用户名: 密码: 验证码:
梯度结构混凝土的体积稳定性研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快,土地资源短缺的问题日益突出,对地下空间的大规模开发已成必然趋势。由于地下混凝土结构工程所服役环境更为恶劣、服役年限更长,要求其具有高耐久性。而混凝土体积稳定性是其耐久性研究中的首要内容。针对当前对梯度结构混凝土体积稳定的研究甚少,本论文依托武汉长江隧道工程和国家“863”课题《高抗渗长寿命大管径隧道管片材料结构设计与工程应用》,开展基于体积稳定性的梯度结构混凝土的设计、研究与应用.主要工作和得到的结论如下:
     1、首次提出基于体积稳定性的梯度结构混凝土设计理念与方法
     依据毛细管张力学说、结晶膨胀机理建立体积变形物理模型;并对混凝土体积变形破坏机理进行分析,提出膨胀可调控技术、裂缝细微化与自愈合理论,并结合现有的补偿收缩机理、热稳定性机理,为制备出高体积稳定性混凝土提供理论依据;将梯度概念混凝土引入设计中,提出梯度功能结构设计原理及方法,实现保护层的防护功能,要求其具有高抗裂、自修复及致密性特点,结构层提供结构支撑功能,要求其与养护制度相匹配,从而建立梯度功能结构混凝土结构体系。
     2、以钙硅铝质超细粉体材料、小分子聚醚类等作为变形抑制组分,以有机混杂纤维及就地反应堵塞型修复材料作为抗裂自修复组分,通过单因素试验分析研制出一种新型的抗裂自愈合掺合料(简称:ACSH)。
     与等量的粉煤灰基准样(25%)进行作用效应对比分析,结果表明:
     ①力学性能在秋季自然养护下,可使12h脱模抗折强度提高144%,抗压强度提高119%;28d抗折强度提高9%,抗压强度提高7.5%;
     ②体积变形1d时收缩值下降67%,28d收缩降低31%及90d降低23%;在80℃沸煮箱养护14d下膨胀率下降25%;
     ③开裂敏感性开裂时间由96h延长到121h,裂缝宽度降低50%;
     ④自修复能力强度回复率由0.72增大到0.92,提高了25%。
     3、首次针对梯度结构混凝土的保护层——无细观界面过渡区水泥基复合材料进行力学性能、徐变性及收缩变形研究,并对其随龄期的发展规律进行分析如下:
     ①弹性模量根据Mosley模型对试验结果进行回归,其弹性模量随龄期的发展规律为:E_t=E_(28)[0.40+0.19×log(t)](t≤8)(R~2=0.96264),E_t=1.019 E_(28)(t>28);
     ②劈拉强度根据ACI C209对试验结果进行回归,其劈拉强度随龄期的发展规律为:f_(sp)=6.92t/(1.7+t) (R~2=0.98374);
     ③早期徐变性根据ACI(1978)提出的双曲线模型试验结果进行回归,其早期徐变度随龄期的发展规律为C_t=38.7t/(6.3+t)(R~2=0.98934);
     ④收缩变形根据ACI(1978)提出的双曲线模型对试验结果进行回归,其收缩变形随龄期的发展规律为ε=560.2t/(8.2+t) (R~2=0.99561)。
     4、针对隧道管片混凝土常采用的蒸气养护,模拟出养护温度与水化热协同作用下混凝土内部的温度历程;并系统研究在此温度历程下材料组分对结构层中AFt稳定性的影响
     其结果表明:
     ①长度变化在40℃的水环境下,早期按模拟的温度历程养护的纯水泥体系及单掺UEA补偿收缩体系在第一次快速膨胀变形稳定后的约60d再次发生明显的膨胀变形;但掺加矿物掺合料(如,矿粉),可以明显抑制后期的过度膨胀;例外,NS外加剂的掺入促进早期膨胀,后期膨胀稳定,有利于其体积稳定性。
     ②XRD分析早期按内部温度历程养护的纯水泥体系及单掺UEA补偿收缩体系易发生钙矾石和单硫型水化硫铝酸钙晶形转变;而密封后再按内部温度历程养护后,早期高温分解的钙矾石在后期降温阶段不会再次形成。
     掺入适量的NS外加剂可以增强钙矾石的稳定性及钝化其晶形转变的温度效应。
     ③SEM分析掺加矿物掺合料(如,矿粉SL),生成长板状的非膨胀性钙矾石;而纯水泥体系及单掺UEA补偿收缩体系形成针棒状的膨胀性钙矾石。
     在降温阶段后,密封养护的纯水泥体系在孔隙中只发现卷叶状的单硫型硫铝酸钙,而未发现针棒状钙矾石。
     5、对制备出梯度结构混凝土(GSC)进行体积变形评价和多因素作用下的抗裂性能评价,并应用于武汉长江隧道工程
     ①首次对梯度结构混凝土保护层和结构层体积变形的匹配性进行研究,并采用界面力学的方法对梯度结构混凝土体积变形一致性进行评价,计算结果表明,优化后的梯度结构混凝土具有良好的体积变形协调性,不会出现非一致性破坏。
     ②由于实际工程中混凝土绝大多数是单面暴露在环境中,因此本文采用单面千燥环境来评价高压富水的地下工程混凝土失水后的收缩变形,同时采用单面地下水环境评价地下工程混凝土在高压富水后的膨胀变形。试验结果表明:与纯水泥体系比较,GSC单面干燥收缩变形28、90d下降26%和30%,单面地下水环境引起的膨胀变形44周下降74%;与掺25%的矿粉复合水泥体系相比,GSC单面干燥收缩变形28、90d分别下降12%和17%,单面地下水环境引起的膨胀变形44周下降60%。这表明FGSC可明显抑制混凝土长期体积变形,有利于其体积稳定性。
     ③借鉴平板约束开裂法,进行稳定环境(温度30±1℃,相对湿度为50±5%,风速为2m/s)下单因素抗裂性能评价,试验结果表明:14d稳态环境下FGSC未出现可见裂缝,而掺25%矿粉的复合水泥体系6h出现0.2mm的可见裂纹;
     ④成型尺寸比例为1∶5的管片进行地下水和温度循环共同作用下的多因素抗裂性能评价,采用超声波波速及电通量变化率来表征温度循环和地下水作用带来的微裂纹损伤度。结果表明,采用超声波波速变化率评价时,GSC体系的平均损伤程度为0.18,而25%矿粉体系混凝土为0.38:GSC体系的电通量由标养时149库仑略增加到252库仑,其平均损伤度为0.70,而25%SL体系混凝土由标养时的1267库仑增加到2728库仑,其平均损伤度为1.15。这表明GSC体系具有更好的抗裂性能。
     ⑤采用梯度功能结构混凝土制备出1∶1管片应用于武汉长江隧道工程,其管片混凝土28d干缩率为1.95×10~(4),90d干缩率为2.45×10~(-4)。
     6、对比和分析了国内外水泥基材料体积变形测定方法,研发了一种多环境下水泥基材料体积变形在线监测仪及方法。
     ①采用环境模拟技术来模拟所需的工程环境(温度、湿度及气体浓度,等);
     ②采用激光和电涡流测微技术扩大其使用范围,如:高温、高湿及尘埃环境;
     ③采用多通路设计和自动控制方法实现在线监测及数据的自动采集,同时对多组试件进行测试,降低了测试成本,提高使用效率;
     ④对模具进行改进,使测试过程可不需拆模,不需移动试件,可消除或减缓外界的干扰,同时避免试件成型时预埋测头的内外窜动及倾斜,从而提高测试精度;
