用户名: 密码: 验证码:
钢纤维混凝土力学性能及断裂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学与工程技术的不断发展,现代工程界对混凝土的强度、耐久性及工作性等方面都提出了更高的要求,作为在混凝土改性过程中产生的新型水泥基复合材料,纤维混凝土材料以其在混凝土增强、阻裂、增韧等方面的独特优势引起了广大研究者和工程技术人员的高度关注。但目前的研究更多的体现在纤维单一因素对混凝土力学性能和断裂性能的影响,从混凝土的配合比以及各组分间相互作用的角度出发,对纤维混凝土力学性能及断裂性能的研究甚少。本文以塑钢纤维混凝土作为研究对象,进行了以下方面的工作:
     (1)通过对不同的纤维混凝土配合比下混凝土抗压强度的试验研究,探讨了塑钢纤维混凝土各组分对混凝土强度的影响。试验结果表明:塑钢纤维掺量为0~1%、砂率为40%、水灰比为0.5时,塑钢纤维混凝土的抗压强度随纤维体积率从36.67MPa增大到39.83MPa;砂率为30~50%、塑钢纤维掺量为0.5%、水灰比为0.5时,塑钢纤维混凝土的抗压强度首先从30.75MPa增大到36.95MPa再减小到30.75MPa;水灰比为0.4~0.6、砂率为40%、塑钢纤维掺量为0.5%时,塑钢纤维混凝土的抗压强度由47.25MPa减小到34.74MPa。并通过对试验数据的回归分析得出了塑钢纤维混凝土配合比与抗压强度的统一计算表达式,且综合比较得出当砂率为40%,纤维体积率为1%及水灰比为0.4时,纤维混凝土的抗压强度达到最大值47.66MPa。
     (2)通过对不同的纤维混凝土配合比下混凝土劈拉强度的试验研究,探讨了塑钢纤维混凝土各组分对混凝土劈拉强度的影响。试验结果表明:塑钢纤维掺量为0~1%、砂率为40%、水灰比为0.5时,塑钢纤维混凝土的劈拉强度从2.55MPa增大到2.73MPa;砂率对塑钢纤维混凝土的劈拉强度影响不大:水灰比为0.4~0.6、砂率为40%、塑钢纤维掺量为0.5%时,塑钢纤维混凝土的劈拉强度由3.1MPa减小到2.5MPa。并通过对试验数据的回归分析得出了塑钢纤维混凝土配合比与劈拉强度的统一计算表达式,且综合比较得出当砂率为40%,纤维体积率为1%及水灰比为0.4时,纤维混凝土的劈拉强度达到最大值3.627MPa。
     (3)通过试件尺寸为100mm×100mm×400mm的塑钢纤维混凝土三点弯曲梁断裂试验,研究塑钢纤维混凝土配合比对断裂韧度的影响规律。结果表明:塑钢纤维掺量为0~1%、砂率为40%、水灰比为0.5时,塑钢纤维混凝土的断裂韧度0.782MPa·m~(1/2)增大到1.065MPa·m~(1/2);水灰比为0.4~0.6、砂率为40%、塑钢纤维掺量为0.5%时,塑钢纤维混凝土的断裂韧度从1.052MPa·m~(1/2)减小到0.783MPa·m~(1/2);砂率对塑钢纤维混凝土断裂韧度影响不大。本文并通过对试验数据的回归分析,得出配合比与纤维混凝土断裂韧度的统一表达式,再进一步综合比较得出当塑钢钢纤维体积率为1%,砂率为40%,水灰比为0.4时塑钢纤维混凝土的断裂韧度达到最大值1.27MPa·m~(1/2)。
     (4)探讨了塑钢纤维混凝土配合比对断裂能的影响规律:塑钢纤维掺量为0~1%、砂率为40%、水灰比为0.5时,塑钢纤维混凝土的断裂能从519.9N·m~(-1)增大到905.9N·m~(-1);水灰比为0.4~0.6、砂率为40%、塑钢纤维掺量为0.5%时,塑钢纤维混凝土的断裂能从980.9N·m~(-1)减小到729.2N·m~(-1);砂率对塑钢纤维混凝土断裂能影响不大。本文并通过对试验数据的回归分析,得出配合比与纤维混凝土断裂能的统一表达式,再进一步综合比较得出当塑钢钢纤维体积率为1%,砂率为40%,水灰比为0.4时塑钢纤维混凝土的断裂能达到最大值1091.8N·m~(-1)。
     (5)塑钢纤维混凝土的配合比对临界裂缝嘴张开量CMODc的影响规律:塑钢纤维掺量为0~1%、砂率为40%、水灰比为0.5时,塑钢纤维混凝土的CMODc从0.391mm增大到0.546mm:水灰比为0.4~0.6、砂率为40%、塑钢纤维掺量为0.5%时,塑钢纤维混凝土的CMODc从0.528mm减小到0.387mm;砂率对塑钢纤维混凝土CMODc影响不大。本文并通过对试验数据的回归分析,得出配合比与纤维混凝土CMODc的统一表达式,再进一步综合比较得出当塑钢钢纤维体积率为1%,砂率为40%,水灰比为0.4时塑钢纤维混凝土的CMODc达到最大值0.645mm。
With the continuous development of Materials Science and Engineering Technology,modem engineering on the strength of concrete,durability,etc,have put forward higher requirements.As a new type of cement-based composites in the modified course of the concrete produced,fiber reinforced concrete materials were caused great concern of the vast number of researchers and engineers for the unique advantage on enhance its in concrete,crack resistance,toughness,etc.However,the current study pay more attention in a single factor to influence of fiber mechanical properties of concrete and fracture properties,from the mixing ratio,as well as the concrete interaction between the various components of the mechanical propertiesand fracture properties of fiber reinforced concrete are very little.In this paper,plastic fiber reinforced concrete is studied on the following areas:
