用户名: 密码: 验证码:
金属—铁酸盐复合磁性纳米催化剂的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相催化化学在很多行业都发挥着非常重要的作用。如何提高催化过程的效率、改善催化路径、设计新的催化体系、最终实现绿色化学,一直都是催化领域的热点和难点。磁性纳米催化剂兼备了高活性与易分离性的特点,为催化过程的绿色化学进程带来了新的机遇。设计普适的合成方法,制备性能优异的磁性纳米催化剂,并研究它们在传统的催化过程和绿色化学体系里的性能,对基础研究和工业催化过程的绿色化学进程都有重要意义。在这样的研究背景下,本论文涉及的主要研究工作如下:
     从廉价、易得的原料通过简单的一步溶剂热过程合成了Ag-Fe3O4复合磁性纳米催化剂,研究了该催化剂在苯乙烯环氧化体系中的应用。成功的将Ag-Fe3O4复合磁性纳米催化剂的载体扩展到一系列的铁酸盐磁性材料;分析了有机聚合物在复合磁性纳米催化剂的形成过程中的双重作用;催化结果表明载体效应决定了该系列催化剂的催化行为和活性顺序。
     将改进的制备方法成功的应用于其它M-基磁性纳米催化剂的制备,证明了简单的一步溶剂热过程合成方法的普适性。合成的催化剂在对硝基苯酚催化加氢过程的绿色化学体系里显示出优异的催化性能;是绿色化学的原则在加氢转化体系里的成功实践。
Catalysis plays an important role in fields of fine chemicals, pharmaceuticals, agriculture, environmental protection, etc. It is estimated that more than 90 % of the chemical products of the current commercial processes in the world are derived from heterogeneous catalysis. Traditional solid catalysts are widely used in heterogeneous catalysis, for their simple technique in application and facile separation from the catalytic systems. However, reactions proceed only at the interfaces between catalysts and reactants in heterogeneous catalysis, and that is disadvantageous to catalytic activity comparing with the case in homogeneous catalysis. The introduction of nanotechnology into catalysis brings brand new opportunity for its development, and subsequently comes forth the magnetically recyclable catalyst (MRC) by supporting catalytic active nano-components on magnetic nanomaterials, giving body to the perfect combination of high activity with facile magnetic separation. But as a new type of catalyst, there is still much for MRC to be explored in terms of synthesis, performance optimization, application expansion, structure-activity relationship and so on. In addition, according to the principles of green chemistry, simple preparation, low cost, mild and environmentally friendly reaction conditions as well as high activity are required for MRC. We conducted our study in such a context and a series of new MRCs are synthesized; their catalytic activity, recyclability and stability were tested in certain catalytic systems; a general and facile method for the preparation of MRCs from cheap and readily available precursors is established; what is more, we also explored the green chemistry of p-nitrophenol (PNP) hydrogenation system catalyzed by the as-synthesized MRCs.
     Firstly, Ag-Fe3O4 nanocomposites were synthesized from cheap and readily available precursors through a simple one-pot solvothermal process under the assistance of polyvinylpyrrolidone (PVP). The characterization results of structure and morphology both prove that Ag-Fe3O4 nanocomposites were formed from the simultaneously assembly of primary Ag and Fe3O4 particles with the assistance of PVP. Magnetization study shows that the as-prepared Ag-Fe3O4 nanocomposites are superparamagnetic at room temperature, ensuring their facile magnetic separation from the catalytic system when the reaction is finished. Study on the catalytic performance indicates that the as-prepared Ag-Fe3O4 nanocomposites exhibit high activity and selectivity for styrene oxide in the catalytic epoxidation of styrene; examination of the catalytic results in five cycles of catalysis confirmed the facile magnetic separation property and stability of the as-prepared Ag-based MRC; moreover, analysis of the catalytic mechanism reveals that certain synergy exist between Ag and magnetite support in enhancing the catalytic efficiency.
     In order to investigate the applicable scope of the simple one-pot solvothermal synthesis for the preparation of MRCs, other ferrite supports instead of magnetite were used, including Co-ferrite, Ni-ferrite, Mn-ferrite and Zn-ferrite. The magnetically collected products were washed thoroughly. Analysis results of structures, morphologies, contents of each component, as well as the magnetization and surface properties of the as-prepared products all suggest that we have successfully prepared a series of Ag-based MRCs, indicating the extendability of our simple on-pot solvothermal method for the preparation of nanocomposite MRCs. Long chain organic molecule PVP was found to function doubly in the formation of Ag-ferrites nanocomposite MRCs. On one hand, PVP plays as surfactant: it stabilizes the primary particles, preventing their aggregation or further growth into nanowires or other bulk structures. On the other hand, PVP plays the bridging role, linking several particles simultaneously in loss or tight manner to form integral Ag-ferrite nanocomposites. Systematic study on the catalytic behaviors of those Ag-ferrite MRCs (Ag-Fe3O4 included) in the epoxidation of styrene reveals that the support effects of ferrites supports comes from a combination of geometric factor and electronic factor. Firstly, the geometric factor is taken into consideration. The relative amounts of active planes in primary Ag particles are different in the presence of different ferrites supports. Generally, more active planes in Ag mean higher catalytic activity in nanocomposite MRCs. This geometric factor plays decisive role in determining the catalytic activity of Ag in the epoxidation of styrene. Additionally, the electronic structures of M (II) ions in ferrites also affect the catalytic activity (electronic factor) by stabilizing the reactive oxygen intermediate. Owing to stable full-filled d-orbitals of Zn (II), the Ag-based Zn-ferrite MRC with relatively more active planes among the as-prepared MRCs shows the lowest activity in the catalysis.
     Next, we further simplified the one-pot method and applied it in the synthesis of other catalytic active metal-magnetite nanocomposite MRCs (metal = Pd, Pt, Au, Cu, Ni). Analysis results of the basic characterization data show that a series of catalytic active metal-magnetite nanocomposite MRCs are successfully synthesized, demonstrating that metals other than Ag are applicable in the simple one-pot solvothermal synthesis. Study results on the scope of metals and magnetic supports that can be applied in the synthesis together suggest that a general method for the synthesis of metal-ferrite nanocomposite MRCs has been established. We investigated the catalytic performances of all the as-synthesized metal-magnetite nanocomposite MRCs in the model reaction of p-nitrophenol hydrogenation, and high catalytic reaction rate constants were obtained on most of the MRCs. Control experiments manifest that metals instead of magnetite supports or PVP in the nanocomposite act as the catalytic active components.
     p-Aminophenol (PAP) is an important intermediate for the synthesis of analgesics and antipyretics in pharmaceutical industry. The consumption of PAP around the world is increasing year by year, and more and more attentions are paid to the catalytic hydrogenation of PNP to produce PAP. However, the present industrial processes for the production of PAP generally proceed under high pressure, high temperature, and in organic solvent, which are far more from green ones. No total green process for this system has been reported in laboratory studies yet. In our study, we proposed a total green system for the catalytic hydrogenation of PNP to produce PAP based on the principles of green chemistry: with the facilely synthesized Pd-Fe3O4 nanocomposites from readily available and cheap precursors as MRC, the catalytic hydrogenation of PNP was conducted in aqueous at room temperature and one atmospheric pressure of hydrogen. Under identical test conditions, the activity of Pd-Fe3O4 nanocomposites is about eight times higher than that of commercial Pd/C, demonstrating the great potential for industrial usage of the proposed green system. Catalytic tests for other MRCs indicate that adjustment in synthesis is an efficient way for tailoring the catalytic performance.