     ⑤此测试仪器和方法适用于玻璃、陶瓷、石材和墙体材料等的变形测试。
With the acceleration of urbanization, the problem of land resource shortage have become more and more serious, and the exploitation of the space underground has been an inevitable current. Due to the worse service environment and the longer service life of concrete structure in Seaport Engineering, it requires high durability. And the most important thing of its durability study should be volume stabilization of concrete. But, considering that there are few researches on volume stabilization of gradient structure concrete (hereinafter referred to as "GSC") nowadays, this paper according to Wuhan Yangtze River Tunnel Project and National 863 Project (Structure Design of highly anti-resistant, long life and large diameter tunnel segment material and Its Application), the graded structure concrete based on volume stabilization were designed, studied and applied in this thesis. The main achievements are listed as follows:
     1. Design idea and method of GSC based on volume stabilization was put forward for the first time
     On the basis of capillary tension theory and crystallization expansion mechanism, the Physical Model of volume deformation was build. And by mechanism analysis on destruction of concrete volume deformation, controlling technique of expansion and theory of crack refinement and self-healing were put forward which will provide theoretical basis for preparation of high volume stability concrete combined with the existing theory of shrinkage-compensating, one after another hydration and thermal stability.
     Leading the conception of gradient structure into the concrete design, this thesis put forward method and principle of gradient structure design which should require the protective layer of concrete has the characteristics of high crack resistance, self repair and compactness for its shelter function, and require the structure level matching to curing system for its structural support function. As a result, structural system of GSC was established.
     2. A new kind of anti-cracking and self-repairing additive (hereinafter referred to as "ACSH") was developed by single-factor test, using small molecule polyether and ultra-fine powder material containing calcareous and sialic resource as inhibitory component of deformation, organic hybrid fiber and "block" type repairing material with in-situ reaction as anti-cracking and self- repairing component.
     As compared with reference concrete with 25% fly ash, the result showed that:
     ①Mechanical Properties
     Compressive strength, flexural strength of the concrete mixed with 25% ACSH were increased by 119% and 144% at 12 hours, and enhanced by 7.5% and 9% at 28 days respectively under the natural curing conditions in autumn.
     ②Volume Stabilization
     The shrinkage was declined by 67%, 31% and 23% at 1, 28 and 90 days respectively. Moreover its expansion value in boiling case at 80℃was decreased by 25% at 14 days.
