用户名: 密码: 验证码:
纳米金薄膜电极和纳米多孔钯电极的制备、修饰与电催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料尤其是铂、钯和金等贵金属纳米材料,因其具有与普通材料所不同的表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等特点,使得它们在光学、电学、磁学和生物学及众多交叉领域有着重要的研究价值,在能源、化工等方面显示出巨大的潜在应用价值。目前制备纳米材料的方法有很多种,其中利用电化学方法制备纳米结构材料具有反应条件可控性好、反应条件温和、环境友好、适用范围广等优点,是一种非常有前景的制备方法。同时,纳米结构的铂、钯和金在催化剂领域占有非常重要的地位,特别是纳米结构的双金属或多金属材料在电催化方面显示出了优异的催化性能,目前已成为相关领域的研究热点。
     本论文旨在通过一些简单、新颖的电化学方法来制备出诸如细微的贵金属纳米颗粒和多孔的纳米结构材料,并研究这类贵金属纳米结构材料对醇类小分子和有机氯化物分子的电化学催化性能,探索它们在燃料电池和环境催化等方面的潜在应用价值。主要内容包括:
     (1)利用一种简单的湿化学在水相溶液中以PVP作稳定剂和形状控制剂、乙二醇作为弱还原剂通过化学还原来制备金纳米棱柱。在事先表面进行处理过的氧化铟锡(ITO)导电玻璃基底上生长出这种形状规则厚度均匀的金纳米棱柱,通过观测发现金纳米棱柱均匀的分部在1TO导电基底表面,其覆盖率超过80%,形成了金纳米棱柱薄膜电极;这比之前在基地表面用同类方法所合成的金纳米棱柱(金纳米盘)的覆盖率大有增长。另一方面这种金纳米棱柱薄膜电极可以作为基底电极,通过建立电化学欠电位沉积(UPD)铜-氧化还原置换的方法在其表面沉积超微量的Au、Pt和Pd亚单层,构建出双金属或三金属电极。基于这种以金纳米为基底的多金属电极体系,重点研究了电极作为阳极催化剂对甲醇的电化学氧化性能。在研究中发现,金纳米棱柱薄膜电极在酸性条件下对甲醇的催化活性表现不佳,而在碱性电解质中却对甲醇有一定的催化效果,尤其在催化过程中对CO中间体抗中毒方面表现出了很好的性能。然而,如果在电极表面修饰微量的Pt、Pd等贵金属制备成双金属或三金属电极后,对电极在酸性电解液中对甲醇的电催化氧化进行了一系列的研究,在酸性条件下电极对甲醇的催化能力大为改善,并且与商业铂催化剂相比其电催化活性不仅变高而且抗中毒性也有了显著的改善。其重要原因是在Au的存在下,金属之间的协同效应使得电极对甲醇的催化活性和抗中毒性能均有所帮助。
     通过这种简单的化学方法和电化学方法相结合所制备的金属电极的一大优势是大大降低了贵金属Pt;和Pd的使用量,在制备过程中贵金属的消耗量极低,另一方面此类电极在作为电化学催化剂时对甲醇表现出了优异的催化活性和强的抗中毒能力。因此这类贵金属纳米催化剂因其简捷的制备方法和优秀的催化性能使其在燃料电池催化剂方面有着潜在的应用价值。
     (2)通过电化学去合金法在分别在离子液体([BMIM]BF4)和硫酸溶液中用恒电位阳极溶解的方法选择性去除Pd-Cu合金中的铜组分而制得多孔纳米钯。与水溶液相比离子液体具有较宽的电化学窗口并且在电化学腐蚀过程中没有OH-和其他不利阴离子的参与从而影响多孔材料的形貌。实验证明在离子液体电解质中选择性去合金后制备的多孔纳米钯的形貌和结构均比在硫酸溶液中所制备的多孔钯要更好一些,其孔径主要分布在-148.4 nm,韧带宽度为-67.8 nm。此外,在进行去合金化的实验后发现纳米多孔钯内还有少量残余铜组分的存在,为了方便进一步研究,将样品浸泡在Pd(II)溶液中通过置换反应来去除残留的铜组分,这种简单的方法不仅达到了去除铜的目的,而且还可以在多孔结构骨架上重新获得一些新鲜的颗粒均匀细小的Pd纳米粒子,这种经浸泡处理后的多孔纳米钯的电催化活性更高。
     由于钯纳米材料具有非常优秀的储氢性能,在催化反应尤其是催化氢解反应中发挥着极其重要的作用。本论文利用纳米多孔钯材料作为电催化剂对广泛存在于工业废水和地表水中的持久性有毒污染物——有机氯化物进行电化学催化脱氯,本文选择四氯化碳(CT)和氯苯(CB)等典型的有机氯化物为目标污染物,根据钯纳米材料电极在氢反应区域的特征曲线,通过在不同的电位下(-0.06 V、-0.15 V和-0.25 V)进行恒电位脱氯反应。通过电催化反应发现,对于四种钯材料电极——在离子液体中制备的纳米多孔钯(np-Pdil),离子液体中制备的纳米多孔钯经Pd(Ⅱ)溶液处理后(t-np-Pdil),在硫酸溶液中制备的纳米多孔钯电极(np-Pd硫酸)以及体相钯电极(bulk-Pd),四种电极材料的在电化学脱氯反应中的大概活性顺序依次为:t-np-Pdil、np-Pdil、np-Pd硫酸和bulk-Pd。其中t-np-Pdil对四氯化碳和氯苯的催化效果最好,这也进一步验证了t-np-Pdil电极因其自身结构的稳定性和高的比表面积使得它的催化活性也随之大为改善。此外,有趣的是三种纳米结构的钯电极在选定的三个电位下的对CT和CB脱氯规律和趋势相同,即在-0.22 V处的催化效果最佳,其次为在-0.06 V,脱氯效果最差的是在-0.15 V处。bulk-Pd电极在三个电位下的脱氯趋势与纳米多孔Pd相比有很大的区别,这主要是由于纳米结构的钯电极在氢反应电位区域与体相钯的不同所致。
     电化学去合金法的优点是环境友好,反应条件温和可控,操作简单方便。通过这种方法所制备的多孔纳米钯材料与传统的钯纳米材料催化剂相比不需要基底负载,可以循环使用,在一定程度上降低了贵金属的损耗。并且此类多孔钯纳米材料在对有机氯化物的优异的电催化脱氯性能为其在环境催化和污水治理等方面的应用提供了显著的优势。
     (3)利用电化学去合金法选择性去除Pd-Cu合金和Pd-Au-Cu三合金中的铜组分制备出多孔纳米Pd和多孔纳米Pd-Au合金材料。其中制备多孔纳米钯材料的制备过程与上一节相同。对Pd-Au-Cu三元合金材料通过在硫酸溶液中采用两种不同的电位进行电化学选择性腐蚀去除铜组分而制得两种多孔纳米双元合金材料。通过对两种合金的表面形貌和成分分析发现,在低电位下(1.1V)去合金制备的多孔纳米Pd-Au合金的孔径较小,并且通过成分分析可以发现Pd与Au的原子比例与去合金前二者的原子比例相当,而Cu组分大部分都被成功的腐蚀去除掉。而在电位1.4 V下进行恒电位去合金所制备的Pd-Au双合金多孔纳米结构的孔径有所比在低电位下有所增大,而在成分组成分析中也可以发现Pd与Au的原子比例明显变小,约为1:2.7,而在XRD图谱分析中也可以观测到这种多孔纳米合金的XRD衍射峰位置比在1.1 V下制备的多孔材料更为向右偏移,接近于纯金的衍射峰,这也说明在高电位下进行电化学去合金过程中,除了Cu被去除之外部分Pd原子也随之被溶解掉,因此所制得的多孔纳米纳米材料为富金合金。
     近年来随着燃料电池的研究和应用越来越热,燃料电池所使用的催化剂也成为了人们关注的焦点,目前绝大多数催化剂依然是Pt材料催化剂,而由于Pt的地球储量比较低,并且价格相对昂贵因此寻找Pt的替代催化剂已是目前急需解决的一个问题。因为Pd的储量相对丰富而且化学性质与Pt极为相似,本论文利用多孔纳米Pd和Pd-Au合金代替Pt为阳极催化剂,以甲酸代替甲醇为燃料进行电化学氧化催化实验。对于多孔Pd电极来说,在酸性介质下与体相钯电极相比,t-np-Pdil对甲酸的阳极氧化电流密度约是体相钯的两倍。而利用多孔Pd-Au合金作为催化剂时,其对甲酸的催化活性不仅高,而且抗中毒效果也有所改善。此外,由于Au的存在纳米多孔Pd-Au合金对甲酸的催化活性也有所改善,Au与Pd原子比例不同时,其催化性能也表现出一定的差异。
     通过简单的电化学去合金法来制备的多孔纳米Pd或Pd-Au二元合金电极催化剂时,贵金属的损耗低,制备过程不需要有机表面活性剂的参与从而影响催化性能。并且所制备的金属材料因其特有的纳米多孔三维结构,其比表面积高,催化性能佳,可以广泛的应用在催化研究中。
Nanomaterials, especially noble metals like platinum and palladium, have showed promising applications in many fields such as optics, electrics, magnetics, biology, and chemistry. Nowadays novel methods for the fabrication of nanomaterials are various, among which electrochemical method has many advantages like good controllability, mild reaction conditions, environmental benignancy, and wide range of applications, therefore it is an excellent method for preparing nanostructured materials. Meanwhile, nanostructured platinum, palladium and gold play very important roles in catalysis, what's more, the bimetallic and multimetallic catalysts show excellent catalytic performance that has attracted many researches in the related fields. In this paper, we aim at utilizing simple and novel electrochemical methods to fabricate nanostructured noble metals, such as nanoparticles and porous materials, and at studying their applications in electrooxidation of methanol and formic acid for fuel cells or electrochemical degradation of chlorinated organic compounds. The main contents of this paper include:
     (1) Using a simple, wet chemical method to fabricate gold nanoprisms in aqueous solutions with PVP as stabilizer and shape controller, ethylene glycol as a weak reducing agent. The as-prepared gold nanoprisms grow on the treated indium tin oxide (ITO) glass, and the coverage of the gold nanoprisms on the ITO substrate is about 80%, which may act as gold prism film electrodes. The coverage of gold nanoprisms of this electrode is higher than other electrodes prepared by similar methods. Moreover, this kind of film electrodes can be used as the substrate to construct bimetallic or multimetallic electrodes by electrochemical underpotential deposition (UPD) of copper and replacement of noble metals on the electrodes and used for electrooxidation of methanol in acid medium. In the study we found that the Au nanoprism films (Au-PF) electrode behaved poor electrochemical catalytic activity to methanol in acid solutions, while played good performance in the alkaline electrolyte, especially strong resistance to CO poisoning. When Au-PF electrodes were modified with tiny Pt, Pd or Au, the as-prepared bimetallic or multimetallic electrodes played excellent electrocatalytic oxidation activity of methanol in acid electrolyte. Compared with commercial platinum catalyst, these electrodes had wonderful electrocatalytic activity and good resistance of CO poisoning. The reason of this phenomenon is that the synergistic effect of noble metals could improve the catalytic activity of the electrodes. One of the most obvious advantages of the Au-PF electrodes is very low consumption of noble metals, and the other is that the electrodes display high electrochemical catalytic activity and strong resistance against CO poisoning.
