用户名: 密码: 验证码:
钢渣矿渣复合微粉对水泥和混凝土性能影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是钢铁生产大国,目前我国粗钢产量已经达到5亿吨,产量位居世界第一。根据计算,我国每年产生矿渣大约1.5亿吨和钢渣大约6500万吨。如何充分利用好这些冶金固体废弃物事关我国循环经济发展水平和环境保护事业。
     本文在对钢渣和矿渣理化性能分析的基础上,采用不同钢渣掺量和钢渣细度的钢渣矿渣复合微粉替代50%的水泥进行水泥胶砂实验,研究机械激发对复合微粉活性指数和流动度比的影响。研究发现,等量替代部分水泥时,复合微粉中钢渣微粉的掺量增加,浆体需水量呈下降趋势,复合微粉活性指数呈下降趋势,并且28天活性指数下降较7天活性指数下降明显。比表面积在400~505m2/kg的钢渣微粉等量取代水泥时需水量相差不明显。钢渣细度增加,复合微粉流动度比略有提高。
     本文采用三种不同类型的激发剂对复合微粉活性进行化学激发,研究不同类型激发剂对复合微粉活性指数和流动度比的影响。研究表明,经激发剂激发后的矿渣钢渣复合微粉的浆体标准稠度用水量较未激发的复合微粉明显增大。碱性激发剂对复合微粉的活性激发效果优于酸性激发剂。
     本文在水泥胶砂实验的基础上,进行了不同掺量和不同钢渣微粉比例的复合微粉替代水泥的混凝土实验,研究复合微粉对混凝土强度和耐久性的影响。研究表明:掺加20%~80%的复合微粉混凝土实测强度,经过KYH-10激发剂激发后,混凝土的早期抗压强度可显著提高。在要求的坍落度范围内,复合微粉配制的混凝土具有良好的和易性,均能达到设计强度的要求。大掺量复合微粉混凝土在抗渗性、干缩、抗冻性和抗氯离子渗透性等方面的性能良好。本文在实验室研究的基础上,采用钢渣掺量为60%的复合微粉替代50%的水泥,配制C30混凝土,进行了工业应用试验。试验表明:钢渣矿渣复合微粉替代部分水泥配制C30混凝土,在规定坍落度条件下各项指标能够满足工程施工的要求。
     本文还对钢渣进行了稳定化改性研究,考察不同钢渣温度条件下,水蒸气和二氧化碳对钢渣中f-CaO含量的影响。研究表明液态水的存在有利于钢渣中的f-CaO发生反应,通入水蒸气和二氧化碳后生成的主要产物为氢氧化镁、氢氧化钙和碳酸钙;只有气态水存在时,即使有二氧化碳,也很难生成碳酸钙,只有氢氧化镁和氢氧化钙产生。
Presently, China is a country with the largest crude steel output of 5 billion tons in the whole world. According to calculation, our country produces 1.5 billion tons blast furnace slag and 0.65 billion tons steel slag annually. How to utilize the metallurgical solid wastes is related to the economy development and circular economy level of our country.
     Based on the physical and chemical properties of steel slag and blast furnace slag, cement mortar experiments were conducted with different proportions of micro-powder mixture substituting for 50% cement. Effect of mechanical activation of the micro-powder mixture on the mortar activity index and fluidity ratio was investigated. Results showed that when equivalent substitution for cement occurred, the slurry water demand decreased with the increasing dosage of steel slag micro-powder in mixture. In addition, 28-day activity index of the micro-powder mixture decreased more significantly than 7-day activity index However, when steel slag micro-powder with different size fraction and a specific surface area ranging among 400~505m2/kg substituted for cement equivalently, no significant difference in water demand was found. In addition, the fluidity ratio of the micro-powder mixture increased slightly with the increasing of steel slag size.
     Three different kinds of active agents were used in this study to chemically activate the micro-powder mixture. Influences of the active agents on the activity index and fluidity ratio of the mixture were investigated. Results showed that the chemically activated mixture presented a much larger water content of pastes at standard consistency than the non-activated mixture. The alkaline active agent exhibited better activation effect on micro-powder mixture than the acidic active agent. However, the active agents contributed little to the enhancement of fluidity ratio of the mixture.
     Based on the cement mortar experiments, concrete experiments were performed using micro-powder mixture with different dosage and different steel slag micro-powder proportions to substitute for cement. Effect of micro-powder mixture on the concrete strength and durability was investigated. Results indicated that when concrete dosed 20%-80% micro-powder mixture was activated by KYH-10 active agent, its early compressive strength was increased significantly. Furthermore, the concrete exhibited good workability within the required slump range to meet the design strength requirement. Concrete mixed with large amounts of micro-powder mixture presented such good impermeability, drying shrinkage, frost resistance and resistance to chloride ion permeability that it can be used widely in concrete construction such as in ocean engineering.According to the laboratory studies, C30 concrete was prepared dosed micro-powder mixture with 60% steel slag to substitute for 50% cement and the concrete was used in industrial application test. Results showed that C30 concrete prepared by micro-powder mixture substituting for cement can meet the engineering construction requirements within the the required slump range.