     ③Cracking Sensitivity
     The cracking time was prolonged by 26%, and its cracking width was declined by 50%.
     ④Self-Repairing Ability
     The strength recovery ratio was increased from 0.72 to 0.92, and it was enhanced by 25%.
     3. The mechanical property, specific creep and shrinkage deformation of meso-defect interface transition zone free cement based material were investigated against protective layer of GSC. And the regularity of their growth with ages was analyzed, as follows:
     ①Elastic Modulus
     According to Mosley model, experimental results were regressively analyzed to reach a regularity of elastic modulus growth with ages, and the regularity is E_t=E_(28)[0.40+0.19×log(t)] (t≤28) (R~2=0.96264), E_t=1.019 E_(28) (t>28).
     ②Split Strength
     Conducting regressive analysis of experimental results by ACI C209, the regularity of split strength growth with ages is f_(sp)=6.92t/(1.7+t) (R~2=0.98374).
     ③Early Specific Creep
     According to hyperbolic model proposed by ACI (1978) to conduct regressive analysis of experimental results, the regularity of early creep growth with ages is C_t=38.7t/(6.3+t)(R~2=0.98934).
     ④Shrinkage Deformation
     According to hyperbolic model proposed by ACI (1978) to conduct regressively analyze experimental results, the regularity of shrinkage growth with ages isε=560.2t/(8.2+t)(R~2=0.99561).
     4. According to steam-curing usually used in tunnel segment concrete, the temperature history in interior of steam curing concrete taking account of synergistic effects of hydration heat of cement and temperature of steam-curing were simulated. And effect of material constituents on stabilization of ettringite in structure level was investigated in this temperature history.
     The result indicated that:
     ①Length Changes
     Under the water environment at 40℃, for pure cement system and shrinkage compensating system mixed singly with UEA which were cured in simulated temperature history, their swelling strain stared increasing again at about 60 days after the stabilization of first rapid swelling. While the system mixed with mineral additive, such as slag, might inhabit obviously the later overexpansion. Moreover, the NS additive might accelerate early expansion, and also stabilize the later expansion, which were beneficial for volume stabilization of concrete.
     ②XRD Analysis
     For pure cement system and shrinkage compensating system mixed singly with UEA which were cured in simulated temperature history at an early age, they were susceptible to crystal shape transformation between ettringite and calcium monosulphoaluminate (hereafter referred to AFm), which is to say, ettringite formed in the early hydration period decomposed to AFm when it had experienced elevated temperature, and following ettringite decomposed by high temperature was re-crystallized during cooling; While they were cured in simulated temperature history after sealing, ettringite decomposed during elevated temperature was not re-crystallized during cooling.
     Moreover the NS additive might enhance the stabilization of ettringite and passivate the temperature effect of crystal shape transformation.
     ③SEM Analysis
     For pure cement system and shrinkage compensating system mixed singly with UEA, the needle-like expansive ettringite crystals were formed. While in cement system mixed with mineral additive the large plate-like non-expansive ettringite crystals were formed.
     Moreover, adopting sealed curing, the leaf-like AFm crystals were found in pore of pure cement system during cooling, but the needle-like ettringite wasn't.
     5. Anti-cracking under multiple factor action and volume stabilization of GSC was appraised, and it was applied to Wuhan Yangtze River Tunnel Project.
     ①The matching of volume deformation between protective layer and structural level of GSC was first studied, and it was estimated by interface mechanics. Moreover the calculating result indicated that the optimized GSC had good compatibility of volume deformation, and it didn't cause the inconsistency damage.
     ②Due that most concrete was exposed to environment from a single side, in this thesis the shrinkage deformation of concrete in underground engineering with High-Pressure and Rich Water after dehydration was estimated by a single side exposed dry environment, at the same time, the swelling deformation of its concrete after High-Pressure and Rich Water was also estimated by a single side exposed groundwater environment. The test result showed that as compared with pure cement system, the shrinkage of GSC under the condition that the single side was exposed to dry environment was declined by 26%, 30% respectively at 28, 90days, at the same time, the swelling of GSC, in which the single side was exposed to groundwater environment was declined by 60% at 44 weeks. While as compared with cement system mixed with 25% slag, the shrinkage was declined by 12%, 17% respectively at 28, 90days, and the swelling was decreased by 60% at 44 weeks. This indicated that FGSC could inhabit the long term volume deformation, and benefit for its volume stabilization.
     ③by the restrained slab test, specimen was adopted to fulfill the comparative test for single factor evaluation on anti-cracking Performance under the stable environment (temperature 30±1℃, relative humidity 50±5%, wind speed 2m/s).
     The results showed that the visible crock appeared in GSC stayed in this environment for 14 days, but the visible crack with 0.2mm width appeared in 6 hours for cement system mixed with 25% slag.