     In conclusion, we have established a facile and general method for the synthesis of nanocomposite MRCs, which are perfect combination of high activity with easy recovery. This provides a methodological basis for the development of other MRCs. Studies on their catalytic behaviors in the corresponding epoxidation and hydrogenation systems greatly enriched the field of catalysis. A preliminary green system for the catalytic hydrogenation of PNP has been proposed, which is a successful practice of the principles of green chemistry and in line with the requirements of sustainable society. These studies are experimental basis for industrial practice, and also provide theoretical guidance for the green processes of other catalytic transformation systems.
引文
[1]杨志尹,刘书进,刘同刚.纳米科技[M].北京:机械工业出版社,2001.
    [2]胡美凤.走进纳米世界[M].上海:学林出版社,2003.
    [3] Nadagouda M N, Varma R S. A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C [J]. Cryst. Growth & Des., 2007, 7: 2582-2587.
    [4] Li Y D,Li X L,He R R, et al. Artificial lamellar mesostructures to WS2 nanotubes [J]. J. Am. Chem. Soc., 2002, 124: 1411-1416.
    [5] Ledwith D M, Whelan A M, Kelly J M. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles [J]. J. Mater. Chem., 2007, 17: 2459–2464.
    [6] Li Y J, Huang W J, Sun S G. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface [J]. Angew. Chem. Int. Ed., 2006, 45: 2537–2539.
    [7] Xiong Y J, McLellan J M, Chen J Y, et al. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties [J]. J. Am. Chem. Soc., 2005, 127: 17118-17127.
    [8] Feng L, Zhang Z Y, Mai Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water [J]. Angew. Chem. Int. Ed., 2004, 43: 2012–2014.
    [9] Milliron D J, Hughes S M, Cui Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology [J]. Nature, 2004, 430: 190-195.
    [10] Witten T A, Sander L M, Diffusion-limited aggregation [J]. Phys. Rev. B, 1983, 27: 5686-5697.
    [11] Nair P S, Fritz K P, Scholes G D. Evolutionary shape control during colloidal quantum-dot growth [J]. Small, 2007, 3: 481–487.
    [12] Winkler P M, Steiner G, Vrtala A, et al. Heterogeneous nucleation experimentsbridging the scale from molecular ion clusters to nanoparticles [J]. Science, 2008, 319: 1374-1377.
    [13] Wang X, Li Y D. Monodisperse nanocrystals: general synthesis, assembly, and their applications [J]. Chem. Commun., 2007, 2901–2910.
    [14] Xu A W, Ma Y R, C?lfen H. Biomimetic mineralization [J]. J. Mater. Chem., 2007, 17: 415–449.
    [15] Rosi N L, Mirkin C A. Nanostructures in biodiagnostics [J]. Chem. Rev., 2005, 105:1547-1562.
    [16] Collingsy A F, Caruso F. Biosensors: recent advances [J]. Rep. Prog. Phys., 1997, 60: 1397–1445.
    [17] Lin J, Yu M, Lin C K, et al. Multiform oxide optical materials via the versatile pechini-type sol-gel process: synthesis and characteristics [J]. J. Phys. Chem. C, 2007, 111: 5835-5845.
    [18] Gao J B, Zhang Y N, Jia G Q, et al. A direct imaging of amphiphilic catalysts assembled at the interface ofemulsion droplets usingfluorescence microscopy [J]. Chem. Commun., 2008, 332–334.
    [19] Xiong Y J, Wiley B J, Xia Y N. Nanocrystals with unconventional shapes—a class of promising catalysts [J]. Angew. Chem. Int. Ed., 2007, 46: 7157–7159.
    [20] Amstad E, Zurcher S, Mashaghi A. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging [J]. Small 2009, 5: 1334–1342.
    [21] Cheung S T C, Fung A K M, Lam M H W. Visible photosensitization of TiO2-photodegradation of CCl4 in aqueous medium [J]. Chemosphere, 1998, 36: 2461-2473.
    [22] Curria M L, Comparellib R, Cozzolib P D, et al. Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye [J]. Mater. Sci. Eng. C, 2003, 23: 285–289.
    [23] Norberg N S, Parks G L, Salley G M, et al. Giant excitonic zeeman splittings in colloidal Co2+-doped ZnSe quantum dots [J]. J. Am. Chem. Soc., 2006, 128: 13195-13203.
    [24] Baea S, Lee S W, Takemura Y. Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine [J]. Appl. Phys. Lett., 2006, 89: 252503(1-3).
    [25] Reiss P, Bleuse J, Pron A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion [J]. Nano Lett., 2002, 2: 781-784.
    [26] Liu D P, Li G D, Su Y, et al. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components [J]. Angew. Chem. Int. Ed., 2006, 45: 7370–7373.
    [27] Gómez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets [J]. Nano Lett., 2007, 7: 3499-3503.
    [28] Fortin J P, Wilhelm C, Servais J, et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia [J]. J. Am. Chem. Soc., 2007, 129: 2628-2635.
    [29] Zeng H, Li J,Wang Z L, et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles [J]. Nano Lett., 2004, 4: 187-190.
    [30] Liu J P, Li Y Y, Fan H J, et al. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage [J]. Chem. Mater., 2010, 22, 212-217.
    [31] Park Y T, Ham A Y, Grunlan J C, High electrical conductivity and transparency in deoxycholate-stabilized carbon nanotube thin films [J]. J. Phys. Chem. C, 2010, 114: 6325–6333.
    [32] Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content [J]. ACS Nano, 2009, 3: 3844-3890.
    [33] Helseth L E, Wen H Z, Fischer T M. Colloidal optomagnetic dimmer [J]. Langmuir, 2006, 22: 3941-3944.
    [34]刘国奎,王中林.纳米科学和纳米技术前瞻[M].北京:清华大学出版社,2002.
    [35]王永康,王力.纳米材料科学与技术[M].杭州:浙江大学出版社,2002.
    [36] Barnard A S. One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity [J].Nature Nanotech., 2010, 5: 271–274.
    [37] Hutchings G J. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis [J]. Chem. Commun., 2008, 1148–1164.
    [38] Mason M G. Electronic structure of supported small metal clusters [J]. Phys. Rev. B, 1983, 27: 748-762.