     (2) Using electrochemical dealloying method to fabricate the nanoporous palladium (np-Pd) in ionic liquid or sulfuric acid solutions by selective removal Cu in Pd-Cu alloy. Ionic liquid has a wider electrochemical window than water, in which we able to select an appropriate anodic potential to induce fast dissolution of Cu while assuring appropriate surface diffusion kinetics of un-attacked Pd atoms to self-organize into a uniform porous network structure. In H2SO4 solutions, OH- ions and other anions usually participate in the selective anodic dissolution of Cu, forming deposits or salt films on the surface of a dissolving alloy, which will bring an adverse effect to the surface diffusion of Pd atoms. The nanoporous Pd fabricated in ionic liquid or in H2SO4 still contains residual Cu. To remove the residual Cu, the np-Pd sample was further immersed in Pd(Ⅱ) solution via galvanic replacement. This simple method not only can remove Cu, but also can refresh the porous structures due to formation of some fresh and tiny nanoparticles, which make the np-Pd electrode possess higher electrocatalytic activity. Because Pd nanostructures display very high catalytic activity towards the electrochemical reductive dechlorination of chlorinated organic compounds, we chose carbon tetrachloride (CT) and chlorobenzene (CB) as the target pollutants, and use the nanoporous Pd as the work electrodes to carry out electrochemical reductive dechlorination of CT or CB at different potentials. Based on the electrocatalytic dechlorination results, we found that the four kinds of electrode materials followed this order in electrochemical dechlorination activity:t-np-Pdn, np-Pdn, np-Pdsuifuric acid and bulk-Pd. This further confirms that the stability and the high specific surface area of the t-np-Pdn electrode makes its catalytic activity greatly enhance. Besides, it is very interesting that the dechlorination efficiency of three nanostructure palladium electrodes has the same variation trends, namely the dechlorination efficiency at-0.22 V is the highest, followed by-0.06 V and the worst at-0.15 V. However this is not the same on the bulk Pd electrode. Electrochemical dealloying method has many advantages; fabricating nanoporous Pd electrodes using this method don't need the substrate electrode and don't cause obvious loss of precious metals. These kinds of nanoporous Pd materials display excellent dechlorination performance and therefore have potential applications in environment protection such as waste water treatment project.
     (3) Using electrochemical dealloying method to fabricate the nanoporous palladium (np-Pd) and nanoporous Pd-Au alloy. The fabrication method of nanoporous Pd-Au is similar as that of the nanoporous Pd. Pd-Au-Cu alloy was selectively corroded at two appropriate potentials to prepare nanoporous Pd-Au alloy electrodes. The nanoporous Pd-Au alloy fabricated at the potential of 1.1 V has smaller pore size, and the atom ratio of Pd and Au is close to 1:1. While the nanoporous treated at 1.4 V has bigger pore size and with the Pd/Au atomic ratio of 1:2.7. Besides the diffraction peak of the XRD of PdiAu2.7 shifts to right side more than that of PdjAui sample. This means that dealloying at 1.4 V would remove a part of Pd atoms except Cu atoms. Recently the common catalyst used in fuel cells is still Pt-based catalyst; however, Pt is very precious and expensive. To find an alternative to Pt catalyst is needed. The chemical properties of Pd is very similar to that of Pt, therefore, nanoporous Pd and Pd-Au alloy can be acted as the catalysts in fuel cells instead of Pt. In this paper, nanoporous Pd or Pd-Au alloy was used as anode catalyst and formic acid as fuel for electrochemical oxidation. The electrochemical activities of different electrodes were discussed. The nanoporous Pd-Au alloy fabricated by electrochemical dealloying has high surface area and excellent electrocatalytic activity, which displays promising applications in direct formic acid fuel cell (DFAFC).
引文
[1]Gleiter, H. Nanostructured materials:Basic concepts and microstructure. Acta Mater.2000,45,1-29.
    [2]Moriarty, P. Nanostructured materials. Rep. Prog. Phys.2001,64,297-381.
    [3]Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000,1,18-52.
    [4]Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002,106,29-7744.
    [5]Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev.2005,105, 1547-1562.
    [6]Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002,297,1536-1540.
    [7]Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett.1998,255,243-247.
    [8]Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater.2005,4,455-459.
    [9]Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299,1688-1691.
    [10]Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater.2008,7,442-453.
    [11]Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. Gold nanorods:synthesis, characterization and applications. Coord. Chem. Rev.2005,249, 1870-1901.
    [12]Dai, H. J. Carbon nanotubes:Synthesis, integration, and properties. Ace. Chem. Res.2002,35,1035-1044.
    [13]Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater.2008, 7,845-854.