     ④the segment prepared according to 1:5 dimension scales was adopted to fulfill the comparative test for multi-factor evaluation on anti-cracking performance under the combined action of underground and temperature cycle, additionally damage degree of micro-crack caused by underground and temperature cycle was characterized by the change rate of ultrasonic velocity and electric flux.
     The results showed that by means of change rate of ultrasonic velocity, the average damage degree of GSC system was 0.18, but the cement system mixed with 25% was 0.38. Moreover, the electric flux of GSC system was increased from 149 Q to 252 Q, and its average damage degree was 0.70, while the cement system mixed with 25% was increased from 1267Q to 2728Q, and its average damage degree was 1.15.
     It indicated that GSC system had a better anti-cracking performance
     ⑤The segment prepared according to 1:1 dimension scales using GSC system was applied to the Wuhan Yangtze River Tunnel Project, and drying shrinkage ofthe segment concrete was 195, 245 respectively at 28, 90 days.
     6. Comparing and analyzing some measuring means of volume deformation for cement-based materials at home and abroad, a kind of online monitor for monitoring volume deformation of cement-based materials in multiple environments and its method was developed.
     ①Use environment simulation technology to simulate the engineering environment such as temperature, humidity, and gas intensity, etc.
     ②Use micro-distance measuring technology of laser and eddy current to enhance the serviceable range of this development such as high temperature, high relative humidity and dust environment.
     ③Use the multi-channel design and auto-control method to gather experiment data automatically, monitor on-line, at the same time, decline the measuring cost, enhance the service efficiency.
     ④By means of the modified mould, it needn't to break the mould or move the specimen during measuring process, which could avoid external disturbances. Meanwhile, it could prevent gauge heads from leaping and leaning when the specimen was molded and thereby the testing accuracy could be enhanced.
     ⑤This testing method and the equipment is also suitable for measuring deformation of materials such as glass, ceramics, stone materials, walling materials and etc.
引文
[1] 徐燕、丁文其.盾构隧道管片设计优化,现代隧道技术[J],2006(增刊):345-346.
    [2] A. D. Jensen, S. Chatterji. State of the Art Report on Micro-cracking and Lifetime of Concrete-Part Ⅰ[J]. Materials and Structure. 1996, 29(1): 3-8.
    [3] 冯乃谦,邢峰.高性能混凝土技术[M].北京:原子能出版社,2000.2:261-268.
    [4] 何真,梁文泉,李亚杰,等.粉煤灰矿渣复合水泥强度超叠效应的研究[J],武汉水利电力大学学报,1996(5):22-24
    [5] 闫东明,林皋,王哲,等.不同环境下混凝土动态直接拉伸特性研究[J],大连理工大学学报,2005(5)416-421
    [6] 张立华,胡曙光,丁庆军.多组分水泥基材料微观结构的研究[J],武汉理工大学学报,2002(6):11-14