    [39] Chen Y F, Johnson E, Peng X G. Formation of monodisperse and shape-controlledMnO nanocrystals in non-injection synthesis: self-focusing via ripening [J]. J. Am. Chem. Soc., 2007, 129: 10937-10947.
    [40] Robb D T, Privman V. Model of nanocrystal formation in solution by burst nucleation and diffusional growth [J]. Langmuir, 2008, 24: 26-35.
    [41] Wu C Y, Yu S H, Chen S F, et al. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions [J]. J. Mater. Chem., 2006, 16: 3326–3331.
    [42] Shi S F, Cao M H, He X Y, et al. Surfactant-assisted hydrothermal growth of single-crystalline ultrahigh-aspect-ratio vanadium oxide nanobelts [J]. Cryst. Growth & Des., 2007, 7: 1893-1897.
    [43] Xiong Y J, Cai H G, Wiley B J, et al. Synthesis and mechanistic study of palladium nanobars and nanorods [J]. J. Am. Chem. Soc. 2007, 129: 3665-3675.
    [44] Xu R, Xie T, Zhao Y G, et al. Single-crystal metal nanoplatelets: cobalt, nickel, copper, and silver [J]. Cryst. Growth & Des., 2007, 7: 1904-1911.
    [45] Kumar M K, Tan L K, Gosvami N N, et al. Titania nanofilm with electrical switching effects upon hydrogen/air exposure at room temperature [J]. J. Phys. Chem. C, 2009, 113: 6381–6389.
    [46] Liu D P, Li G D, Li J X, et al. Spontaneous superlattice formation of ZnO nanocrystals capped with ionic liquid molecules [J]. Chem. Commun., 2007, 4131–4133.
    [47] Pileni M P. Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties [J]. Acc. Chem. Res., 2007, 40: 685–693.
    [48] Teng X W, Wang Q, Liu P, et al. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction [J]. J. Am. Chem. Soc. 2008, 130: 1093-1101.
    [49] Bao N Z, Shen L M, Wang Y, et al. A facile thermolysis route to monodisperse ferrite nanocrystals [J]. J. Am. Chem. Soc. 2007, 129: 12374-12375.
    [50] Tsuji M, Miyamae N, Lim S, et al. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method [J]. Cryst. Growth & Des., 2006, 6: 1801-1807.
    [51] Tak Y, Yong K. A novel heterostructure of Co3O4/ZnO nanowire array fabricated by photochemical coating method [J]. J. Phys. Chem. C, 2008, 112: 74-79.
    [52] Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks [J]. Angew. Chem. Int. Ed., 2006, 45: 813–816.
    [53] Huang Y, Ai Z H, Ho W, et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO [J]. J. Phys. Chem. C, 2010, 114: 6342–6349.
    [54]顾宁,付德刚,张海黔.纳米技术与应用[M].北京:人民邮电出版社,2002.
    [55] Li X H, Zhang D H, Chen J S. Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres [J]. J. Am. Chem. Soc., 2006, 128: 8382-8383.
    [56] Jayaraman A, Subramanyam G, Sindhu S, et al. Biomimetic synthesis of calcium carbonate thin films using hydroxylated poly(methyl methacrylate) (PMMA) template [J]. Cryst. Growth & Des., 2007, 7: 142-146.
    [57] Shin H J, Ryoo R, Liu Z, et al. Template synthesis of asymmetrically mesostructured platinum networks [J]. J. Am. Chem. Soc., 2001, 123: 1246-1247.
    [58] Feng L, Li S H, Li H J, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers [J]. Angew. Chem. Int. Ed., 2002, 41: 71221-1223.
    [59] Tao K, Dou H J, Sun K. Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles [J]. Chem. Mater., 2006, 18: 5273-5278.
    [60] Jadhav A P, Kim C W, Cha H G, et al. Effect of different surfactants on the size control and optical properties of Y2O3:Eu3+ nanoparticles prepared by coprecipitation method [J]. J. Phys. Chem. C, 2009, 113: 13600–13604.
    [61] Epifani M, Giannini C, Tapfer L, et al. Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films [J]. J. Am. Ceram. Soc., 2000, 83: 2385–2393.
    [62] Ennas G., Musinu A., Piccaluga G., et al. Characterization of iron oxide nanoparticles in an Fe2O3-SiO2 composite prepared by a sol-gel method [J]. Chem. Mater., 1998, 10: 495-502.
    [63] Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed., 2005, 44: 2782–2785.
    [64] Kuo C L, Kuo T Z, Huang M H. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures [J]. J. Phys. Chem. B, 2005, 109: 20115-20121.
    [65] He T, Chen D, Jiao X, et al. Co3O4 nanoboxes: surfactant-templated fabrication and microstructure characterization [J]. Adv. Mater., 2006, 18: 1078–1082.
    [66]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.
    [67] Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem. Int. Ed., 2007, 46: 4630–4660.
    [68] Jun Y W, Lee S M, Kang N J, et al. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system [J]. J. Am. Chem. Soc., 2001, 123: 5150-5151.
    [69] Park J, An K, Hwang Y, Park J G, et al. Ultra-large-scale syntheses of monodisperse nanocrystalsnature materials [J]. Nature Mater., 2004, 3: 891-895.
    [70] Nadagouda M N, Hoag G, Collins J, et al. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants [J]. Cryst. Growth & Des., 2009, 9: 4979-4983.
    [71] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437: 121-124.
    [72]高正中.实用催化[M].北京:化学工业出版社,1996.
    [73] Lee J H, Toste F D. Gold(I)-catalyzed synthesis of functionalized cyclopentadienes [J]. Angew. Chem. Int. Ed., 2007, 46: 912–914.
    [74] Ertl G, Kn?zinger H, Schüth F, et al. Handbook of heterogeneous catalysis [M]. Wiley-VCH, 2nd edition, 2008.
    [75] Yamada Y M A, Arakawa T, Hocke H, et al. A nanoplatinum catalyst for aerobic oxidation of alcohols in water [J]. Angew. Chem. Int. Ed., 2007, 46: 704–706.
    [76] Hassan J, Sévignon M, Gozzi C, et al. Aryl-aryl bond formation one century after the discovery of the ullmann reaction [J]. Chem. Rev., 2002, 102: 1359-1469.
    [77] Sun H, Su F Z, Ni J, et al. Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes [J]. Angew. Chem. Int. Ed., 2009, 48: 4390–4393.
    [78] Prucek R, Kvítek L, Paná?ek A, Polyacrylate-assisted synthesis of stable coppernanoparticles and copper(I) oxide nanocubes with high catalytic efficiency [J]. J. Mater. Chem., 2009, 19: 8463–8469.
    [79] Shimizu K I, Sato R, Satsuma A. Direct C-C cross-coupling of secondary and primary alcohols catalyzed by aγ-alumina-supported silver subnanocluster [J]. Angew. Chem. Int. Ed., 2009, 48: 3982–3986.