     (1)Through the experiments of compressive strength of plastic fiber reinforced concrete in the different mixing ratio research the of each component of plastic fiber reinforced concrete to the impact of the strength of concrete.The experimental results show that:The compressive strength of plastic fiber reinforced concrete is increased from 36.67MPa to 39.83MPa when the plastic fiber volume rate of 0-1%, sand ratio of 40%,water-cement ratio of 0.5 of the plastic fiber reinforced concrete;The compressive strength of plastic fiber reinforced concrete is increased from the 30.75MPa to 36.95MPa firstly and then reduced to 30.75MPa when sand ratio of 30-50%,plastic volume rate of 0.5%,water-cement ratio of 0.5 of plastic fiber reinforced concrete;The compressive strength is reduced from the 47.25MPa to 34.74MPa when water-cement ratio of 0.4-0.6,sand ratio of 40%,plastic fiber volume ratio of 0.5%of plastic fiber reinforced concrete.Through regression analysis of experimental data of compressive strength of the plastic fiber reinforced concrete obtained the expression of the unity of the calculation,and then indicated that when the sand ratio of 40%,fiber volume rate of 1%and water-cement ratio of 0.4,the compressive strength of fiber reinforced concrete reach the maximum 47.66MPa.
     (2)Through the experiments of splitting tensile strength of plastic fiber reinforced concrete in the different mixing ratio research the of each component of plastic fiber reinforced concrete to the impact of the strength of concrete.The experimental results show that:The splitting tensile strength of plastic fiber reinforced concrete is increased from 2.55MPa to 2.73MPa when the plastic fiber volume rate of 0-1%, sand ratio of 40%,water-cement ratio of 0.5 of the plastic fiber reinforced concrete;The splitting tensile strength is reduced from the 3.1MPa to 2.5MPa when water-cement ratio of 0.4-0.6,sand ratio of 40%, plastic fiber volume ratio of 0.5%of plastic fiber reinforced concrete:Sand ratio on splitting tensile strength of plastic fiber reinforced concrete have little impact.Through regression analysis of experimental data of splitting tensile strength of the plastic fiber reinforced concrete obtained the expression of the unity of the calculation,and then indicated that when the sand ratio of 40%,fiber volume rate of 1%and water-cement ratio of 0.4,the splitting tensile strength of fiber reinforced concrete reach the maximum3.627MPa.