    [7] 秦鸿根,潘钢华,孙伟.掺粉煤灰高性能桥用混凝土变形性能研究[J],东南大学学报(自然科学版),2002(9):779-782
    [8] 杨久俊,海然,董延玲,等.组分梯度复合对水泥基材料力学性能的影响[J],硅酸盐学报,2003(12):803-806
    [9] 杨华全,董维佳,王仲华.掺矿渣粉及粉煤灰混凝土微观性能试验研究[J],长江科学院院报,2005(2):46-49
    [10] 刘斯凤,孙伟,林玮,赖建中.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J],硅酸盐学报,2003(12):1080-1085
    [11] 王栋民,金欣,欧阳世翕.水泥-膨胀剂-磨细矿渣复合胶凝材料膨胀与强度发展的协调性研究[J],硅酸盐学报,2002(10)增刊:59-54
    [12] 梁松,杨医博,莫海鸿,等.潮汐环境下大掺量矿渣微粉抗海水腐蚀混凝士的野外实验[J],华南理工大学学报(自然科学版),2005(7)88-91
    [13] 高小建,巴恒静.加掺合料高性能混凝土早龄期收缩特性[J],哈尔滨工业大学学报,2004(12)1615-1618
    [14] 蒋正武,王培铭.等温干燥条件下混凝土内部相对湿度的分布[J],武汉理工大学学报,2003(7):18-21
    [15] 覃维祖.低水灰比混凝土的收缩及其补偿[J],粉煤灰,2002(1):3-6
    [16] 麦家煊,刘翔,李惠娟.堆石坝混凝土面板干缩应力的研究,水力发电学报 2004(6):56-60
    [17] 李北星,何真,梁文泉,等.中低热高掺量混合材复合水泥的性能研究[J],水泥,2002(1):8-10
    [18] 唐明,李晓.多种因素对混凝土孔结构分形特征的影响研究[J],沈阳建筑大学学报(自然科学版),2005(3):232-65
    [19] 徐永福.非饱和膨胀土的结构模型和力学性质的研究[J],岩石力学与工程学报,1998(10):55-58
    [20] 彭卫兵,任爱珠,何真,等.辅助胶凝材料对混凝土开裂行为的影响及评价[J],混凝土,2005(6):50-64
    [21] 王甲春,阎培渝.概率方法在混凝土结构早期开裂风险评价中的应用[J],建筑技术,2005(4):306-308
    [22] 孙启林,王利民,赵成泉,华珍,代祥俊等.钢纤维混凝土抗裂性能测试[J].山东理工大学学报(自然科学版),2005(5):21-26
    [23] 穆大鹏,阎培渝.高钙粉煤灰混凝土的强度和干缩性能[J].混凝土,2004(11):31-34
    [24] 夏威,张江海.高钙粉煤灰用于高性能混凝土体积稳定剂的研究.[J]混凝土与水泥制品,2005(6):5-10
    [25] 张立华.多组分水泥基材料水化特征与产物性质的研究[J].硕士论文.武汉理工大学.2002
    [26] 杨华全,覃理利,董维佳.掺粉煤灰和高效减水剂对水泥水化热的影响[J].混凝土.2001,No.12
    [27] 张云升,孙伟,管学茂.减少高强混凝土中未水化水泥的方法研究[J].焦作工学院学报(自然科学版).2001,No.5
    [28] 朱效荣,宋东升,王世彬,齐文丽.碱矿渣水泥高效缓凝剂的研究及应用[J].水泥.2001,No.7
    [29] 施惠生,陈更新,范付忠.温度对高钙粉煤灰水泥基材料水化性能的影响[J].水泥.2001,No.9
    [30] 施惠生,范付忠,冯涛.高钙粉煤灰混合水泥体积稳定性的研究[J].建筑材料学报,1999(6):93-98
    [31] 周保卫.高钙粉煤灰—水泥体积安定性的研究(上)[J].粉煤灰.2000,No.4
    [32] 周保卫.高钙粉煤灰——水泥体积安定性的研究(下)[J].粉煤灰.2000,No.5
    [33] 安明喆,朱金铨,覃维祖.高性能混凝土自收缩的抑制措施[J].混凝土.2001(5):37-41
    [34] 陈立军,李世禹.高性能混凝土自收缩增大的机理与改善途径[J].混凝土与水泥制品.2004(5)
    [35] 赵华耕,彭劲,周明凯.粉煤灰、矿粉对高性能混凝土体积稳定性的影响[J],武汉理工大学学报,2005(7)36-38
    [36] 彭江,徐志全,阎培渝.大体积补偿收缩混凝土中膨胀剂的使用效能[J],建筑材料学报,2003(6):147-152
    [37] 胡曙光,何永佳,王晓,吕林女,丁庆军等.不同养护制度下混合水泥反应程度的研究[J],武汉科技学院学报,2005(12):33-36
    [38] 高小建,巴恒静,祁景玉.混凝土水灰质量比与其早期收缩关系的研究[J],同济大学学报,2004(1):26-28
    [37] 王甲春,阎培渝,韩建国.混凝土绝热温升的实验测试与分析[J].建筑材料学报.2005(8)
    [38] 卢木.混凝土耐久性研究现状和研究方向[J].工业建筑.1997(5):1-7
    [39] 焦修刚,刘光廷.混凝土热湿耦合数值计算中的参数拟合[J].清华大学学报(自然科学版).2005(3):319-321
    [40] 王建,戴会超,顾冲时.混凝土湿度运移数值计算综述[J].水力发电学报.2005(4):85-89
    [41] 赵筠.硅灰对混凝土早期裂缝的影响与对策[C].2006中国混凝土技术交流会.2006.3
    [42] 刘光廷,黄达海.混凝土温湿耦合研究[J].建筑材料学报.2003(6):173-181
    [43] 王新友,蒋正武,高相东,孙振平.混凝土中水分迁移机理与模型研究评述[J].建筑材料学报.2002(3):66-71
    [44] 龙广成,蒋正武,孙振平,王培铭,谢友均.活性粉末混凝土的自干燥效应研究[J].建筑材料学报.2005(2):7-10
    [45] 万在龙,袁勇,章勇武.基于等效时间的混凝土绝热温升[J].基于孔结构模型的混凝土干缩变形理论分析.华中科技大学学报.2001(10):90-92
    [46] 钱晓倩,詹树林,方明晖,孟涛,钱匡亮.减水剂对混凝土收缩和裂缝的负影响[J].铁道科学与工程学报.2004(9):19-25
    [47] NEUBAUER C M, JENNINGS H M, GARBOCZI E J. Three-Phase model of the elastic and shrinkage properties of mortars[J]. Advanced Cement Based Materials, 1996, 4(1): 6-20.