    [80] Lee I, Morales R, Albiter M A, et al. Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity [J]. PANS, 2008, 105: 15241–15246.
    [81] Sung Y M, Lee J K, Chae W S. Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles [J]. Cryst. Growth & Des., 2006, 6: 805-808.
    [82] Wang W W, Zhu Y J, Yang L X. ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties [J]. Adv. Funct. Mater., 2007, 17: 59–64.
    [83] Li H, Bian Z, Zhu J, Zhang D, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity [J]. J. Am. Chem. Soc., 2007, 129: 8406-8407.
    [84] Ji K H, Jang D M, Cho Y J, et al. Comparative photocatalytic ability of nanocrystal-carbon nanotube and -TiO2 nanocrystal hybrid nanostructures [J]. J. Phys. Chem. C, 2009, 113: 19966–19972.
    [85] Wang J, Cheng X, Guo J, et al. Catalytic performances of binder-free ZSM-5 catalysts for dehydration of crude methanol to dimethyl ether [J]. Chin. J. Chem., 2010, 28: 183-188.
    [86] Wang W, Hunger M. Reactivity of surface alkoxy species on acidic zeolite catalysts [J]. Acc. Chem. Res., 2008, 41: 895-904.
    [87] Moens B, Winne H D, Corthals S, et al. Epoxidation of propylene with nitrous oxide on Rb2SO4-modified iron oxide on silica catalysts [J]. J. Catal., 2007, 247: 86–100.
    [88] Alayonglu S, Nilekar A U, Mavrikakis M et al. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J]. Nature Mater., 2008, 7: 333-338.
    [89] Li X, Iglesia E. Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes [J]. Chem. Commun., 2008, 594–596.
    [90]仲崇立.绿色化学导论[M].北京:化学工业出版社,2000.
    [91]胡长伟,李贤均.绿色化学原理和应用[M].北京:中国石化出版社,2002.
    [92] Anastas P T, Kirchhoff A M. Origins, current status, and future challenges of green chemistry [J]. Acc. Chem. Res., 2002, 35: 686-694.
    [93] Mao Y, Park T J, Zhang F,et al. Environmentally friendly methodologies of nanostructure synthesis [J]. Small, 2007, 3: 1122–1139.
    [94] Nadagouda M N, Hoag G, Collins J, et al. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants [J]. Cryst. Growth & Des., 2009, 9: 4979-4983.
    [95] Mori K, Yoshioka N, Kondo Y, et al. Catalytically active, magnetically separable, and water-soluble FePt nanoparticles modified with cyclodextrin for aqueous hydrogenation reactions [J]. Green Chem., 2009, 11: 1337–1342.
    [96] Raja M, Singh V K. Organocatalytic reactions in water [J]. Chem. Commun., 2009, 6687–6703.
    [97] Jana S, Dutta B, Bera R, et al. Anchoring of copper complex in MCM-41 matrix: a highly efficient catalyst for epoxidation of olefins by tert-BuOOH [J]. Langmuir, 2007, 23: 2492-2496.
    [98] Hughes M D, Xu Y J, Jenkins P, et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions [J]. Nature, 2005, 437: 1132-1135.
    [99] Zheng N Stucky G D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts [J]. J. Am. Chem. Soc., 2006, 128: 14278-14280.
    [100] Lee J, Park J C, Song H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol [J]. Adv. Mater., 2008, 20: 1523–1528.
    [101] Yu J, Liu W, Yu H. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity [J]. Cryst. Growth & Des., 2008, 930-934.
    [102] Li Y, Petroski J, El-Sayed M A. Activation energy of the reaction between hexacyanoferrate(III) and thiosulfate ions catalyzed by platinum nanoparticles [J]. J. Phys.Chem. B, 2000, 104: 10956-10959.
    [103] Bokhimi X, Zanella R, Morales A. Au/rutile catalysts: effect of support dimensions on the gold crystallite size and the catalytic activity for CO oxidation [J]. J. Phys. Chem. C, 2007, 111: 15210-15216.
    [104] Shiraishi Y, Toshima N. Colloidal silver catalysts for oxidation of ethylene [J]. J. Mol. Catal. A: Chem., 1999, 141: 187–192.
    [105] Son S U, Jang Y, Park J, et al. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions [J]. J. Am. Chem. Soc., 2004, 126: 5026-5027.
    [106] Liu L, Qiao B, Ma Y, et al. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation [J]. Dalton Trans., 2008, 2542–2548.
    [107] Xiong Y J, Wiley B J, Xia Y N. Nanocrystals with unconventional shapes—a class of promising catalysts [J]. Angew. Chem. Int. Ed., 2007, 46: 7157–7159.
    [108] Crooks R M, Zhao M Q, Sun L, et al. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis [J]. Acc. Chem. Res., 2001, 34: 181-190.
    [109] Lewis L N. Chemical catalysis by colloids and clusters [J]. Chem Rev., 1993, 93: 2693-2730.
    [110] Yin L, Liebscher J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts [J]. Chem. Rev., 2007, 107: 133-173.
    [111] Amali A J, Rana R K. Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki–Miyaura reactions [J]. Green Chem., 2009, 11: 1781–1786.
    [112] Zheng Y, Stevens P D, Gao Y. Magnetic nanoparticles as an orthogonal support of polymer resins: applications to solid-phase suzuki cross-coupling reactions [J]. J. Org. Chem., 2006, 71: 537-542.
    [113] Tian Y, Li G D, Gao Q, et al. A facile route to mesoporous carbon catalyst support modified with magnetic nanoparticles [J]. Chem. Lett., 2007, 36: 422-423.
    [114] Ko S, Jang J. A highly efficient palladium nanocatalyst anchored on a magneticallyfunctionalized polymer-nanotube support [J]. Angew. Chem. Int. Ed., 2006, 45: 7564–7567.
    [115] Dálaigh Có, Corr S A, Gun’ko Y, et al. A magnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability [J]. Angew. Chem. Int. Ed., 2007, 46: 4329–4332.
    [116] Ma Y, Yue B, Yu L, et al. Artificial construction of the magnetically separable nanocatalyst by anchoring Pt nanoparticles on functionalized carbon-encapsulated nickel nanoparticles [J]. J. Phys. Chem. C, 2008, 112: 472-475.
    [117] Gao X, Yu K M K, Tam K Y, et al. Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier [J]. Chem. Commun., 2003, 2998–2999.
    [118] Jun C H, Park Y J, Yeon Y R, et al. Demonstration of a magnetic and catalytic Co@Pt nanoparticle as a dual-function nanoplatform [J]. Chem. Commun., 2006, 1619–1621.
    [119] Reetz M T, Zonta A, Vijayakrishnan V, et al. Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials: magnetic separation of heterogeneous biocatalysts [J]. J. Mol. Catal. A: Chem., 1998, 134: 251–258.