     (3)Through three-point bending beam fracture experiment of the sample size of 100mm×100mm×400mm of plastic fiber reinforced concrete study the law of influence of plastic fiber reinforced concrete mixing ratio to the fracture toughness,The results show that:The fracture toughness of plastic fiber reinforced concrete is increased from 0.782MPa·m~(1/2)to 1.065MPa·m~(1/2)when the plastic fiber volume rate of 0~1%,sand ratio of 40%,water-cement ratio of 0.5 of plastic fiber reinforced concrete;The fracture toughness is reduced from the 1.052MPa·m~(1/2) to 0.783MPa·m~(1/2) whenwater-cement ratio of 0.4~0.6,sand ratio of 40%,plastic fiber volume ratio of 0.5%of plastic fiber reinforced concrete;Sand ratio on fracture toughness of plastic fiber reinforced concrete have little impact.The paper through regression analysis of experimental data of fracture toughness of the plastic fiber reinforced concrete obtained the expression of the unity of the calculation,and then indicated that when the sand ratio of 40%,fiber volume rate of 1%and water-cement ratio of 0.4,the fracture toughness of fiber reinforced concrete reach the maximum 1.27MPa·m~(1/2).
     (4) Studing the law of influence of plastic fiber reinforced concrete mixing ratio to the fracture energy:The fracture energy of plastic fiber reinforced concrete is increased from 519.9N·m~(-1)to 905.9N·m~(-1) when the plastic fiber volume rate of 0~1%,sand ratio of 40%,water-cement ratio of 0.5 of plastic fiber reinforced concrete;The fracture energy is reduced from the 980.9N·m~(-1) to 729.2N·m~(-1) when water-cement ratio of 0.4~0.6,sand ratio of 40%,plastic fiber volume ratio of 0.5%of plastic fiber reinforced concrete; Sand ratio on fracture energy of plastic fiber reinforced concrete have little impact.The paper through the regression analysis of experimental data of fracture energy of the plastic fiber reinforced concrete obtained the expression of the unity of the calculation,and then indicated that when the sand ratio of 40%,fiber volume rate of 1%and water-cement ratio of 0.4,the fracture toughness of fiber reinforced concrete reach the maximum 1091.8N·m~(-1).
     (5) The law of influence of plastic fiber reinforced concrete mixing ratio to the critical crack mouth opening displacement:The critical crack mouth opening displacement of plastic fiber reinforced concrete is increased from 0.391mm to 0.546mm when the plastic fiber volume rate of 0~1%,sand ratio of 40%, water-cement ratio of 0.5 of plastic fiber reinforced concrete;The critical crack mouth opening displacement is reduced from the 0.528mm to 0.387mm when water-cement ratio of 0.4~0.6,sand ratio of 40%,plastic fiber volume ratio of 0.5%of plastic fiber reinforced concrete;Sand ratio on critical crack mouth opening displacement of plastic fiber reinforced concrete have little impact.The paper through the regression analysis of experimental data of critical crack mouth opening displacement of the plastic fiber reinforced concrete obtained the expression of the unity of the calculation,and then indicated that when the sand ratio of 40%,fiber volume rate of 1%and water-cement ratio of 0.4,the critical crack mouth opening displacement of fiber reinforced concrete reach the maximum 0.645mm.
引文
[1]葛瑞斌,李大华.砼技术的新进展[J].安徽建筑,2001,(3):82-84.