    [48] 巴恒静,刘志国,陈文松,等.硫酸钠掺量对混凝土早期收缩开裂的影响[J].硅酸盐学报.2005(1):36-41
    [49] 高培伟,吴胜兴,林萍华,吴中如.硫酸盐对碾压混凝士侵蚀开裂的机理微观分析[J].水利学报.2005(3):360-364
    [50].阎培渝,杨文言.模拟大体积混凝土条件下生成的钙矾石的形态[J].建筑材料学报.2001(3):39-43
    [51] 南京化学工学院,材料科学与工程系编译.第九届国际水泥化学会议综合报告译文集,1992:155-215
    [52] 阎培渝,韩建国,徐志全.水胶比和组成对补偿收缩胶凝材料水化程度与水化产物的影响[J].铁道科学与工程学报.2004(9)
    [53] 高培伟,吴胜兴,林萍华,吴中如,唐明述.水泥基材料体积稳定性对大坝混凝土开裂的影响[J].水力发电.2005(3):33-36
    [53] 蒋正武,孙振平,王培铭.水泥浆体中自身相对湿度变化与自收缩的研究[J].建筑材料学报.2003(12):345-349
    [54] 陈广智,孟世强,阎培渝.养护条件和配合比对活性粉末混凝士变形率的影响[J].工业建筑.2003(9):63-66
    [55] 阎培渝,陈广智.养护温度和胶凝材料组成对膨胀剂限制膨胀率的影响[J].建筑技术.2001(1):22-23
    [56] 巴恒静,高小建.混凝土早期收缩开裂快速评价及相关问题研究[J].工业建筑.
    [57] 陈胡星,叶青,沈锦林,,胡国君,楼宗汉.钙矾石的长期稳定性.材料科学与工程[J].2001(2):69-72
    [58] 许仲梓,周伟玲,邓敏.硫铝酸盐水泥体系高温稳定性研究[J].硅酸盐学报.2001(4):104-108
    [59] 覃维祖.混凝土的收缩、开裂及其评价与防治[J].混凝土.2001(7):3-7
    [60] 竺维彬,鞠世健.盾构隧道管片开裂的原因及相应对策[J].现代隧道技术.2003(2):21-25.
    [61] 蔡亚宁,乔中胜.北京地铁五号线预制盾构管片的高性能混凝土研究[J].现代隧道技术.2005(2):20-25
    [62] 高桂波,钱春香,朱晨峰,等.粉煤灰对混凝土热膨胀系数的影响[J].东南大学(自然科学版)2006,11(增刊):185-190.
    [63] 钱春香.城市隧道混凝土结构耐久性及其增强技术的实践与思考[J].东南大学(自然科学版)2006,11(增刊):95-103.
    [64] 黄国兴,炎荣惠.混凝土收缩[M].北京:中国铁道出版社,1990.
    [65] 王栋民.高性能膨胀混凝土[M].北京:中国水利水电出版社,知识产权出版社,2006.
    [66] 姚武绿色混凝土[M].北京:化学工业出版社2005.5.
    [68] 黄新,龙世宗,袁润章.复合水泥粒径分布对强度影响的初步探讨[J].中国建材科技,2000(5).
    [69] Paulini P. A weighing method for cement hydration[C]. 9th International Congress on the Chemistry of Cement, Vol.Ⅳ. 1992: 248-254.
    [70] 马保国.高性能海洋混凝土的研究[博士学位论文].武汉:武汉理工大学,2000:42
    [71] 吴中伟,张鸿直.膨胀混凝土[M].北京:中国铁道出版社,1990:13-14
    [72] 陈蔚凡.盐渍地区混凝土建筑物的耐久性问题[J].第五届全国混凝土耐久性学术交流会,2000,10
    [73] Ben C, Gerwick Jr. International Experience in the performance of Marine Concrete, 1990, 5
    [74].Peter G. PhD. Concrete in the Middle East-past, present and future: a brief review. 1993, 7-8
    [75] Peter G. PhD. Concrete in hot dry salty environments[J]. Concrete, 1995, 1-2
    [76] M. N, H. Al. Khaiat. Durability Survey in Kuwait[J]. Concrete International, 1997, 7
    [77] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1990.
    [78] R. Wieland, B. Michaela, Nuclear Engineering and Design[M], 1998
    [79] 蒋正武.国外混凝土裂缝的自修复技术[J].建筑技术,2003(4).
    [80] 李厚祥,唐春安,曾三海.混凝土裂缝自愈合特性研究[J],武汉理工大学学报,2004,26(3)
    [81] 朱子龙,李建林,容善华.粉煤灰混凝土裂缝自愈合能力试验研究[J],南京建筑工程学院学报,1998(4)
    [82] 姚武,李杰,周钟鸣.聚丙烯纤维对混凝土抗拉强度的影响[J],混凝土,2001(10)
    [83] 刘小燕,姚武,郑晓芳.混凝土损伤自愈合性能的试验研究[J].建筑材料学报,2005,8(2)
    [84] Dry Carolyn. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrix[J]. Smart materials and Structures, 1994, 3(1)
    [85] Hiraishi H. Smart structure system[J]. Concrete Journal, 1998, 36(1)
    [86] 姚武,钟文慧.自密实自应力钢管混凝土计算分析[J].建筑材料学报,2003,6(4).