     Moreover, the stabilization of steel slag was also studied. Especially, effect of steam and carbon dioxide on the content of f-CaO in steel slag was mainly investigated at different steel slag temperatures. Results indicated that the presence of liquid water was helpful to the reaction of f-CaO in steel slag. When steam and carbon dioxide were pumped in, the main reaction products were magnesium hydroxide, calcium hydroxide and calcium carbonate; however, when only steam was present but liquid water was absent, even if there existed carbon dioxide, it was difficult to produce calcium carbonate but magnesium hydroxide and calcium hydroxide.
引文
[1]彭春元,文梓芸,邓福添.正交试验在配制钢渣-矿渣混凝土上的应用.广东建材,2006(7):30~32.
    [2]刘辉,张长营,杨圣纬等.矿渣微粉在水泥中的效应分析.混凝土,2007,(4):52~54.
    [3]孙家瑛.磨细钢渣对混凝土力学性能及安定性影响研究.粉煤灰,2003,(5):7~9.
    [4]冷达,刘峰.钢渣砂的安定性及其检测方法的研究.粉煤灰综合利用,2008,(1):49~52.
    [5] Kyong Yun Yeaua,Eun Kyum Kim. An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cement and Concrete Research. 2005,35:1391~1399.
    [6] Huiting Shen,E. Forssberg. An overview of recovery of metals from slags. Waste Management,2003,23:933~949.
    [7] M.P. Wilson a, L. Balmer b, M.J. Given,etc. Application of electric spark generated high power ultrasound to recover ferrous and non-ferrous metals from slag waste. Minerals Engineering,2006,19 :491~499.
    [8] M. Oner. A study of intergrinding and separate grinding of blast furnace slag cement. Cement and Concrete Research. 2000,30:47~480.
    [9] M. Onera,K. Erdogdub,A. Gunlu. Effect of components fineness on strength of blast furnace slag cement. Cement and Concrete Research,2003,33:463~469.
    [10] K.M. Lee a,H.K. Lee b,S.H. Lee. Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cement and Concrete Research . 2006,36:1279~1285.
    [11] Perrine Chaurand a,Jerome Rose a,Valerie Briois. Environmental impacts of steel slag reused in road construction A crystallographic and molecular(XANES) approach. Journal of HazardousMaterials,2006,18:231~238.
    [12] I. Ak?n Altuna,Ismail Y?lmaz. Study on steel furnace slags with high MgO as additive in Portland cement. Cement and Concrete Research,2002,32:1247~1249.
    [13]陆雷,温金保,姚强.钢渣的机械力化学效应研究.钢铁钒钛,2005,26(2):39~43.
    [14]许远辉,陆文雄,王秀娟等.钢渣活性激发的研究现状与发展.上海大学学报(自然科学版),2004,10(1):91~95.
    [15]付贵勤,朱苗勇,徐红江.提高转炉渣体积安定性的实验研究.中国冶金,2007,17(3):30~33.
    [16]徐红江,付贵勤,朱苗勇.转炉渣膨胀性的实验研究[J].中国冶金,2006,16(6):32~33.
    [17]张同生,刘福田,王建伟等.钢渣安定性与活性激发的研究进展.硅酸盐通报,2006,26(5):980~984.
    [18] Oeters F.Metallurgy of Steelmaking.C~AInan:Vedag Stahleisen mbH,1994.
    [19]徐红江,付贵勤,朱苗勇.转炉渣熔融改性的实验研究.硅酸盐通报,2006,25(6):95~98.
    [20] GJJ35-90,钢渣石灰类道路基层施工及验收规范[S].
    [21] YBJ 230-91,钢渣混合料路面基层施工技术规范[S].
    [22]朱明,胡曙光,丁庆军.钢渣用作水泥基材料的问题研讨.武汉理工大学学报,2005,27(6):48~51.
    [23] B. Das,S. Prakash,P.S.R. Reddy,V.N. Misra. An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling. 2006,(9):1218~2123.
    [24] M. Maslehuddin,Alfarabi M. Sharif,M. Shameem,etc. Comparison of properties of steel slag and crushed limestone aggregate concretes. Construction and Building Materials. 2003,17:105~112.
    [25] H. Motz, J. Geiseler. Products of steel slags an opportunity to save natural resources. Waste Management,2001,21:285~293.
    [26]陆雷,温金保,姚强.钢渣的机械力化学效应研究.钢铁钒钛,2005,26(2):39~43.
    [27]吴达华,吴永革,林蓉.高炉矿渣结构特性及水化机理.石油钻探技术,1997,25(1):31~33.
    [28]高树军,吴其胜,张少明.高能球磨矿渣的形貌及其活性.建筑材料学,2003,6(2):157~161.
    [29]高树军,吴其胜,张少明.机械力学化学方法活化矿渣研究.南京工业大学学报,2002,24(6):61~65.
    [30]张西玲,姚爱玲.矿渣的活性激发技术及机理的研究进展.萍乡高等专科学校学报,2007,(3):12~16.