    [2]D.J汉南特著,陆建业译.纤维水泥与纤维混凝土.北京:中国建筑工业出版1986
    [3]李世恩.纤维混凝土在国际上的发展及其在中国工程上的应用[C].微纤维混凝土抗裂防水技术交流会,1997.
    [4]小林一辅著,邹崇富译.纤维补强混凝土.北京:中国铁道出版社,1985
    [5]杨久俊,管宗甫.混凝土存在的问题及研究方向[J].河南建材.2001,(3):6-8.
    [6]黄士元,蒋家奋,杨南如等.近代混凝土技术.陕西:科学技术出版社,1998.
    [7]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [8]黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004.
    [9]龚益,徐至钧.纤维混凝土与纤维砂浆-施工应用指南[M].北京:中国建材工业出版社.
    [10]王璋水.纤维混凝土研究应用现状与前景[J].中国混凝土技术交流会:12-26.
    [11]邓宗才.高性能合成纤维混凝土[M].北京:科学出版社,2000.
    [12]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004.
    [13]Sun Wei,Gao Jianming,Yan Yun.Study of the Fatigue Performance and damage Mechanism of Steel Reinforced Concrete[J].AC1 Materials Journal.1996(6,7).
    [14]黄士元,孙复强,王善拔等.混凝土科学[M].北京:中国建筑工业出版社,1986.
    [15]钟世云,袁华.聚合物在混凝土中的应用[M].北京:化学工业出版社,2003.
    [16]赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
    [17]龚益,沈荣熹,李清海.杜拉纤维在土建工程中的应用[M].北京:机械工业出版社,2002.
    [18]徐至钧.纤维混凝土技术及应用[M].北京:中国建筑工业出版社,2003.
    [19]Neville.A.纤维增强水泥与混凝土[M].北京:中国建筑工业出版社,1980.
    [20]关丽秋,赵国藩.钢纤维混凝土在单向拉仲时的增强机理与破坏形态.北京:水利学报,1986年第3期
    [21]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1991.
    [22]王占桥,高丹盈,朱海堂等.聚丙烯纤维高强混凝土断裂性能试验研究[C].第十届全国纤维混凝土学术会议论文集,上海,2004:447-445.
    [23]邓宗才,孔成栋,黄博升.碳纤维混凝土的压缩韧度指数[J].混凝土与水泥制品.2000,(4):37-38.
    [24]Jun Zhang,Henrik Stang,Victor C.Li.Experimental study on crack bridging in FRC under uniaxial fatigue tension[J].Journal of Material in Civil Engineering,2000,(2):66-73.
    [25]G uanL iqiu and ZhaoG uofan.A Study of the Mechanism of Fib er R ei nforced Cement and ConcreteRILEM SymposiumVol.2,1 98 6
    [26]胡晓波,陈志源.碳-尼龙纤维混杂改性水泥基复合材料的研究[J].混凝土与水泥制品,1995,(6):8-12.
    [27]许达,高小青.CF纤维混凝土的性能试验与研究[J].隧道/地下工程,2002,(6):55,58.
    [28]赵华玮,代学灵,黄功学.钢纤维对改善水工混凝土性能的作用[J].人民黄河,2005,27(9):58-60
    [29]姜雪洁,王书祥.纤维混凝土耐久性试验及机理分析[J].建筑技术.2005,36(1):41-42.
    [30]金锦鑫.钢纤维混凝土界面性能的细观力学有限元分析[D].哈尔滨:哈尔滨工程大学硕士论
    [31]高建国.钢纤维混凝土配制与施工工艺[J].铁道勘测与设计,2006,(4):36-40.
    [32]孙明清,张晖,李卓球等.CFRC机敏混凝土中碳纤维的分散性研究[J].混凝土与水泥制品,2004,(5):38-41.
    [33]关新春,韩宝国,欧进萍.碳纤维在水泥浆体中的分散性研究[J].混凝土与水泥制品,2002,(2):34-36.