    [120] Phan N T S, Gill C S, Nguyen J V, et al. Expanding the utility of one-pot multistep reaction networks through compartmentation and recovery of the catalyst [J]. Angew. Chem. Int. Ed., 2006, 45: 2209–2212.
    [121] Ding S, Xing Y, Radosz M, et al. Magnetic nanoparticle supported catalyst for atom transfer radical polymerization [J]. Macromolecules, 2006, 39: 6399-6405.
    [122] Yoon T J, Lee W, Oh Y S, et al. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling [J]. New J. Chem., 2003, 27: 227–229.
    [123] Hu A, Yee G T, Lin W, Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones [J]. J. Am. Chem. Soc., 2005, 127: 12486-12487.
    [124] Tsang S C, Caps V, Paraskevas I, et al. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals [J]. Angew. Chem. Int. Ed., 2004, 43: 5645–5649.
    [125] Yi D K, Lee S S, Ying J Y. Synthesis and applications of magnetic nanocomposite catalysts [J]. Chem. Mater., 2006, 18: 2459-1461.
    [126] Abu-Reziq R, Alper H, Wang D, et al. Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts [J]. J. Am. Chem. Soc., 2006, 128: 5279-5282.
    [127] Yoon H, Ko S, Jang J. Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling [J]. Chem. Commun., 2007, 1468–1470.
    [128] Arai T, Sato T, Kanoh H, et al. Organic–inorganic hybrid polymer-encapsulated magnetic nanobead catalysts [J]. Chem. Eur. J., 2008, 14: 882–885.
    [129] Stevens P D, Li G, Fan J, et al. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions [J]. Chem. Commun., 2005, 4435–4437.
    [130] Stevens P D, Fan J, Gardimalla H M R, et al. Superparamagnetic nanoparticle-supported catalysis of suzuki cross-coupling reactions [J]. Org. Lett., 2005, 7: 2085-2088.
    [131] Shokouhimehr M, Piao Y, Kim J, et al. A magnetically recyclable nanocomposite catalyst for olefin epoxidation [J]. Angew. Chem. Int. Ed., 2007, 46: 7039–7043.
    [132] Espinal L, Suib S L, Rusling J F, Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2 [J]. J. Am. Chem. Soc., 2004, 126: 7676-7682.
    [133] Pietikiiinen P. Asymmetric Mn(III)-salen catalyzed epoxidation of unfunctionalized alkenes with tetrabutylammonium monopersulfate [J]. Tetra. Lett., 1999, 40: 1001-1004.
    [134] Choudhary V R, Patil N S, Chaudhari N K, et al. Biphasic selective epoxidation of styrene by t-butyl hydroperoxide to styrene oxide using potassium chromate or dichromate catalyst in aqueous medium [J]. Catal. Commun., 2004, 5, 205–208.
    [135] Cowell J J, Santra A K, Lindsay R, et al. Bonding and reactivity of styrene on Cu(110): heterogeneous alkene epoxidation without the use of silver [J]. Surf. Sci., 1999, 437: 1–8.
    [136] Jin G, Lu G, Guo Y, et al. Effect of preparation condition on performance of Ag–MoO3/ZrO2 catalyst for direct epoxidation of propylene by molecular oxygen [J]. J. Mol. Catal. A: Chem., 2005, 232: 165–172.
    [137] Pinnaduwage D S, Zhou L, Gao W, et al. Chlorine promotion of styrene epoxidation on Au(111) [J]. J. Am. Chem. Soc., 2007, 129: 1872-1873.
    [138] Cropley R L, Williams F J, Urquhart A J, et al. Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu{111} [J] J. Am. Chem. Soc., 2005, 127: 6069-6076.
    [139] Sebastian X J, Jinka K M, Jasra R V. Effect of alkali and alkaline earth metal ions on the catalytic epoxidation of styrene with molecular oxygen using cobalt(II)-exchanged zeolite [J]. J. Catal., 2006, 244: 208–218.
    [140] Huang Z, Zhang Y, Zhao C, et al. Direct gas-phase epoxidation of hexafluoropropylene with molecular oxygen using Ag catalyst [J]. Appl. Catal. A: Gen., 2006, 303: 18–22.
    [141] Maayan G, Neumann R. Direct aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate [J]. Chem. Commun., 2005, 4595–4597.
    [142] Kamata K, Yonehara K, Sumida Y, et al. Efficient epoxidation of olefins with >99% selectivity and use of hydrogen peroxide [J]. Science, 2003, 300: 964-966.
    [143] Chiment?o R J, Medina F, Fierro J L G, et al. Styrene epoxidation over cesium promoted silver nanowires catalysts [J]. J. Mol. Catal. A: Chem., 2006. 258: 346–354.
    [144] Kirm I, Medina F, Rodríguez X, et al. Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts [J]. Appl. Catal. A: Gen., 2004, 272:175–185.
    [145] Yang Q, Wang S, Lu J, et al. Epoxidation of styrene on Si/Ti/SiO2 catalysts prepared by chemical grafting [J]. Appl. Catal. A: Gen., 2000, 194–195: 507–514.
    [146] Choudhary V R, Jha R, Jana P. Epoxidation of styrene by TBHP to styrene oxide using barium oxide as a highly active/selective and reusable solid catalyst [J]. Green Chem., 2006, 8: 689–690.
    [147] Patil N S, Uphadea B S, Janaa P, et al. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over Au/TiO2 Catalysts [J]. Catal. Lett., 2004, 94: 89-93.
    [148] Choudhary V R, Patil N S, Chaudhari N K, et al. Epoxidation of styrene by anhydrous hydrogen peroxide over boehmite and alumina catalysts with continuousremoval of the reaction water [J]. J. Mol. Catal. A: Chem., 2005, 227: 217–222.
    [149] Lambert R M, Cropley R L, Husain A, et al. Halogen-induced selectivity in heterogeneous epoxidation is an electronic effect—fluorine, chlorine, bromine and iodine in the Ag-catalysed selective oxidation of ethane [J]. Chem. Commun., 2003, 1184–1185.
    [150] Roberts J T, Madix R J. Epoxidation of olefins on silver: conversion of norbornene to norbornene oxide by atomic oxygen on Ag(l10) [J]. J. Am. Chem. Sco., 1998, 110: 8540-8541.
    [151] Lu J, Luo M, Lei H, et al. Epoxidation of propylene on NaCl-modified silver catalysts with air as the oxidant [J]. Appl. Catal. A: Gen., 2002, 237: 11–19.
    [152] Liu X, Klust A, Madix R J, et al. Structure sensitivity in the partial oxidation of styrene, styrene oxide, and phenylacetaldehyde on silver single crystals [J]. J. Phys. Chem. C, 2007, 111: 3675-3679.
    [153] Chiment?o R J, Kirm I, Medina F, et al. Sensitvity of styrene oxidation reaction to the catalyst structure of silver nanoparticles [J]. Appl. Surf. Sci., 2005, 252: 793–800.