    [14]Kim, J.; Grate, J. W.; Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci.2006,61,1017-1026.
    [15]Xia, Y. N.; Yang, P. D.; Sun, Y. G; Wu, Y. Y; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostmctures:synthesis, characterization, ard applications. Adv. Mater.2003,15,353-389.
    [16]Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun.2003, 5,927-934.
    [17]Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater.2006,18,2073-2094.
    [18]Gedanken, A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem.2004,11,47-55.
    [19]Madler, L.; Kammler, H. K.; Mueller, R.; Pratsinis, S. E. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci.2002,33,369-389.
    [20]Wang, Y.; Angelatos. A. S.; Caruso, F. Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater.2008,20,848-858.
    [21]Huczko, A. Template-based synthesis of nanomaterials. Appl. Phys. A-Mater. 2000,70,365-376.
    [22]Lai, M.; Riley, D. J. Templated electrosynthesis of nanomaterials and porous structures. J. Colloid Interface Sci.2008,323,203-212.
    [23]Cepak, V. M.; Martin, C.R. Preparation and stability of template-synthesized metal nanorod sols in organic solvents. J. Phys. Chem. B 1998,102,9985-9990.
    [24]Bera, D.; Kuirk, S. C; Patil, S.; Seal, S. Palladium nanoparticle arrays using template-assisted electrodeposition. Appl. Phys. Lett.2003,32,3089-3091.
    [25]Xu, L. B.; Tung, L. D.; Spinu, L.; Zakhidov, A. A.; Baughman, R. H.; Wiley, J. B. Synthesis and magnetic behavior of periodic nickel sphere arrays. Adv. Mater.2003, 75,1562-1564.
    [26]Liu, Z. F.; Jin, Z. G; Li, W; Liu, X. X.; Qiu, J. J.; Wu, W B. Preparation of porous Zn plate crystal thin films by electrochemical deposition using PS template assistant. Mater. Lett.2006,60,810-814.
    [27]Enculescu, I.; Siwy, Z.; Dobrev, D.; Trautmann, C; Toimil-Molares, M. E.; Neumann, R.; Hjort, K.; Westerberg, L.; Spohr, R. Copper nanowires electrodeposited in etched single-ion track templates. Appl. Phys. A 2003,77,751.
    [?8]Benfield, R. E.; Grandjean, D.; Dore, J. C; Wu, Z.; Sawitowski, T.; Kroll, M.; Schmid, G. Structure of metal nanowires in nanoporous alumina membranes studied by EXAFS and X-ray diffraction. Eur. Phys. J. D 2001,16,399-402.
    [29]Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S.; Takahashi, Y. K.; Hono, K. Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition. Chem. Mater.2002,14,4595-4602.
    [30]Zeng, H.; Zheng, M.; Skomski, R.; Sellmyer, D. J.; Liu, Y.; Menon, L. Bandyopadhyay, S. Magnetic properties of self-assembled Co nanowires of varying length and diameter. J. Appl. Phys.2000,87,4718-4720.
    [31]Foss, C. A.; Tierney, M. J.; Martin, C. R. Template-synthesis of infrared-transparent metal microcylinders:comparison of optical properties with the predictions of effective medium theory. J. Phys. Chem.1992,96,9001-9007.
    [32]Sauer, G.; Brehm, G.; Schneider, S. Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys.2002,91,3243-3247.
    [33]de Home, F. D.; Piraux, L.; Michotte, S. Fabrication and physical properties of Pb/Cu multilayered superconducting nanowires. Appl. Phys. Lett.2005,86,152510.
    [34]Gao, T. R.; Chen, Z.Y.; Peng, Y.; Li, F. Fabrication and optical properties of platinum nanowire arrays on anodic aluminium oxide templates. Chin. Phys.2002,11, 1307-1312.
    [35]Possin, G. E. Forming very small diameter wires. Rev. Sci. Instrum.1970,41, 772-774.
    [36]Williams, W. D.; Giordano, N. Fabrication of 80 A metal wires. Rev. Sci. Instrum. 1984,55,410-412.
    [37]Whitney, T. M.; Jiang, J. S.; Searson, P. C; Chien, C. L. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science 1993,261,1316-1319.
    [38]Tao, F. F.; Guan, M. Y.; Jiang, Y.; Zhu, J. M.; Xu, Z.; Xue, Z. L. An easy way to construct an ordered array of nickel nanotubes:the triblock-copolymer-assisted hard-template method. Adv. Mater.2006,18,2161-2164.
    [39]Tian, M.; Wang, J.; Kurtz, J.; Mallouk, T. E.; Chan, M. W. H. Electrochemical growth of single crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett.2003,3,919-923.
    [40]Bartlett, P. N.; Marwan, J. Preparation and characterization of H-1-e rhodium films. Microporous Mesoporous Mater.2003,62,73-79.
    [41]Lai, M.; Kulak, A. N.; Law, D.; Zhang, Z.; Meldrum, F. C; Riley, D. J. Profiting from nature:macroporous copper with superior mechanical properties. Chem. Commun.2007,34,3547-3549.
    [42]Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J.H. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 1997,278,838-840.
    [43]Shin, H. C; Dong, J.; Liu, M. L. Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater.2003,15,1610-1614.
    [44]尹秉胜;马厚义;陈慎豪.电化学技术制备纳米材料研究的新进展.化学进展2004,16,196-203.
    [45]Gilmer, G. H.; Huang, H.; Roland, C. Thin film deposition fundamentals and modeling. Comp. Mater. Sci.1998,12,354-380.
    [46]Li, Y.; Shi, G. Q. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J. Phys. Chem. B 2005,109,23787-23793.
    [47]Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C; Wang, C. R. The shape transition of gold nanorods. Langmuir 1999,15,701-709.
    [48]Yin, B. S.; Ma, H. Y.; Wang, S. Y.; Chen, S. H. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B 2003,107,8898-8904.
    [49]Sajanlal, P. R.; Pradeep, T. Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv. Mater.2008,20,980.
    [50]Zhang, J. T.; Qiu, C. C; Ma, H. Y; Liu, X. Y Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures. J. Phys. Chem. C2008,112,13970-13975.
    [51]Tian, N.; Zhou, Z. Y.; Sun, S. G; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007,316,732-735.
    [52]Socol, Y.; Abramson, O.; Gedanken, A.; Meshorer, Y; Berenstein, L.; Zaban, A. Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir 2002,18,4736-4740.
    [53]Delplancke, J. L.; Dille, J.; Reisse, J.; Long, G. J.; Mohan, A.; Grandjean, F. Magnetic nanopowders:ultrasound-assisted electrochemical preparation and properties. Chem. Mater.2000,12,946-955.
    [54](a) Reetz, M. T.; Helbig, W.; Quaiser, S. A. Visualization of surfactants on nanostructured palladium clusters by a combination of STM and hig-resolution TEM. Science 1995,267,367-369. (b) Reetz, M. T.; Winter, M.; Breinbauer, R.; ThurnAlbrecht, T.; Vogel, W. Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni-and Pt/Pd colloids. Chem. Eur. J.2001,7,1084-1094.
    [55]Endres, F. Ionic liquids:solvents for the electrodeposition of metals and semiconductors. ChemPhysChem 2002,3,144-154.
    [56]Pauliukaite, R.; Doherty, A. P.; Muraaghan, K. D.; Bretta, C. M. A. Application of some room temperature ionic liquids in the development of biosensors at carbon film electrodes. Electroanalysis 2008,20,485-490.
    [57]Endres, F.; Bukowski, M.; Hempelmann, R.; Natter, H. Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew. Chem. Int. Ed.2003,4-2, 3428-3430.
    [58]Li, Z. H.; Liu, Z. M.; Zhang, J. L.; Han, B. X.; Du, J. M.; Gao, Y. N.; Jiang, T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids.J. Phys. Chem.B 2005,109,14445-14448.
    [59]Dobbs, W.; Suisse, J. M.; Douce, L.; Welter, R. Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors. Angew. Chem. Int. Ed.2006,45,4179-4182.