    [34]杨胜生,莫文贺.聚丙烯纤维在高性能混凝土中的应用[J].水运工程,2005,(4):82-84.
    [35]金锦鑫.钢纤维混凝土界面性能的细观力学有限元分析[D].哈尔滨:哈尔滨工程大学硕士论文,2002.
    [36]王新友,张东.高性能大掺量钢纤维混凝土及其应用[J].港口工程,1997,(1):47-50.
    [37]张育宁,方秦,刘小斌等.高强高掺量纤维增强混凝土静、动力性能的试验研究[J].混凝土与水泥制品,2006,(6):43-45.
    [38]侯晓峰,方秦,张育宁.高掺量聚丙烯纤维混凝土静动力性能试验研究[C].中国土木工程学会防护工程分会第九次学术年会论文集,2004:459-465.
    [39]张红州.纤维混凝土界面性能及纤维作用机理研究[D].广州:广东工业大学学位论文,2004.
    [40]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1991.
    [41]汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.
    [42]翔荻江.复合材料原理[M].武汉:武汉工业大学出版社,1998.
    [43]干正友,廖明成,耿运贵.混杂纤维(钢/聚丙烯)高性能混凝士正交试验研究[J].焦作工学院学报(自然科学版),2003,22(1):16-21.
    [44]霍俊芳,申向东,崔琪.纤维增强轻骨料混凝土力学性能试验研究[J].混凝土,2007(1):37-39.
    [45]N.Banthia,N.Nandakuma.Crack growth resistant of hybrid fiber reinforced cement composite[J].Cement and Concrete composite,2003(25):3-9.
    [46]L.R.Betterman,C.Ouyang,S.P.Shah.Fiber-matrix interaction in microfiber-reinforced mortar[J].Advanced cement based material,1995,(2):53-61.
    [47]John Steven Lawler.Hybrid fiber-reinforcement in mortar and concrete[D].Northwestern university,2001.
    [48]Kaplan M F.Crack propagation and the fracture of conerete[J].ACI Journal,1961,58(11):591-610.
    [49]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [50]于骁中,居囊.混凝土的强度和破坏[J].水利学报,1983,3(1):22-35.
    [51]Kesler,C.E.D.J.Naus,J.L.Lott.Fracture mechanics-its applicability to concrete.Mechanical Behavior of Materials[J].The Society of Materials Science,Japan,1972,(4):113-124.
    [52]徐世琅,赵国藩.巨型试件断裂韧度和高硅坝裂缝评定的断裂韧度准则[J].土木工程学报,1991,24(2):1-9.
    [53]杨卫.宏观断裂力学[M].北京:国防工业出版社,1995.
    [54]高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994.
    [55]王新友.钢纤维混凝土的断裂模型研究[J].广东水利水电,1992,(3):2-7.
    [56]郭玉翠,范天佑.纤维增强复合材料断裂的宏观结合模型[J].复合材料学报,1999,16(1):137-141.
    [57]M.Wecharatana,S.P.Shah.A model for predicting fracture resistance of fiber reinforced concrete[J].Cement and Concrete Research,1983,(13):819-829.
    [58]K.Visalvanich,A.E.Naaman.Fracture model for fiber reinforced concrete[J].Journal of the American Concrete Institute,1983,80(2):128-138.
    [59]K.Visalvanich,A.E.Naaman.Fracture methods in cement composite[J].Proceedings.ASCE,1981,(107):1155-1171.
    [60]Hillerborg A.Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements[J].Cement and Concrete Research,1976,(6):773-782.
    [61]M.Wecharatana,S.P.Shah.Double tension test for studying slow crack growth of Portland cement mortar[J].Cement and Concrete Research,1980,10(5):832-844.