    [87] 姚武.聚丙烯腈纤维混凝土的低温性能[J].同济大学学报(自然科学版),2004,32(4).
    [88] P. A. M. Basheer, E. Nolan. Near-surface moisture gradients and in situ permeation tests. Construction and Building Materials, 2001, 15
    [89] 许永和.高性能水泥应用的关键转化技术研究[硕士论文].2006.7
    [90] Akita H, Fujiwara T, Ozaka Y. A Practical Procedure for the Analysis of Moisture Transfer within Concrete Due to Drying[J]. Magazine of Concrete Research, 1997, 49(179): 129~137.
    [91] Jeffrey J Brooks. How admixtures affect shrinkage and creep[J]. Concrete International, 1999, (4): 35-44.
    [92] HUANG DAhai, LIUGuangting. Study on Mass Diffusivity of Concrete Under Isothermal Condition. JOURNAL OF BASIC SCIENCE AND ENGINEERING. Vol 0 No.4 Dec 2002. 386-393
    [93] Duddeck, H. Application of numerical analyses for tunnelling[J]. Int. J. Numerical Analyses for tunnelling[J]. Int. J. Num. Analys. Meth. Geomech, 1991, 25(4): 223-239.
    [94] Yurkevich P. Development in segmental concrete linings for subway tunnels in Belarus[J]. Tunnelling and Underground Space Technology, 1995, 10(3): 10-17.
    [95] P. K. Mehta. Building durable structure in 21 st century[J]. Concrete International, 2001. 3
    [96] K. Wang, D. C. Jansen, S. P. Shah, A. F. Karr, Cement and Concrete Research, 1997,
    [97] T. Sugiyama, T. W.Bremmer, T. A. Holm, Effects of stress on gas permeability (J). ACI Materials Journal, 1994, 93: 443-450.
    [98] B. Grard, J.Marchand. Influence of cracking on the diffusion proper ties of cement -based materials PartⅠ: Influence of continuous cracks on the steady-state regime [J]. Cement and Concrete Research, 2000, 30: 37-43.
    [99] Richard W. Burrows. Visible and invisible cracking [M].Monograph of ACI, 1998.
    [100] Yang R, Lawrence C D, Sharp H J. Delayed ettringite formation in 4—year old cement pastes [J]. Cement Concrete Research, 1996,26(10): 1649—1659.
    [101] P.K. Mehta, R.W.Burrows. Building Durable Structures in the 21st Century[J]. Concrete International. 2001,23(3): 57—63
    [102] P.A.M. Basheer, E'. Nolan. Near-surface moisture gradients and in situ permeation tests[J]. Construction and Building Materials. 2001 (15): 105-114.
    [103] B.Persson. Experimental studies on shrinkage of high performance concrete[J]. Cement and Concrete Research. 1998, 28(7): 1023-1036
    [104] M.H.Zhang, C.T.Tam, M.P.Leow. Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete. [J] Cement and Concrete Research. 2003, 33(10): 1687-1694
    [105] L.Vandewalle. Concrete creep and shrinkage at cyclic ambient conditions[J]. Cement & Concrete Composites. 2000, 22 (2): 201-208
    [106] B.Barr, S.B.Hoseinian, M.A.Beygi. Shrinkage of concrete stored in natural environments[J]. Cement & Concrete Composites. 2003, 25 (1): 19-29.
    [107] J.K.Kim, C.S.Lee. Prediction of differential drying shrinkage in concrete[J]. Cement and Concrete Research, 1998, 28(7): 985-994.
    [108] G.D. Schutter. Hydration and temperature development of concrete made with blast-furnace slag cement[J]. Cement and Concrete Research. 1999, 29(1) 143-149.
    [109] Y Xu, D. L. Lchung. Improving silica fume cement by using silane[J]. Cement and Concrete Rsearch,VOL.30,NO.8 Aug. 2000.
    [110] Jochen Stark, Katrin Bollmann. Delayed Ettringite Formation in Concrete[J].Nordic Concrete research, 1998:1-25
    [111] Brooks J J, Hynes J P. Creep and shrinkage of ultra high-strength silica fume concrete[J]. The 5th International Symposium on Creep and shrinkage of Concrete. London: E&FN Spon. 1993.
    [112] Mak S L, Torii K. Strength development of high strength of ultra high-strength Concrete subjected to high hydration temperature[J].CCR, 1995, 25(8).
    [113] Roy R, Larrard F. Creep and shrinkage of high performance concrete. The 5th International Symposium on Creep and shrinkage of Concrete. London: E & FN Spon. 1993.
    [114] Tazawa E, Matsuoka Y, Miyazawa S. Effect of autogenous shrinkage and self stress in hardening concrete.Proceeding of International RILEM Symposium: Thermal Cracking in Concrete at Early Ages.Munich: RILEM Proceeding, 1994.