    [60]Guerin, S.; Attard, G. S. Electrochemical behaviour of clectrodeposited nanostructured palladium plus platinum films in 2 M H2SO4. Electro> hem. Commnn. 2001,3,544-548.
    [61]Tierney, B. J.; Pitner, W. R.; Mitchell, J. A.; Hussey, C. L.; Stafford, G. R. Electrodeposition of copper and copper-aluminum alloys from a room-temperature chloroaluminate molten salt. J. Electrochem. Soc.1998,145,3110-3116.
    [62]Endres, F.; Schweizer, A. The electrodeposition of copper on Au(111) and on HOPG from the 66/34mol-% aluminiumchloride/1-Butyl-3-methylimidazolium chloride room temperature molten salt:an EC-STM study. Phys. Chem. Chem. Phys. 2000,2,5455-5462.
    [63]Osawa, T.; Ando, M.; Sakai, S.; Harada, T.; Takayasu, O. Role of acetic acid added to the reaction media for the enantio-differentiating hydrogenation of methyl acetoacetate over a tartaric acid-modified nickel catalyst. Catal. Lett.2005,105, 41-45.
    [64]Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc.2003,125,7772-7773.
    [65]Kucheyev, S. O.; Hayes, J. R.; Biener, J.; Huser, T.; Talley, C. E.; Hamza, A. V. Surface-enhanced Raman scattering on nanoporous Au. Appl. Phys. Lett.2006,89, 053102.
    [66]Hu, Y. S.; Guo, Y. G.; Sigle, W.; Hore, S.; Balaya, P.; Maier, J. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater.2006,5,713-717.
    [67]Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [68]Stratmann, M.; Rohwerder, M. A pore view of corrosion. Nature 2001,410, 420-421.
    [69]Erlebacher, J. An atomistic description of dealloying-porosity evolution, the critical potential, and rate-limiting behavior. Electrochem. Soc.2004,151, C614-C626.
    [70]Jia, F. L.; Yu, C. F.; Ai, Z. H.; Zhang, L. Z. Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity. Chem. Mater. 2007,19,3648-3653.
    [71]Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J. Alloys Compd.2009,485, 583-587.
    [72]Hayes, J. R.; Hodge, A. M.; Biener, J.; Hamza, A. V.; Sieradzki, K. Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res.2006,21,2611-2616.
    [73]Qi, Z.; Zhao, C. C.; Wang, X. G.; Lin, J. K.; Shao, W.; Zhang, Z. H.; Bian, X. F. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. J. Phys. Chem. C 2009,113,6694-6698.
    [74](a) Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129,42-43. (b) Xia, R.; Wang, J. L.; Wang, R. Y.; Li, X. D.; Zhang, X.; Feng, X. Q.; Ding, Y. Correlation of the thermal and electrical conductivities of nanoporous gold. Nanotechnology 2010,21,085703. (c) Ge, X. B.; Wang, L. Q.; Liu, Z. N.; Ding, Y. Nanoporous gold leaf for amperometric determination of nitrite. Electroanalysis 2011,23,381-386.
    [75](a) Dursun, A.; Pugh, D. V.; Corcoran, S. G. Probing the dealloying critical potential morphological characterization and steady-state current behavior. J. Electrochem. Soc.2005,152, B65-B72. (b) Pugh, D. V.; Dursun, A.; Corcoran, S. G. Electrochemical and morphological characterization of Pt-Cu dealloying. J. Electrochem. Soc.2005152, B455-B459.
    [76]Xu, C. X.; Wang, R. Y.; Chen, M. W.; Zhang, Y.; Ding, Y. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys. Chem. Chem. Phys.2010,12,239-246.
    [77]Huang, J. F.; Sun, I. W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Adv. Fimct. Mater.2005,15,989-994.
    [78]Hulteen, J. C.; Martin, C. R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem.1997,7,1075-1087.
    [79]Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y Nanostrucrured porous gold for methanol electro-oxidation.J. Phys. Chem. C 2007,111,10382-10388.
    [80](a) Yin, H. M.; Zhou C. Q, Xu C. X, Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C 2008,112,9673-9678. (b) Liu, Z. N.; Huang, L. H.; Zhang, L. L.; Ma, H. Y.; Ding, Y. Electrocatalytic oxidation of D-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta 2009,54,7286-7293.
    [81]Ren, B.; Li, X. Q.; She, C. X.; Wu, D. Y.; Tian, Z. Q. Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes. Electrochim. Ada 2000,46,193-205.
    [82]Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakub, Z. Nanocatalyst for direct methanol fuel cell (DMFC). Int. J. Hydrogen Energy 2010,35,7957-7970.
    [83]Alcaide, F.; Alvarez, G.; Miguel, O.; Lazaro, M. J.; Moliner, R.; Lopez-Cudero, A.; Solla-Gullon, J.; Herrero, E.; Aldaz, A. Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells. Electrochem. Commun.2009,11,1081-1084.
    [84]Cha, S. Y.; Lee, W. M. Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane Surface. J. Electrochem. Soc.1999,146,4055-4060.
    [85]Wang, X. G.; Wang, W. M.; Qi, Z.; Zhao, C. C.; Ji, H.; Zhang, Z. H. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation. J. Power Sources 2010,195,6740-6747.
    [86]Kapoor, M. P.; Ichihashi, Y.; Nakamori, T.; Matsumura, Y. Chemical promotional effect of gold added to palladium supported on cerium oxide in catalytic methanol decomposition. J. Mol. Catal. A:Chem.2004,213,251-255.
    [87]Kim, B. K.; Seo, D.; Lee, J. Y.; Song, H.; Kwak, J. Electrochemical deposition of Pd nanoparticles on indium-tin oxide electrodes and their catalytic properties for formic acid oxidation. Electrochem. Commun.2010,12,1442-1445.
    [88]Yin, Z.; Zheng, H. J.; Ma, D.; Bao, X. H. Porous palladium nanoflowcrs that have enhanced methanol electro-oxidation activity. J. Phys. Chem. C 2009,113, 1001-1005.
    [89]Zheng, J. S.; Zhang, X. S.; Li, P.; Zhu, J.; Zhou, X. G.; Yuan, W. K. Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium electrocatalyst. Electrochem. Commun.2007,9,895-900.
    [90]Pan, W.; Zhang, X. K.; Ma, H. Y.; Zhang, J. T. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C 2008,112,2456-2461.
    [91]Lowry, G. V.; Reinhard, M. Hydrodehalogenation of 1-to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environ. Sci. Technol.1999,33,1905-1910.
    [92](a) Tsyganok, A. I.; Yamanaka, I.; Otsuka, K. Dechlorination of chloroaromatics by electrocatalytic reduction over palladium-loaded carbon felt at room temperature. Chemosphere 1999,39,1819-1831.(b) Chen, G.; Wang, Z. Y.; Yang, T.; Huang, D. D.; Xia, D. G. Electrocatalytic hydrogenation of 4-chlorophenol on the glassy carbon electrode modified by composite polypyrrole/palladium film. J. Phys. Chem. B 2006,110,4863-4868.
    [93]Bartlett, P. N.; Gollas, B.; Guerin, S.; Marwan, J. The preparation and characterisation of H-1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases. Phys. Chem. Chem. Phys.2002,4,3835-3842.
    [94]Jiao, Y. L.; Wu, D. L.; Ma, H. Y.; Qiu, C. C.; Zhang, J. T.; Ma, L. M. Electrochemical reductive dechlorination of carbon tetrachloride on nanostructured Pd thin films. Electrochem. Commun.2008,10,1474-1477.
    [95]Christoffersen, E.; Liu, P.; Ruban, A.; Akriver, H. L.; Norskov, J. K. Anode materials for low-temperature fuel cells:A density functional theory study. J. Catal. 2001,199,123-131.
    [96]Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell.J. Power Sources 2006,155,95-110.
    [97]Waszczuk, P.; Lu, G. Q.; Wieckowski, A.; Lu, C.; Rice, C.; Masel, R. I. UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochim. Acta 2002,47,3637-3652.