    [62]Norihiko Kurihara,Minoru KUnieda,Toshiro Kamada,etal.Tension softening diagrams and evaluation of properties of steel fiber reinforced concrete[J].Engineering Fracture Mechanicas,2000,(65):235-245.
    [63]Sameer A.Hamoush,M.Reza Salami,Elias G Abu-Saba.Fracture model to predict intensity in fiber reinforced concrete[J].ACI Material Journal,1991,88(5):504-507.
    [64]Parviz Soroushian,Hafez Elyamamy,Atef Tlili,etal.Mixef-Mode Fracture Properties of Concrete Reinforced with Low Volume Fractions of Steel and Polypropylene fibers[J].Cement and Concrete Composites,1998,(20):67-68.
    [65]王启成,吴科如.不同弹性模量的纤维对高性能混凝土力学性能的影响[J].混凝土与水泥制品,2002,(3):36-37.
    [66]孙启林,王黎民,赵成泉等.钢纤维混凝土抗裂性能测试[J].山东理工大学学报(自然科学版),2005,19(3):21-26.
    [67]李方元,赵人达.高强混凝土和钢纤维高强混凝土断裂性能试验研究[J].混凝土,2002(8):29-32.
    [68]高丹盈,王占桥,朱海堂.钢纤维高强混凝土断裂性能的试验研究[J].郑州大学学报(工学版),2004,25(1):1-5.
    [69]罗章,李夕兵,凌同华.钢纤维混凝土的增强机理与断裂力学模型研究[J].矿业研究与开发,2003,23(4):18-22.
    [70]李光伟,杨元慧.聚丙烯纤维混凝土性能的试验研究[J].水利水电科学进展,2001,21(5):14-17.
    [71]姚武,蔡江宁,陈兵等.混杂纤维增韧高性能混凝土的研究[J].三峡大学学报(自然科学版),2002,24(1):42-44.
    [72]程秀菊,朱为玄.钢纤维混凝土K_(IC)计算公式初探[J].河海大学学报(自然科学版),2005,33(4):452-454.
    [73]王善元,张汝光.纤维增强混凝土.上海:中国纺织大学出版社,1998.
    [74]汉南特著,陈建业译.纤维水泥与纤维混凝土.北京:中国建筑工业出版社,1986
    [75]7hao Guo Fan and Huang Cheng Kui.Test Methods and Applications of SFRC.IABSE 13~(th).Congress.Helsinki,1988
    [76]钢纤维混凝上试验方法编制组.试验研究报告集.大连理工大学,哈尔滨建筑工程学院,1988
    [77]小林一辅著,蒋之峰译.钢纤维混凝土.北京:冶金部建筑研究总院情报室.,1984
    [78]中国工程建设标准化协会.钢纤维混凝上结构设计与施土规程.(CECS 38:92).北京:中国计划出版社.1996
    [79]李博涵.碳纤维混凝土在高速公路车辆称重中的应用[J].山西建筑,2007,33(3):158-159.
    [80]李卓球,郑华升,宋显辉等.混凝土梁温差自调节过程控制的试验研究[J].武汉理工大学学报(交通科学与工程版),2007,31(1):21-23.
    [81]侯作富,李卓球,唐祖全.融雪化冰用碳纤维混凝土的导电性研究[J].武汉理工大学学报,2002,24(8):32-34,66.
    [82]张卫东,徐学燕.只能材料在土木工程只能监测中的应用[J].石油工程建设,2004,30(2):9-14
    [83]Wittmann F H.Structure of Concrete with Respect to Crack Formation[M].In:Wittmann FH eds. Fracture Mechanics of Concrete.United Kingdom:Elsevier Science Publishers,1989.
    [84]马怀发,陈厚群,黎保琨.混凝土细观力学研究及评述[J].中国水利水电科学研究院学报,2004,2(2):124-130.
    [85]张红州.纤维对混凝土的增强机理研究[J].广东水利学报,2005,(6):13-14.