    [115] Bourrows R W. The Visible and Invisible Cracking of Concrete[J]. AC1, 1996. 10
    [116] Morsy, M. Saad. Effect of temperature on electrical conductivity of blended cement pastes[J]. Cement and Concrete Research Volume: 29, Issue: 4, April, 1999, pp. 603-606
    [117] Rudolph Andrew olson Ⅲ. The microstructure of Portland cement paste and its relationship to drying shrinkage: a study of blended cement paste[M]. Northwestern University, 1998
    [118] HE Zhen, LI Zong-jin. Non-contact resistivity measurement for characterisation of the hydration process of cement-paste with excess alkali[J]. Advances in cement Research, 2004, 16(1): pp.29
    [119] Tazawa E, Shingo Miyazawa. Influence of cement and admixture on autogenous shrinkage of cement paste[J]. Cement and Concrete Research, 1995, 25(2): pp 281-287.
    [120] Lepage S, Balbaki M, Dallaire E. Early shrinkage development in the high performance concrete[J]. Cement, Concrete and Aggregates, 1999, (2): pp 31-35.
    [121] Surenddra P. Shah et al. Shrinkage cracking-can it be prevented[J]. Concrete International. 1998(4): pp 51-55.
    [122] Mario Collepardi, Antonio Borsoi, Silvia Collepardi, et al. Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet curing conditions[J]. Cement & Concrete Composites, 27(2005): 704-708
    [123] Maria C. Garci Juengera, Hamlin M. Jennings. Examining the relationship between the microstructure of calcium silicate hydrate and drying shrinkage of cement pastes[J]. Cement and Concrete Research, 32(2002): 289-296
    [124] Garci Juenger, Maria C, Jennings, Hamlin M. New insights into the effects of sugar on the hydration and microstructure of cement pastes[J]. Cement and Concrete Research. Volume: 32, Issue: 3, March, 2002, pp. 393-399
    [125] Liang, Naixing. Effect of Added Styrene-Butadiene Latex on the Hydration Process of Cement and the Micro-Morphology of Hardened Cement Paste[J]. Chinese Science Abstracts Series B. Volume: 14, Issue: 1, Part B, February, 1995, pp. 5
    [127] Ne Balogn. New Admixture Combats Concrete Shrinkage[J]. Concrete Intemationl, July, 1996
    [128] Wen H X, Bagheri A R and Plum D R. The strength development of silica fume concrete and its prediction under varying temperature conditions[J], Magazine of Concrete Research, 41, Dec. 199-204.
    [129] 王栋民.高性能膨胀混凝土[M].北京:中国水利水电出版社,2006.
    [130] 袁勇.混凝土结构早期裂缝控制[M].北京:科学出版社,2004.
    [131] A.E.谢依金 著,胡春芝 译.水泥混凝土的结构与性能[J].北京:中国建筑工业出版社,1984.
    [132] 富文权.混凝土快速硬化[M].北京:中国铁道出版社,1990.
    [133] 刘小艳,姚武,郑晓芳,等.混凝土损伤自愈合性能的试验研究[J].建筑材料学报,2005.4.
    [134] 姚武,钟文慧.混凝土损伤自愈的机理[J].材料研究学报,2006.2.
    [135] 王桂明,余剑英.催化结晶型抗渗涂料对水泥基材料性能的影响[J].武汉理工大学学报,2006.3.
    [136] 冯乃谦,郝挺宇.玻璃砂浆棒法评价掺合料抑制ASR效果的研究[J].长江科学院院报,2002.4
    [137] 钟华.减少混凝土干缩方法的研究[J].商品混凝土,2006.
    [138] 赵志方,周厚贵,袁群.新老混凝土粘结机理研究与工程应用[M].北京:中国水利水电出版社,2003.
    [139] 黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990
    [140] 袁勇.混凝土结构早期裂缝控制[M].北京:科学出版社,1998
    [141] 王元丰,梁亚平.高性能混凝土的弹性模量与泊松比[J].北方交通大学学报,2004,01
    [142] 吴伟明,泵送混凝土约束收缩开裂性能评价试验研究[硕士论文].南京:河海大学,2006
    [143] 中国人民共和国水文地质图集.中国地下水分布图.北京:
    [144] Venecanin S D. Thermal incompatibility of concrete components and thermal properties of carbonates rocks[J]. ACI Mater J, 1990, 87(6): 602-607.
    [145] 汪澜.水泥混凝土-组成性能应用[M].北京:中国建筑出版社,1990.
    [146] 高小建.高性能混凝土早期开裂机理与评价方法[博士论文].哈尔滨:哈尔滨工业大学,2003.
    [147] 胡建勤.高性能混凝土抗裂性能及其机理的研究[博士论文].武汉:武汉理工大学,2002.
    [148] 姚武,钟文慧.混凝土损伤程度对自愈合效果的影响[J].材料研究学报,2005.
    [149] 王树和,水中和,玄东兴.大温差环境条件下混凝土表面裂缝损伤[J].东南大学学报(自然科学版)2006.11(增刊)
    [150] 王冲.特超强高性能混凝土的制备及其结构与性能研究[博士论文].重庆:重庆大学,2005.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700