    [98]孟建波;桑革;罗学建PEMFC电催化剂研究进展.材料导报2006,9,289-295.
    [99](a) Zhang, J. T.; Ma, H. Y.; Zhang, D. J.; Liu, P. P.; Tian, F.; Ding, Y. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys. Chem. Chem. Phys.2008,10,3250-3255. (b) Liu, P. P.; Ge, X. B.; Wang, R. Y.; Ma, H. Y.; Ding, Y. Facile fabrication of ultrathin pt overlayers onto nanoporous metal membranes via repeated cu UPD and in situ redox replacement reaction. Langmuir 2009,25,561-567. (c) Ge, X. B.; Wang, R. Y.; Liu, P. P.; Ding, Y. Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem. Mater.2007,19,5827-5829.
    [100]Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc.2008, 130,5406-5407.
    [101]Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007,315,220-222.
    [102]Xiao, L.; Zhuang, L.; Liu, Y.; Lu, J. T.; Abruna, H. D. Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc.2009,131,602-608.
    [103]Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman D. W. The promotional effect of gold in catalysis by palladium-gold. Science 2005,310,291-293.
    [104]Nilekar, A. U.; Xu, Y.; Zhang J. L.; Vukmirovic, M. B.; Sasaki, K.; Adzic, R. R.; Mavrikakis, M. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top. Catal 2007,46,276-284.
    [105]Shukla, A. K.; Neergat, M.; Bera, P.; Jayaram, V.; Hegde, M. S. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. J. Electroanal. Chem. 2001,504,111-119.
    [1]衣宝廉.燃料电池.化学工业出版社:北京,2003.
    [2]Wee, J. H. Applications of proton exchange membrane fuel cell systems Renew. Sust. Energ. Rev.2007,11,1720-1738.
    [3]Mehta, V.; Cooper, J. S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 2003,114,32-53.
    [4]Wang, L.; Husar, A.; Zhou, T. H.; Liu, H. T. A parametric study of PEM fuel cell performances. Int. J. Hydrogen Energy 2003,28,1263-1272.
    [5]Lee, S. J.; Mukerjee, S.; Ticianelli, E. A.; McBreen, J. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim. Acta 1999, 44,3283-3293.
    [6]Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004,4,345-348.
    [7]Zhou, Y. K.; Pasquarelli, R.; Holme, T.; Berry, J.; Ginley, D.; O'Hayre, R. Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports:observations from model Pt/HOPG systems J. Mater. Chem.2009,19, 7830-7838.
    [8]Haug, A. T.; White, R. E.; Weidner, J. W.; Huang, W. Increasing proton exchange membrane fuel cell catalyst effectiveness through sputter deposition. J. Electrochem. Soc.2002,149, A280-A287.
    [9]Ghenciu, A. F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid State Mater. Sci.2002,6,389-399.
    [10]Wasmus, S.; Kuver, A. Methanol oxidation and direct methanol fuel cells:a selective review.J. Electroanal. Chem.1999,461,14-31.
    [11]Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006,755, 95-110.
    [12]Zainoodin, A. M.; Kamarudin, S. K.; Daud, W. R. W. Electrode in direct methanol fuel cells. Int. J. Hydrogen Energy.2010,35,4606-4621.
    [13]Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells.J. Phys. Chem. B 2003,107, 6292-6299.
    [14]Baglio, V.; Stassi, A.; Di Blasi, A.; D'Urso, C; Antonucci, V.; Arico, A. S. Investigation of bimetallic Pt-M/C as DMFC cathode catalysts. Electrochim. Acta 2007,53,1360-1364.
    [15]Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S. Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidationl. J. Phys. Chem. B 1998,102, 9997-10003.
    [16]Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J. W. Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts:The importance of mixed electron/proton conductivity. Langmuir 1999,15,114-119.
    [17]Guo, J. S.; Sun, G. Q.; Wang, Q.; Wang, G. X.; Zhou, Z. H.; Tang, S. H.; Jiang, L H.; Zhou, B.; Xin, Q. Carbon nanofibers supported Pt-Ru electrocaialysts for direct methanol fuel cells. Carbon 2006,44,152-157.
    [18]Choi, W. C.; Woo, S. I. Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell. J. Power Sources 2003,124,420-425.
    [19]Xiong, L.; Manthiram, A. Catalytic activity of Pt-Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ionics 2005,176, 385-392.
    [20]Loffler, M. S.; Natter, H.; Hempelmann, R.; Wippermann, K. Preparation and characterisation of Pt-Ru model electrodes for the direct methanol fuel cell. Electrochim. Acta 2003,48,3047-3051.
    [21]Rao, C. R. K.; Trivedi, D. C. Chemical and electrochemical depositions of platinum group metals and their applications. Coord. Chem. Rev.2005,249,613-631.
    [22]Haruta, M. Size-and support-dependency in the catalysis of gold. Catal. Today 1997,35,153-166.
    [23]Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998,778,566-575.
    [24]Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. A three-dimensional mesoporous titanosilicate support for gold nanoparticles:vapor-phase epoxidation of propene with high conversion. Angew. Chem., Int. Ed.2004,43,1546-1548.
    [25]Nijhuis, T. A. R.; Visser, T.; Weckhuysen, B. M. The role of gold in gold-titania epoxidation catalysts. Angew. Chem., Int. Ed.2005,44,1115-1118.
    [26]Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298,2176-2179.
    [27]Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem., Int. Ed.2004,43,3673-3677.
    [28]Song, J. H.; Kim, F.; Kim, D.; Yang, P. D. Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem. Ear. J. 2005,11,910-916.
    [29]Sun, X. P.; Dong, S. J.; Wang, E. K. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem., Int. Ed.2004,43,6360-6363.
    [30]Huang, W. L.; Chen, C. H.; Huang, M. H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 2007,111,2533-2538.
    [31]Sajanlal, P. R.; Pradeep, T. Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv. Mater.2008,20, 980-983.
    [32]Millstone, J. E.; Metraux, G. S.; Mirkin, C. A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv. Fund. Mater.2006,16,1209-1214.
    [33]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003,107,668-677.
    [34]Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater.2004,3,482-488.
    [35]Huang, S. X.; Ma, H. Y; Zhang, X. K.; Yong, F. R; Feng, X. L.; Pan, W.; Wang, X. N.; Wang, Y; Chen, S. H. Electrochemical synthesis of gold nanocrystals and their ID and 2D organization. J. Phys. Chem. B 2005,109,19823-19830.
    [36]Li, C. C; Cai, W P.; Li, Y; Hu, J. L.; Liu, P. S. Ultrasonically induced Au nanoprisms and their size manipulation based on aging. J. Phys. Chem. B 2006,110, 1546-1552.
    [37]Borkowska, Z.; Tymosiak-Zielinska, A.; Shul, G. Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta 2004,49, 1209-1220.
    [38]Assiongbon, K. A.; Roy, D. Electro-oxidation of methanol on gold in alkaline media:adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques. Surf. Sci. 2005,594,99-119.
    [39]Zhang, J. T.; Liu, P. P.; Ma, H. Y; Ding, Y. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C2007,111,10382-10388.
    [40]Avramov-Ivic, M.; Jovanovic, V.; Vlajnic, G.; Popic, J. The electrocatalytic properties of the oxides of noble metals in the electro-oxidation of some organic molecules. J. Electroanal. Chem.1997,423,119-124.
    [41]Xu, J.B.; Zhao, T. S.; Liang, Z. X. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells. J. Power Sources 2008,185,857-861.
    [42]Selvarani, G.; Selvaganesh, S. V.; Krishnamurthy, S.; Kiruthika, G. V. M.; Sridhar, P.; Pitchumani, S; Shukla, A. K. A methanol-tolerant carbon-supported Pt-Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C2009,113,7461-7468.
    [43]Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L. Y.; Zhong, C. J. Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catal. Today 2007,122, 378-385.
    [44]Lang, H. G.; Maldonado, S.; Stevenson, K. J.; Chandler, B. D. Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc.2004,126,12949-12956.