    [86]陈玲秋,袁建明.浅谈聚丙烯纤维的阻裂作用[J].浙江建筑,2006,23(8):81-82.
    [87]章洪,付文荣.混凝土断裂韧性K_(IC)的尺寸效应[J].水利水电工程设计,1997,(1):11-15.
    [88]黎保琨,王良元.混凝土断裂特性的试验研究及计算分析[J].水利学报,1998(8):61-68.
    [89]欧阳幼玲,陈迅捷,方璟等.纤维增强水泥基材料断裂韧性研究[J].水利水运工程学报,2006,(6):56-59.
    [90]龚益,沈荣熹等.杜拉纤维在土建工程中的应用.机械工业出版社,2002(pp,106-108)
    [91]黄煜镔,钱觉时等.钢纤维混凝土断裂性能研究.建筑技术,2002,(1)
    [92]李方元,赵人达.高强混凝土和钢纤维高强混凝土断裂性能试验研究.混凝土,2002,(8)
    [93]黄煜镔,钱觉时等,钢纤维混凝土断裂性能研究建筑技术,第33卷,2002(1)
    [94]JGJ55-2000普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2001.
    [95]中国工程建设标准化协会标准.钢纤维混凝土试验方法(CECS 13:89)[S].北京:中国计划出版社.1996.
    [96]尹双增.断裂判据与在混凝土中的应用[M].北京:北京科学出版社,1996.
    [97]Kesler,C.E.D.J.Naus,J.L.Lott.Fracture mechanics-its applicability to concrete.Mechanical Behavior of Materials[J].The Society of Materials Science,Japan,1972,(4):113-124.
    [98]Strange P.C.,Brgant A.H..Experiment tests on concrete fracture.Journal of Engineering Mechanics Division.ASCE,1979,(105):337-343.
    [99]徐世琅,赵国藩.三点弯曲梁研究混凝土断裂能G_F及其试件尺寸影响规律[J].大连理工大学学报,1991,(1):28-31.
    [100]Nallathambi P,Kafihaloo B L.Effcet of specimen and crack sizes.warer/cement ratio and coarse aggregate texture upon fracture toughness of concrete[J].Magazine of Concrete Research,1984,36(129):227-236.
    [101]徐世琅,赵国藩.光弹贴片法研究混凝土裂缝扩展过程[J].水力发电学报,1991(3):8-17.
    [102]于骁中,谯常忻,周群力.岩石和混凝土断裂力学[M].湖南:中南工业大学出版社,1991.
    [102]丁遂栋.断裂力学[M].北京:机械工业出版社,1997.
    [103]蔡敏,蔡四维.混凝土、纤维混凝土的Ⅰ型断裂[J].32程力学,1999,16(4):54-58.
    [104]邓宗才,杨秀元.钢纤维高强混凝土上的断裂韧度[J].工业建筑,1995,25(10):36-38.
    [105]杨广里等.断裂力学及应用[M].北京:中国铁道出版社,1990.
    [106]路面材料科学,重庆交通学院,2001
    [107]混凝土,中国建筑工业出版社
    [108]混凝土学,中国建筑工业出版社
    [109]Chunxiang Qian,PietStroeven.Fracture Properties of concrete Reinforced with Steel-polypropylene Hybrid Fibers[J].Cement and Concrete Composites,2000(22):343-351
    [110]姜景,钱玉林.聚丙烯纤维混凝土阻裂机理探讨[J].吉林水利,2004,(3):20-23.
    [111]JGJ55-2000普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2001.
    [112]中国工程建设标准化协会标准.钢纤维混凝土试验方法(CECS 13:89)[S].北京:中国计划出版社.1996.
    [113]杜向琴.碳纤维混凝土断裂性能研究[D].陕西:西北农林科技大学.2006.
    [114]宋春香.补偿收缩混凝土在渠道防渗工程中的应用研究[D].陕西:西北农林科技大学.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700