    [154] Deng H, Li X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed., 2005, 44: 2782–2785.
    [155] Wiley B, Sun Y, Mayers B, et al. Shape-controlled synthesis of metal nanostructures: the case of silver [J]. Chem. Eur. J., 2005, 11: 454–463.
    [156] Zhu Y, Zhao W, Chen H, et al. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property [J]. J. Phys. Chem. C, 2007, 11: 5281-5285.
    [157] Zhang D E, Zhang X J, Ni X M, et al. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route [J]. Cryst. Growth & Des., 2007, 7: 2117-2119.
    [158] Sohn B H, Cohen R E, Papaefthyrniou G C. Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers [J]. J. Magn. Magn. Mater., 1998, 182: 216-224.
    [159] Zhao G, Feng J J, Zhang Q L, et al. Synthesis and characterization of prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2 [J]. Chem. Mater., 2005, 17: 3154-3159.
    [160] Chen W, Li X, Xue G, et al. Magnetic and conducting particles: preparation ofpolypyrrole layer on Fe3O4 nanospheres [J]. Appl. Surf. Sci., 2003, 218: 215–221.
    [161] Santra S, Tapec R, Theodoropoulou N, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants [J]. Langmuir, 2001, 17: 2900-2906.
    [162] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag#TiO2 nanocomposites via reduction/oxidation of Ag [J]. Chem. Mater., 2008, 20: 6543–6549.
    [163] Elechiguerra J L, Larios-Lopez L, Liu C, et al. Corrosion at the nanoscale: the case of silver nanowires and nanoparticles [J]. Chem. Mater., 2005, 17: 6042-6052.
    [164] Jiang P, Li S Y, Xie S S, et al. Machinable long PVP-stabilized silver nanowires [J]. Chem. Eur. J., 2004, 10: 4817–4821.
    [165] Deng Z, Chen M, Wu L. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced raman scattering properties [J]. J. Phys. Chem. C, 2007, 11: 11692-11698.
    [166] Xu R, Wang D, Zhang J, et al. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene [J]. Chem. Asian J., 2006, 1: 888–893.
    [167] Liu H, Kozlov A I, Kozlova A P, et al. Active oxygen species and reaction mechanism for low-temperature CO oxidation on an Au catalyst Fe2O3-supported prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide Phys. [J]. Chem. Chem. Phys., 1999, 1: 2851-2860.
    [168] Millot E, Niu Y, Diffusion of of O18 in Fe3O4: an experimental approach to study the behavior of minority defects in oxides [J]. J. Phys. Chem. Solids, 1997, 58: 63-72.
    [169] Horváth D, Tothb L, Guczi L. Gold nanoparticles: effect of treatment on structure and catalytic activity of Au/Fe2O3 catalyst prepared by co-precipitation [J]. Catal. Lett., 2000, 67: 117–128.
    [170] Schubert M M, Hackenberg S, van Veen A C, et al. CO oxidation over supported gold catalysts—“inert”and“active”support materials and their role for the oxygen supply during reaction [J]. J. Catal., 2001, 197: 113–122.
    [171] Olea M, Iwasawa Y. Transient studies on carbon monoxide oxidation over supported gold catalysts: support effects [J]. Appl. Catal. A: Gen., 2004, 275: 35–42.
    [172] Liu H, Kozlov A I, Kozlova A P, et al. Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide [J]. J. Catal., 1999, 185: 252–264.
    [173] Thomas J M, Thomas W J. Principles and practice of heterogeneous catalysis [M]. Wiley-VCH: Weinheim, 1997.
    [174] Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts [J] Chem. Rev., 2004, 104: 3037-3058.
    [175] Gladysz J A. Recoverable catalysts. ultimate goals, criteria of evaluation, and the green chemistry interface [J]. Pure Appl. Chem., 2001, 73: 1319–1324.
    [176] Zhu K, Wang D, Liu J. Self-assembled materials for catalysis [J]. Nano Res., 2009, 2: 1-29.
    [177] Clark J H. Catalysis for green chemistry [J]. Pure Appl. Chem., 2001, 73: 103–111.
    [178] Barr G, Taton D, Lastcoures D, et al. Closer to the“ideal recoverable catalyst”for atom transfer radical polymerization using a molecular non-fluorous thermomorphic system [J]. J. Am. Chem. Soc., 2004, 126: 7764-7765.
    [179] Wang C, Daimon H, Sun S. Dumbbell-like Pt#Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction [J]. Nano Lett., 2009, 9: 1493-1496.
    [180] Huang J, Dai W L, Fan K. Support effect of new Au/FeOx catalysts in the oxidative dehydrogenation of #,#-diols to lactones [J]. J. Phys. Chem. C, 2008, 112: 16110-16117.
    [181] Labich S, Taglauer E, Kn?zinger H. Metal–support interactions on rhodium model catalysts [J]. 2001, Top. Catal., 14: 153-162.
    [182] Ishida T, Kinoshita N, Okatsu H, et al. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation [J]. Angew. Chem. Int. Ed., 2008, 47: 9265–9268.
    [183] Abad A, Concepción P, Corma A,et al. A collaborative effect between gold and a support induces the selective oxidation of alcohols [J]. Angew. Chem. Int. Ed., 2005, 44: 4066–4069.
    [184] Boffa A, Lin C, Bell A T, et al. Promotion of CO and CO2 hydrogenation over Rh by metal oxides: the influence of oxide lewis acidity reducibility [J]. J. Catal., 1994, 149: 149-158.
    [185] Penner S, Wang D, Podloucky R, et al. Rh and Pt nanoparticles supported by CeO2: Metal–support interaction upon high-temperature reduction observed by electron microscopy [J]. Phys . Chem. Chem. Phys., 2004, 6: 5224-5249.
    [186] Rupprechter G, Seeber G, Goller H, et al. Structure–activity correlations on Rh/Al2O3 and Rh/TiO2 thin film model catalysts after oxidation and reduction [J]. J. Catal., 1999, 186: 201–213.
    [187] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. group 8 noble metals supported on titanium dioxide [J]. J. Am. Chem. Soc., 1978, 100: 170-175.
    [188] Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water–gas shift reaction [J]. Angew. Chem. Int. Ed., 2008, 47: 2884–2887.
    [189] Williams F G, Bird D P C, Sykes E C H, et al. Molecular conformation of styrene on Ag(100): relevance to an understanding of the catalytic epoxidation of terminal alkenes [J]. J. Phys. Chem. B, 2003, 107: 3824-3828.
    [190] Zhang D G, Li G D, Li J X, et al. One-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene [J]. Chem. Commun., 2008, 3414–3416.
    [191]徐涛,范维涛,田晶,等.尖晶石铁酸盐气敏材料的研究进展[J].材料导报,2009, 23 :2-4.