    [31]史才军,巴维尔?克利文科,黛拉?罗伊.碱-激发水泥和混凝土.北京:化学工业出版社,2008.
    [32]黎良元,石宗利,艾永平.石膏-矿渣胶凝材料的碱性激发作用.硅酸盐学报,2008,36(3):405~410.
    [33]苏胜,李维安.掺合料对水泥复合浆体流动性影响的研究.华北科技学院学报,2003,5(3):37~38.
    [34]甘义群,王焰新,张从军.钢渣低温热态资源化研究.2003(第二届)全国固体废弃物处理及综合利用技术与设备交流研讨会:121~125.
    [35]李辽沙,曾晶,苏世怀等.钢渣预处理工艺对其矿物组成与资源化特性的影响.金属矿山,2006.(12):71~74.
    [36] Chatterji S. Mechanism of expansion of concrete due to the presence of dead-burnt CaO andMgO.Cement and Concrete Research,1995, 25(1):51-56.
    [37] Tsutsuml,Mukawa,Tanaka etc. Method for Stabilization Treatment of Steel Making Slag, Stabilized Steel Making Slag, and Material and Method for Environmental Preservation of Water Area Using Said Slag.EP1630143A1.
    [38]侯新凯,李虎森,房晓红.钢渣的冷却和处理方式对水硬活性的影响.水泥,2002,(7):1~4.
    [39] M. Tossavainen a,F. Engstrom b,Q. Yang,etc. Characteristics of steel slag under different cooling conditions. Waste Management,2006,51:1220~1224.
    [40]牟善彬,孙振亚,苏小萍.高游离氧化钙水泥的显微结构与膨胀机理研究.武汉理工大学学报,2001,23(11):27~29.
    [41]李辽沙,于学峰,武杏荣等.不同稳定化处理转炉钢渣中磷元素的分布.金属矿山,2006,(10):78~81.
    [42]黄波,赵振新,熊俊文.钙基固硫剂高温煅烧分解特性的研究.煤炭工程,2007,(5):77~79.
    [43]党永发,李晓光.酸激发提高钢渣、矿渣复合粉水硬活性的研究.粉体工业,2006,(5):16~18.
    [44]凌庆璋.钢渣掺量及细度影响水泥性能的探讨.江苏建材,2004,94(1):23~25.
    [45]陈德玉,谭克锋.利用电炉氧化钢渣制备混凝土矿物掺合料的研究.硅酸盐通报,2006,25(6):204~208.
    [46]叶平,李文翔,陈广言.钢渣和高炉渣微粉做水泥和混凝土掺和料的研究.中国冶金,2004,76(3):15~18.
    [47]张爱萍,李永鑫.钢渣复合掺合料配制混凝土的工作性能与力学性能研究.混凝土,2006,200(6):38~41.
    [48]朱桂林,孙树杉,赵群.钢渣粉作混凝土掺合料的研究.废钢铁,2002,(4):29~32.
    [49]孙家瑛.钢渣细度对水泥混凝土物理力学性能影响.粉煤灰综合利用,2004,(5):4~5.
    [50]侯贵华,李伟峰,郭伟等.转炉钢渣的显微形貌及矿物相.硅酸盐学报,2008,36(4):436~443.
    [51]杨永民.低碱度钢渣在压蒸条件下的活性研究.粉煤灰综合利用,2008,(2):17~20.
    [52]王玲,李云峰,林晖.掺钢渣粉水泥胶砂早期收缩性能研究.混凝土与水泥制品,2008,(3):16~18.
    [53] Hu S G,Jiang C S,Wei J X,et a1.Research on hydration of steel slag cement activated with water-glass[J].Journal of Wuhan University of Technology-Mater Sci Ed,2001,16(1):37~40.
    [54] Qian G R,Sun D D,Tay J H,et a1.Hydrothennal reaction and autoclave stability of Mg bearing RO phase in steel slag[J].Brithh Ceramic Transactions,2O02.101(4):159-164.
    [55]钱光人,徐光亮,李和玉等.低碱度钢渣的矿物组成、岩相特征与膨胀研究.西南工学院学报,1997,12(1):35~39
    [56]欧阳东,谢宇平,何俊元.转炉钢渣的组成、矿物形貌及胶凝特性.硅酸盐学报,1991,19(6):488~494
    [57]李彬,江景辉,隋智通.钢渣组成与胶凝性能的研究.房材与应用,1997,(4):4~6.
    [58]李永鑫.含钢渣粉掺合料的水泥混凝土组成结构及性能研究.北京:中国建筑材料科学研究院博士论文,2003.
    [59]陈益民,张洪滔.磨细钢渣粉作水泥高活性混合材料的研究.水泥,2001,(5):1~4.
    [60]朱明,胡曙光,丁庆军等.钢渣用作水泥基材料的问题研讨.武汉理工大学学报,2005,27(6):48~52.
    [61]赵三银,赵旭光,李宁.高钢渣掺量钢矿水泥体积安定性的研究.水泥工程,2002,(2):7~9.
    [62]肖琪仲.钢渣的膨胀破坏与抑制.硅酸盐学报,1996,24(6):635~640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700