    [45]Zhou, S. G.; Mcllwrath, K.; Jackson, G.; Eichhorn, B. Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc.2006,128,1780-1781.
    [46]Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun.2008,3,353-355.
    [47]Cheng, W. L.; Dong, S. J.; Wang, E. K. Two-and three-dimensional Au nanoparticle/CoTMPyP self-assembled nanotructured materials:film structure, tunable electrocatalytic activity, and plasmonic properties. J. Phys. Chem. B 2004, 108,19146-19154.
    [48]Brankovic, S. R.; Wang, J. X.; Adzic, R. R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci.2001,474, L173-L179.
    [49]Hernandez, F.; Baltruschat, H. Hydrogen evolution and CuUPD at stepped gold single crystals modified with Pd. J. Solid State Electrochem.2007,11,877-885.
    [50]Umar, A. A.; Oyama, M. Formation of gold nanoplates on indium tin oxide surface:two-dimensional crystal growth from gold nanoseed particles in the presence ofpoly(vinylpyrrolidone). Cryst. Growth Des.2006,6,818-821.
    [51]Rashid, M. H.; Bhattacharjee, R. R.; Mandal, T. K. Organic ligand-mediated synthesis of shape-tunable gold nanoparticles:an application of their thin film as refractive index sensors. J. Phys. Chem. C 2007,111,9684-9693.
    [52]Yong, F. F.; Ma, H. Y.; Wang, X. N.; Feng, X. L.; Huang, S. X.; Jiang, J. Z.; Chen, S. H. Voltammetric studies of gold surface modified by bis(octakis(octyloxy) phthalocyaninato) europium(III) adlayers in perchloric acid solution. Electrochim. Acta 2006,51,3743-3751.
    [53]Tremiliosi-Filho, G.; Gonzalez, E. R.; Motheo, A. J.; Belgsir, E. M. Electro-oxidation of ethanol on gold:analysis of the reaction products and mechanism. J. Electroanal. Chem.1998,444,31-39.
    [54]Heli, H.; Jafarian, M.; Mahjani, M.G.; Gobal, F. Electro-oxidation of methanol on copper in alkaline solution. Electrochim. Acta 2004,494999-5006.
    [55]Herrero, E.; Buller, L. J.; Abruna, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev.2001,101,1897-1930.
    [56]Green, C. L.; Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 2002,106,1036-1047.
    [57]Oyamatsu, D.; Nishizawa. M.; Kuwabata, S.; Yoneyama, H. Underpotential deposition of silver onto gold substrates covered with self-assembled monolayers of alkanethiols to induce intervention of the silver between the monolayer and the gold substrate. Langmuir 1998,14,3298-3302.
    [58]Brankovic, S. R.; Wang, J. X.; Adzic, R. R. New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level./. Serb. Chem. Soc.2001,66,887-898.
    [59]Zhang, J. T.; Ma, H. Y.; Zhang, D. J.; Liu, P. P.; Tian, F.; Ding, Y. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys. Chem. Chem. Phys.2008,10,3250-3255.
    [60]Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 2004,108, 8234-8240.
    [61]Feng, X. L.; Ma, H. Y.; Huang, S. X.; Pan, W.; Zhang, X. K.; Tian, F.; Gao, C. X.; Cheng, Y. W.; Luo, J. L. Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. J. Phys. Chem. B 2006,110, 12311-12317.
    [62]Tang, H.; Chen, J. H.; Wang, M. Y.; Nie, L. H.; Kuang, Y. F.; Yao, S. Z. Controlled synthesis of platinum catalysts on Au nanoparticles and their electrocatalytic property for methanol oxidation. Appl. CataL, A 2004,275,43-48.
    [63]Grden, M.; Piascik, A.; Koczorowski, Z.; Czerwinski, A. Hydrogen electrosorption in Pd-Pt alloys. J. Electroanal. Chem.2002,532,35-42.
    [64]Pan, W.; Zhang, X. K.; Ma, H. Y.; Zhang, J. T. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C2008,112,2456-2461.
    [65]Jansen, M. M. P.; Moolhuysen, J. Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells. Electrochim. Ada 1976,21,869-878.
    [66]Xu, Y. H.; Lin, X. Q. Facile fabrication and electrocatalytic activity of Pto.9Pdo.i alloy film catalysts. J. Power. Sources 2007,170,13-19.
    [1]Atlas, E.; Giam, C. S. Global transport of organic pollutants:ambient concentrations in the remote marine atmosphere. Science 1981,211,163-165.
    [2]Jacobs, M. N.; Covaci, A.; Schepens, P. Investigation of selected persistent organic pollutants in farmed Atlantic salmon (Salmo salar), salmon aquaculture feed, and fish oil components of the feed. Environ. Sci. Technl!.2002,36,2797-2805.
    [3]Manz, M.; Wenzel, K. D.; Dietze, U.; Schuurmann, G. Persistent organic pollutants in agricultural soils of central Germany. Sci. Total Environ.2001,277,187-198.
    [4]Zhang, Z. L.; Hong, H. S.; Zhou, J. L.; Huang, J.; Yu, G. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China. Science 2003,52,1423-1430.
    [5]Yuan, D. X.; Yang, D. N.; Wade, T. L.; Qian, Y. R. Status of persistent organic pollutants in the sediment from several estuaries in China. Environ. Pollut.2001,114, 101-111.
    [6]Fu, J. M.; Mai, B. X.; Sheng, G. Y.; Zhang, G.; Wang, X. M.; Peng, P.; Xiao, X. M.; Ran, R.; Cheng, F. Z.; Peng, X. Z.; Wang, Z. S.; Tang, W. Persistent organic pollutants in environment of the Pearl River Delta, China:an overview. Chemosphere 2003,52, 1411-1422.
    [7]Galanopoulou, S.; Vgenopoulos, A.; Conispoliatis, N. DDTs and other chlorinated organic pesticides and polychlorinated biphenyls pollution in the surface sediments of Keratsini harbour, Saronikos gulf, Greece. Mar. Pollut. Bull.2005,50,520-525.
    [8]Carrera, G.; Fernandez, P.; Vilanova, R. M.; Grimalt, J. O. Persistent organic pollutants in snow from European high mountain areas. Atmos. Environ.2001,35, 245-254.
    [9]罗斯;王晓栋;高树海;秦良;季力;杨旭曙;王连生.纳米双金属体系催化降解有机氯化物研究进展.环境科学与技术2009,32,72-75.
    [10]Malins, D. C.; Mccain, B. B.; Brown, D. W.; Chan, S. L.; Myers, M. S.; Landahl, J. T.; Prohaska, P. G.; Friedman, A. J.; Rhodes, L. D. Chemical pollutants in sediments and diseases of bottom-dwelling fish in Puget Sound, Washington. Environ. Sci. Technol.1984,75,705-713.
    [11]Jones, K. C.; de Voogt, P. Persistent organic pollutants (POPs):state of the science. Environ. Pollut.1999,100,209-221.
    [12]Persson, Y.; Shchukarev, A.; Obcrg, L.; Tysklind, M. Dioxins, chlorophenols and other chlorinated organic pollutants in colloidal and water fractions of groundwater from a contaminated sawmill site. Environ. Sci. Pollut. Res.2008,75,463-471.
    [13]Reinhard, M.; Barker, J. F.; Goodman, N. L. Occurrence and distribution of organic chemicals in two landfill leachate plumes. Environ. Sci. Technol.1984,18, 953-961.
    [14]Damstra, T. Potential effects of certain persistent organic pollutants and endocrine disrupting chemicals on the health of children. J. Toxicol. Clin. Toxicol. 2002,40,457-465.
    [15]Bidleman, T. F.; McConnell, L. L. A review of field experiments to determine air-water gas exchange of persistent organic pollutants. Sci. Total Environ.1995,159, 101-117.
    [16]杨凤林;全燮;薛大明.水中氯代有机化合物处理方法及研究进展.环境科学进展1996,4,36-44.
    [17]Zhang, W. X.; Wang, C. B.; Lien, H. L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 1998,40,387-395.
    [18]Gillham, R. W.; O'Hannesin, S. F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 1994,32,958-967.
