano A.,Perez J.,Contreras M.E.,Signoret C..Improving the compressive strengths of cold-mix asphalt using asphalt emulsion modified by polyvinyl acetate.Construction and Building Materials,2007,21(3):583-589
    [99]Yetkin Y..Polymer modified asphalt binders.Construction and Building Materials,2007,21(1):66-72
    [100]Atsushi F.,Hayato H.,Takayuki K.,Akira S.Asphalt-epoxy resin compositions:United States,US20070185246A1.2007
    [101]Doi,Tadashi et.al.Process for preparation of asphalt-epoxy resin composition:United States,US4152998.1979
    [102]Hijikata,Kenji et.al.Epoxy resin-bitumen material composition:United States,US4360608.1981
    [103]Shen Chengjin,Ming Tuzhang,Hu Guangwei et.al.Research on the Anticorrosion Coating Under the Paved Layer for Highway Steel Box Bridge Deck.Journal of China University of Mining and Technology,2006,16(4):429-432
    [104]Giovanni P.,Jiri S.,Dario B.,Ludovit Z.Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts.Current Opinion in Colloid & Interface Science,2006,11(4):230-245
    [105]Ouyang C.,Wang S.,Zhang Y.,Zhang Y.Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts.European Polymer Journal,2006,42(2):446-457
    [106]Giovanni P.,Jiri S.,Dario B.,Federico A.,Ludovit Z..Rheology of asphalts modified with glycidylmethacrylate functionalized polymers.Journal of Colloid and Interface Science,2004,280(2):366-373
    [107]Navarro F.J.,Partal P.,Martinez-Boza F.,Gallegos C.Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens.Fuel,2004,83(14):2041-2049
    [108]Stastna J.,Zanzotto L.,Vacin O.J.Viscosity function in polymer-modified asphalts.Journal of Colloid and Interface Science,2003,259(1):200-207
    [109]邹桂莲,张肖宁,王绍怀,王端宜.富沥青混合料的CAVF法设计.公路,2002,(3):76-79.
    [110]葛折圣,张肖宁,高俊合.富沥青混合料设计方法的改进.公路交通科技,2007,24(11):48-50.
    [111]吴旷怀,张肖宁.沥青混合料设计的主骨料空隙体积填充法研究及应用.中南公路工程,2004,29(2):58-62.
    [112]王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数.北京:人民交通出版社,2002,18-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700