    [192] Li F, Liu J, Evans D G, et al. Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors [J]. Chem. Mater., 2004, 16: 1597-1602.
    [193] Zhang Z, Zhao B, Hu L. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes [J]. J. Solid State Chem., 1996, 121: 105–110.
    [194] Sun Z X, Su F W, Forsling W, et al. Surface characteristics of magnetite in aqueous suspension [J]. J. Colloid Interface Sci., 1998, 197: 151–159.
    [195] Wang J. Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties [J]. Mater. Sci. Eng. B, 2006, 127: 81–84.
    [196] Moriya M, Ito M, Sakamoto W, et al. One-pot synthesis and morphology control of spinel ferrite (MFe2O4, M = Mn, Fe, and Co) nanocrystals from homo- andheterotrimetallic clusters [J]. Cryst. Growth & Des., 2009, 9: 1889-1993.
    [197] Yan A, Liu X, Yi R, et al. Selective synthesis and properties of monodisperse Zn ferrite hollow nanospheres and nanosheets [J]. J. Phys. Chem. C, 2008, 112: 8558–8563.
    [198] Müller R, Schüppel W. Co spinel ferrite powders prepared by glass crystallization [J]. J. Magn. Magn. Mater., 1996, 155: 110-112.
    [199] Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone) [J]. J. Am. Chem. Soc., 2003, 125: 7814-7815.
    [200] Si R, Zhang Y W, You L P, et al. Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone) [J]. J. Phys. Chem. B, 2006, 110: 5994-6000.
    [201] Zhu Y, Zhao W, Chen H, et al. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property [J]. J. Phys. Chem. C, 2007, 111: 5281-5285.
    [202] Spalla O, Nabavi M, Minter J, et al. Osmotic compression of mixtures of polymers and particles [J]. Colloid Polym. Sci., 1996, 274:555-567.
    [203] N?rskov J K, Bligaard T, Hvolb?k B, et al. The nature of the active site in heterogeneous metal catalysis [J]. Chem. Soc. Rev., 2008, 37: 2163–2171.
    [204] Wilson O M, Knecht M R, Garcia-Martinez J C, et al. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol [J]. J. Am. Chem. Soc., 2006, 128: 4510-4511.
    [205] Hardeveld R V, Hartog F. The statistics of surface atoms and surface sites on metal catalysts [J]. Surf. Sci., 1969, 15: 189-230.
    [206] Miller M M, Sherrington D C. Alkene epoxidations catalyzed by Mo(VI) supported on imidazole-containing polymers I. synthesis, characterization, and activity of catalysts in the epoxidation of cyclohexene [J]. J. Catal., 1995, 152: 368-376.
    [207] Yu J Q, Corey E J. Diverse pathways for the palladium(II)-mediated oxidation of olefins by tert-butylhydroperoxide [J]. Org. Lett., 2002, 4: 2727-2730.
    [208]赵建宏.直接电还原合成对氨基苯酚过程基础及相关溶液热力学[D].郑州:郑州大学化学工程学院,2006.
    [209] Vaidya M J, Kulkarni S M, Chaudhari R V. Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol [J]. Org. Process Res. & Dev., 2003, 7: 202-208.
    [210] Du Y, Chen H, Chen R, et al. Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts [J]. Appl. Catal. A: Gen., 2004, 277: 259–264.
    [211] Zeng J, Zhang Q, Chen J, et al. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles [J]. Nano Lett., 2010, 10: 30-35.
    [212] Mei Y, Lu Y, Polzer F, et al. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core?shell microgels. [J]. Chem. Mater., 2007, 19: 1062-1069.
    [213] Pradhan N, Pal A, Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles [J]. Langmuir, 2001, 17: 1800-1802.
    [214] Esumi K, Isono R, Yoshimura T. Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol [J]. Langmuir, 2004, 20: 237-243.
    [215] Meziani M J, Liu P, Pathak P, et al. Stable suspension of crystalline Fe3O4 nanoparticles from in situ hot-fluid annealing [J]. Ind. Eng. Chem. Res., 2006, 45: 1539-1541.
    [216] Chen M, Liu J P, Sun S. One-step synthesis of FePt nanoparticles with tunable size [J]. J. Am. Chem. Soc., 2004, 126: 8394-8395.
    [217] Haneda M, Mizushima T, Kakuta N. Synergistic effect between Pd and nonstoichiometric cerium oxide for oxygen activation in methane oxidation [J]. J. Phys. Chem. B, 1998, 102: 6579-6587.
    [218] Nag N K. A study on the formation of palladium hydride in a carbon-supported palladium catalyst [J]. J. Phys. Chem. B, 2001, 105: 5945-5949.
    [219] Lee Y W, Kim N H, Lee K Y, et al. Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles [J]. J. Phys. Chem. C, 2008, 112: 6717-6722.
    [220] Priolkar K P, Bera P, Sarode P R, et al. Formation of Ce1-xPdxO2-δsolid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation [J]. Chem. Mater., 2002, 14: 2120-2128.
    [221] Oh S H, Hoflund G B. Chemical state study of palladium powder and ceria-supported palladium during low-temperature CO Oxidation [J]. J. Phys. Chem. A, 2006, 110: 7609-7613.
    [222] Zhou W P, Lewera A, Larsen R, et al. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid [J]. J. Phys. Chem. B, 2006, 110: 13393-13398.
    [223] Khorasheh F, Radmanesh R, Kazemeini M. Mechanism discrimination in heterogeneous catalytic reactions: fractal analysis [J]. Ind. Eng. Chem. Res., 1998, 37: 362-366.
    [224] Sen T, Sebastianelli A, Bruce I J. Mesoporous silica?magnetite nanocomposite: fabrication and applications in magnetic bioseparations [J]. J. Am. Chem. Soc., 2006, 128: 7130-7131.
    [225] Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures [J]. Chem. Mater. 1998, 10: 594-600.
    [226] Xiong Y, Ye J, Gu X, et al. Synthesis and assembly of magnetite nanocubes into flux-closure rings [J]. J. Phys. Chem. C, 2007, 111: 6998-7003.
    [227] Lu X, Niu M, Qiao R, et al. Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a“one-pot”reaction [J] J. Phys. Chem. B, 2008, 112: 14390–14394.
    [228] Walker C H, John J V S, Wisian-Neilson P. Synthesis and size control of Gold nanoparticles stabilized by poly(methylphenylphosphazene) [J]. J. Am. Chem. Soc., 2001, 123: 3846-3847.
    [229] Liu Z, Ling X Y, Su X, et al. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell [J]. J. Phys. Chem. B, 2004, 108: 8234-8240.
    [230] Teng X, Black D, Watkins N J, et al. Platinum-maghemite core-shell nanoparticles using a sequential synthesis [J]. Nano Lett., 2003, 3: 261-264.
    [231] Teng X, Yang H. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles [J]. J. Am. Chem. Soc., 2003, 125: 14559-14563.