    [19]Arisoy, M. Biodegradation of chlorinated organic compounds by white-rot fungi. Bull. Environ. Contam. Toxicol.1998,60,872-876.
    [20]Kim, Y. H.; Carraway, E. R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Techno!.,2000,34,2014-2017.
    [21]Cheng, I. R.; Fernando, Q.; Korte, N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol.1997,31,1074-1078.
    [22]Kulikov, S. M.; Plekhanov, V. P.; Tsyganok, A. I.; Schlimm, C; Heitz, E. Electrochemical reductive dechlorination of chlororganic compounds on carbon cloth and metal-modified carbon cloth cathodes. Electrochim. Acta 1996,41,527-531.
    [23]Cheng, H.; Scoot, K.; Christensen, P. A. Electrochemical hydrodehalogenation of chlorinated phenols in aqueous solutions. J. Electrochem. Soc.2003,150, D17-D24.
    [24]Lin, C. H.; Tseng, S. K. Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathode. Chemosphere 1999,39, 2375-2389.
    [25]Li, T.; Farrell, J. Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces. Environ. Sci. Technol.2001,35,3560-3565.
    [26]陈必省;孙军庆;黄都晓.卤代有机污染物的脱卤降解技术研究进展.环境污染与防治2007,10,48-51.
    [27]Miyoshi, K.; Kamegaya, Y.; Matsumura, M. Electrochemical reduction of organohalogen compound by noble metal sintered electrode. Chemosphere 2004,56, 187-193.
    [28]Tsyganok, A. I.; Otsuka, K. Electrocatalytic reductive dehalogenation of 2,4-D in aqueous solution on carbon materials containing supported palladium. Electrochim. Acta 1998,43,2589-2596.
    [29]Chen, G.; Wang, Z. Y.; Xia D. G. Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium. Electrochim. Acta 2004,50,933-937'.
    [30]Chen, G.; Wang, Z. Y.; Xia, D. G. Electrochemically codeposited palladium/molybdenum oxide electrode for electrocatalytic reductive dechlorination of 4-chlorophenol. Electrochem. Commun.2004,6,268-272.
    [31]Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [32]Parida, S.; Kramer, D.; Volkert, C. A.; Rosner, H.; Erlebacher, J.; Weissmuller, J. Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett.2006,97,035504.
    [33]Ding, Y; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution.J. Am. Chem. Soc.2003,125,7772-7773.
    [34]Yu, J.; Ding, Y.; Xu, C.; Inoue, A.; Sakurai, T.; Chen, M. Nanoporous metals by dealloying multicomponent metallic glasses. Chem. Mater.2008,20,4548-4550.
    [35]Hakamada, M.; Mabuchi, M. Preparation of nanoporous palladium by dealloying: anodic polarization behaviors of Pd-M (M=Fe, Co, Ni) alloys. Mater. Trans.2009, 50,431-435.
    [36]Qi, Z.; Zhao, C. C.; Wang, X. G.; Lin, J. K.; Shao, W.; Zhang, Z. H.; Bian, X. F. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. J. Phys. Chem. C2009,113,6694-6698.
    [37]Huang, J. F.; Sun, I. W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers.Adv. Funct. Mater.2005,15,989-994.
    [38]Galinski, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006,51,5567-5580.
    [39]Quinn, B. M.; Ding, Z. F.; Moulton, R.; Bard, A. J. Novel electrochemical studies of ionic liquids. Langmuir 2002,18,1734-1742.
    [40]Nishida, T.; Tashiro, Y.; Yamamoto, M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte.J. Fluorine Chem. 2003,120,135-141.
    [41]Bartlett, P. N.; Marwan, J. The effect of surface species on the rate of H sorption into nanostructured Pd. Phys. Chem. Chem. Phys.2004,6,2895-2898.
    [42]Bartlett, P. N.; Gollas, B.; Guerin, S.; Marwan, J. The preparation and characterisation of H-1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases. Phys. Chem. Chem. Phys.2002,4,3835-3842.
    [43]Birry, L.; Lasia, A. Effect of crystal violet on the kinetics of H sorption into Pd. Electrochim. Acta 2006,51,3356-3364.
    [44]Jiao, Y. L.; Wu, D. L.; Ma, H. Y.; Qiu, C. C.; Zhang, J. T.; Ma, L. M. Electrochemical reductive dechlorination of carbon tetrachloride on nanostructured Pd thin films. Electrochem. Commun.2008,10,1474-1477.
    [45]Xu, C. X.; Wang, L. Q.; Wang, R. Y.; Wang, K.; Zhang, Y; Tian, R.; Ding, Y. Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv. Mater.2009,21,2165-2169.
    [46]Chen, G.; Wang, Z. Y.; Yang, T.; Huang, D. D.; Xia, D. G Electrocatalytic hydrogenation of 4-chlorophenol on the glassy carbon electrode modified by composite polypyrrole/palladium film. J. Phys. Chem. B 2006,110,4863-4868.
    [47]Zhu, B. W.; Lim, T. T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles:reactive sites, catalyst stability, particle aging, and regeneration. Environ. Sci. Technol.2007,41,7523-7529.
    [48]Hoshi, N.; Sasaki, K.; Hashimoto, S.; Hori, Y. Electrochemical dechlorination of chlorobenzene with a mediator on various metal electrodes. J. Electroanal. Chem. 2004,568,267-271.
    [49]Wang, H.; Bian, Z. Y.; Sun, D. Z. Degradation mechanism of 4-chlorophenol with electrogenerated hydrogen peroxide on a Pd/C gas-diffusion electrode. Water Sci. Technol.2011,63,484-490.
    [50]Wang, X. G.; Wang, W. M.; Qi, Z.; Zhao, C. C.; Ji, H.; Zhang, Z. H. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation. J. Power Sources 2010,195,6740-6747.
    [51]Hakamada, M.; Tajima, K.; Yoshimura, K.; Chino, Y.; Mabuchi, M. Solid/electrolyte interface phenomena during anodic polarization of Pdo.2M0.8 (M= Fe, Co, Ni) alloys in H2SO4. J. Alloys Compd.2010,494,309-314.
    [52]Hakamada, M.; Nakano, H.; Furukawa, T.; Takahashi, M.; Mabuchi, M. Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C2010,114,868-873.
    [53]Lee, J.; Choi, W. Photocatalytic reactivity of surface platinized TiO2:substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 2005,109, 7399-7406.
    [1]Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001,414, 345-352.
    [2]Haile, S. M. Fuel cell materials and components. Acta Mater.2003,51,5981-6000.
    [3]Ghenciu, A. F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid State Mater. Sci.2002,6,389-399.
    [4]Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002,47, 22-23.
    [5]Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel cells:principles, types, fuels, and applications. ChemPhysChem 2000,1,162-193.
    [6]Rice, C.; Ha, R. I.; Masel, R. I. Direct formic acid fuel cells. J. Power Sources 2002,111,83-89.
    [7]Yoshitake, T.; Shimakawa, Y.; Kuroshima, S.; Kimura, H.; Ichihashi, T.; Kubo, Y.; Kasuya, D.; Takahashi, K.; Kokai, F.; Yudasaka, M.; Iijima, S. Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B:Condens. Matter 2002,323,124-126.
    [8]Liu, H. S.; Song, C. J.; Zhang, L. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006,155,95-110.
    [9]Serov, A.; Kwak, C. Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl. Catal. B:Environ.2009,90,313-320.
    [10]Lefevre, M.; Dodelet, J. P.; Bertrand, P. Molecular oxygen reduction in PEM fuel cells:evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem.B 2002,106,8705-8713.
    [11]Baranton, S.; Coutanceau, C.; Roux, C.; Hahn, F.; Leger, J. M. Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate:tolerance to methanol, stability and kinetics. J. Electroanal. Chem.2005, 577,223-234.
    [12]Wagner, A. J.; Wolfe, G. M.; Fairbrother, D. H. Reactivity of vapor-deposited metal atoms with nitrogen-containing polymers and organic surfaces studied by in situ XPS. Appl. Surf. Sci.2003,219,317-328.