    [232] Maeda Y, Higuchi T, Ikeda I. Change in hydration state during the coil-globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy [J]. Langmuir, 2000, 16: 7503-7509.
    [233] Maeda Y, Higuchi T, Ikeda I. FTIR spectroscopic and calorimetric studies of the phase transitions of N-isopropylacrylamide copolymers in water [J]. Langmuir, 2001, 17:7535-7539.
    [234] Qiu L, Liu F, Zhao L, et al. Evidence of a unique electron donor-acceptor property for platinum nanoparticles as studied by XPS [J]. Langmuir, 2006, 22: 4480-4482.
    [235] Tsunoyama H, Tsukuda T. Magic numbers of gold clusters stabilized by PVP [J]. J. Am. Chem. Soc., 2009, 131: 18216–18217.
    [236] Nishimura S, Takagaki A, Maenosono S, et al. In situ time-resolved XAFS study on the formation mechanism of Cu nanoparticles using poly(N-vinyl-2-pyrrolidone) as a capping agent [J]. Langmuir, 2010, 26: 4473–4479.
    [237] Caro D d, Bradley J S. Surface spectroscopic study of carbon monoxide adsorption on nanoscale nickel colloids prepared from a zerovalent organometallic precursor [J]. Langmuir, 1997, 13: 3067-3069.
    [238] Takai A, Yamauchi Y, Kuroda K, Tailored electrochemical synthesis of 2D-hexagonal, lamellar, and cage-type mesostructured Pt thin films with extralarge periodicity [J]. J. Am. Chem. Soc., 2010, 132: 208–214.
    [239] Chen W F, Wang J P, Hsu C H, et al. Nanostructured coral-like carbon as Pt support for fuel cells [J]. Phys. Chem. C, 2010, Doi: 10.1021/jp100397h.
    [240] Maeda K, Higashi M, Lu D, et al. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst [J]. J. Am. Chem. Soc., 2010, Doi: 10.1021/ja1009025.
    [241] Kauffman D R, Sorescu D C, Schofield D P, et al. Understanding the sensor response of metal-decorated carbon nanotubes [J]. Nano Lett., 2010, 10: 958–963.
    [242] Liu G, Clair T P S, Goodman D G. An XPS study of the interaction of ultrathin Cu films with Pd(111) [J]. J. Phys. Chem. B, 1999, 103: 8578-8582.
    [243] Davis J, Glidle A, Cass A E G, et al. Spectroscopic evaluation of protein affinity binding at polymeric biosensor films [J]. J. Am. Chem. Soc., 1999, 121: 4302-4303.
    [244] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy [M]. USA: Perkin-elmer corporation physical electronics division, 1997.
    [245] Pomfret M B, Pietron J J, Owrutsky J C. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using raman spectroelectrochemistry [J]. Langmuir, 2010, DOI: 10.1021/la904107j.
    [246]傅献彩,沈文霞,姚天扬.物理化学(下册)[M].北京:高等教育出版社,1990.
    [247] Liu J, Qin G, Raveendran P, et al. Facile“green”synthesis, characterization, and catalytic function of b-d-glucose-stabilized Au nanocrystals [J]. Chem. Eur. J., 2006, 12: 2131–2138.
    [248] Deetlefs M, Seddon K R. Assessing the greenness of some typical laboratory ionic liquid preparations [J]. Green Chem., 2010, 12: 17–30.
    [249] Fukuoka S, Kawamura M, Komiya K, et al. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material [J]. Green Chem., 2003, 5: 497–507.
    [250] Liu J H, Fan J B, Gu Z, et al. Green chemistry for large-scale synthesis of semiconductor quantum dots [J]. Langmuir, 2008, 24: 5241-5244.
    [251] Liu J, He F, Gunn T M, et al. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach [J]. Langmuir, 2009, 25: 7116–7128.
    [252] Kirchhoff M M. Promoting sustainability through green chemistry [J]. Resources, Conservation and Recycling, 2005, 44: 237–243.
    [253] Calvo-Flores F G. Sustainable chemistry metrics [J]. ChemSusChem, 2009, 2: 905–919.
    [254] Dunn P J, Galvin S, Hettenbach K. The development of an environmentally benign synthesis of sildenafil citrate (Viagra?) and its assessment by green chemistry metrics [J]. Green Chem., 2004, 6: 43-48.
    [255] Andraos J. Unification of reaction metrics for green chemistry: applications to reaction analysis [J]. Org. Process Res. & Dev., 2005, 9: 149-163.
    [256] He L, Wang L C, Sun H, et al. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source [J]. Angew. Chem. Int. Ed., 2009, 48: 9538–9541.
    [257] Sato K, Aoki M, Noyor R. A“green”route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide [J]. Science, 1998, 281: 1646-1647.
    [258]李荣才.对氨基苯酚(PAP)国内外概况及发展趋势[J].江苏化工(Jiangsu Chemical Industry), 1999, 27:13-16.
    [259]尹红伟,陈吉祥,张继炎.焙烧及还原温度对对硝基苯酚加氢合成对氨基苯酚Ni/TiO2催化剂性能的影响[J].催化学报(Chinese Journal of Catalysis),2007,28:435-440.
    [260] Chen R, Du Y, Xing W, et al. The effect of titania structure on Ni/TiO2 catalysts for p-nitrophenol hydrogenation [J]. Chinese J. Chem. Eng., 2006, 14: 665-669.
    [261]王海棠,朱银华,杨祝红,等.新型Ni/TiO2催化剂用于对硝基苯酚催化加氢[J].催化学报(Chin. J. Catal.),2009,30:414-420.
    [262]李莉,王元瑞,于宝洁,等.壳聚糖-钯催化剂用于对硝基苯酚的催化加氢[J].贵金属(Precious Metals),2003,24:7-10.
    [263] Yao H C, Emmett P H. Kinetics of catalytic liquid phase hydrogenation. I. the hydrogenation of aromatic nitrocompounds over colloidal rhodium and palladium [J]. J. Am. Chem. Soc., 1959, 81: 4125-4132.
    [264] Jiang Y, Gao Q. Heterogeneous hydrogenation catalyses over recyclable Pd(0) nanoparticle catalysts stabilized by PAMAM-SBA-15 organic-inorganic hybrid composites [J]. J. Am. Chem Soc., 2006, 128: 716-717.
    [265] Baiker A, Monti I, Songfan Y. Deactivation of copper, nickel, and cobalt catalysts by interaction with aliphatic amines [J]. J. Catal., 1984, 88: 81-88.
    [266] Hegedüs L, MáthéT. Hydrogenation of pyrrole derivatives part V. poisoning effect of nitrogen on precious metal on carbon catalysts [J]. Appl. Catal. A: Gen., 2002, 226: 319–322.
    [267] Du Y, Chen H, Chen Z, et al. Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation [J]. Chem. Eng J., 2006, 125: 9–14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700