    [13]Matter, P. H.; Zhang, L.; Ozkan, U. S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal.2006, 239,83-96.
    [14]Alonso-Vante, N.; Jaegermann, W.; Tributsch, H.; Honle, W.; Yvon, K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters.J. Am. Chem. Soc.1987,109,3251-3257.
    [15]Shukla, A. K.; Raman, R. K. Methanol-rusistant oxygen-reduction catalysts for direct methanol fuel celms Annu. Rev. Mater. Res.2003,33,155-168
    [16]Alonso-Vante, N.; Tributsch, H.; Solorza-Feria, O. Kinetics studies of oxygen reduction in acid medium on novel semiconducting transition metal chalcogenides. Electrochim. Acta 1995,40,567-576.
    [17]Bron, M.; Bogdanoff, P.; Fiechter, S.; Dorbandt, I.; Hilgendorff, M.; Schulenburg, H.; Tributsch, H. Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction. J. Electroanal. Chem.2001, 500,510-517.
    [18]Zaikovskii, V. I.; Nagabhushana, K. S.; Kriventsov, V. V.; Loponov, K. N.; Cherepanova, S. V.; Kvon, R. I.; Kochubey, D. I.; Savinova, E. R. Synthesis and structural characterization of Se-modified carbon-supported ru nanoparticles for the oxygen reduction reaction. J. Phys. Chem. B 2006,110,6881-6890.
    [19]Hilgendorff, M.; Diesner, K.; Schulenburg, H.; Bogdanoff, P.; Bron, M.; Fiechter, S. Preparation strategies towards selective Ru-based oxygen reduction catalysts for direct methanol fuel cells. J. New Mater. Electrochem. Syst.2002,5,71-81.
    [20]Mustain, W. E.; Kepler, K.; Prakash, J. Investigations of carbon-supported CoPd3 catalysts as oxygen cathodes in PEM fuel cells. Electrochem. Commun.2006,8, 406-410.
    [21]Mustain, W. E.; Prakash, J. Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt-palladium electrocatalysts in acid media. J. Power Sources 2007,770,28-37.
    [22]Serov, A. A.; Cho, S. Y.; Han, S.; Min, M.; Chai, G.; Nam, K. H.; Kwak, C. Modification of palladium-based catalysts by chalcogenes for direct methanol fuel cells. Electrochem. Commun.2007,9,2041-2044.
    [23]Pan, W.; Zhang, X. K.; Ma, H. Y.; Zhang, J. T. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C 2008,112,2456-2461.
    [24]Wang, X. G.; Wang, W. M.; Qi, Z.; Zhao, C. C.; Ji, H.; Zhang, Z. H. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation. J. Power Sources 2010,195,6740-6747.
    [25]Yin, Z.; Zheng, H. J.; Ma, D.; Bao X. H. Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J. Phys. Chem. C 2009,113, 1001-1005.
    [26]Wang, Z.; Zhu, Z. Z.; Li, Y. X.; Li, H. L. Highly dispersed palladium nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solutions. Chin. J. Chem.2008,26,666-670.
    [27]Zhu, Y. M.; Khan, Z.; Masel, R. I. The behavior of palladium catalysts in direct formic acid fuel cells. J. Power Sources 2005,139,15-20.
    [28]Fang, Y. X.; Guo, S. J.; Zhu, C. Z.; Dong, S. J.; Wang, E. K. Twenty second synthesis of Pd nanourchins with high electrochemical activity through an electrochemical route. Langmuir 2010,26,17816-17820.
    [29]Du, C. Y.; Chen, M.; Wang, W. G.; Yin, G. Nanoporous PdNi alloy nanowires as highly active catalysts for the electro-oxidation of formic acid. Appl. Mater. Interfaces 2011,5,105-109.
    [30]Yu, X. W.; Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008,182,124-132.
    [31]Liu, Y.; Wang, L. W.; Wang, G.; Deng, C.; Wu, B.; Gao, Y. High active carbon supported PdAu catalyst for formic acid electrooxidation and study of the kinetics. J. Phys. Chem. C2010,114,21417-21422.
    [32]Lukaszewski, M.; Czerwinski, A. Electrochemical behavior of palladium/gold alloys. Electrochim. Acta 2003,48,2435-2445.
    [33]Suo, Y.; Hsing, I. M. Synthesis of bimetallic PdAu nanoparticles for formic acid oxidation. Electrochim. Acta 2011,56,2174-2183.
    [34]Mikolajczuk, A.; Borodzinski, A.; Stobinski, S.; Kedzierzawski, P.; Lesiak, B. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts. Phys. Status Solidi B 2010,247,21X1-2121.
    [35]Xu, J. B.; Zhao, T. S.; Shen, S. Y; Li, Y S. Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. Int. J. Hydrogen Energy 2010, 35,6490-6500.
    [36]Wu, M. L.; Chen, D. H.; Huang, T. C. Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir,2001,17,3877-3883
    [37]Yang, Y. L.; Saoud, K. M.; Abdelsayed, V.; Glaspell, G.; Deevi, S.; El-Shall, M. S. Vapor phase synthesis of supported Pd, Au, and unsupported bimetallic nanoparticle catalysts for CO oxidation. Catal. Commun.2006,7,281-284.
    [38]Hu, B. J.; Wu, T. B.; Ding, K. L.; Zhou, X. S.; Jiang, T.; Han, B. X. Seeding growth of Pd/Au bimetallic nanoparticles on highly cross-linked polymer microspheres with ionic liquid and solvent-free hydrogenation. J. Phys. Chem. C2010, 114,3396-3400.
    [39]Chen. C. H.; Sarma, L. S.; Chen, J. M.; Shih, S. C.; Wang, G. R.; Liu, D. G.; Tang; M. T.; Lee, J. R.; Hwang, B. J. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS nano 2007,1,114-125.
    [40]Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [41]Xu, C. X.; Wang, R. Y.; Chen, M. W.; Zhang, Y.; Ding, Y Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys. Chem. Chem. Phys.2010,12,239-246.
    [42]Pugh, D. V.; Dursun, A.; Corcoran, S. G. Electrochemical and morphological characterization of Pt-Cu dealloying. J. Electrochem. Soc.2005,152, B455-B459.
    [43]Zhang, J. T.; Qiu, C. C.; Ma, H. Y.; Liu, X. Y. Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures.J. Phys. Chem. C2008,112,13970-13975.
    [44]Jansen, M. M. P.; Moolhuysen, J. Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells. Electrochim. Acta 1976,21,869-878.
    [45]Xu, Y. H.; Lin, X. Q. Facile fabrication and electrocatalytic activity of Pto.9Pd0.1 alloy film catalysts. J. Power Sources 2007,170,13-19.
    [46]Huang, J. F.; Sun, I. W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Adv. Fund. Mater.2005,15,989-994.
    [47]Zhang, J. T.; Huang, M. H.; Ma, H. Y.; Tian, F.; Pan, W.; Chen, S. H. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol. Electrochem. Commun.2007,9,1298-1304.
    [48]Ha, S.; Larsen, R.; Masel, R. I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J. Power Sources 2005,144,28-34.
    [49]Chen, C. H.; Liou, W. J.; Lin, H. M; Wu, S. H.; Mikolajczuk, A.; Stobinski, A.; Borodzinski, A.; Kedzierzawski, P.; Kurzydlowski, K. Carbon nanotube-supported bimetallic palladium-gold electrocatalysts for electro-oxidation of formic acid. Phys. Status Solidi A 2010,207,1160-1165.
    [50]Cheng, F. L.; Dai, X. C.; Wang, H.; Jiang, S. P.; Zhang, M.; Xu, C. W. Synergistic effect of Pd-Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation. Electrochim. Ada 2010,55,2295-2298.
    [51]Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 2005,310,291-293.
    [52]Sarkany, A.; Horvath, A.; Beck, A. Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Appl. Catal. A:Gen.2002,229,117-125.
    [53]Han, Y. F.; Kumar, D.; Sivadinarayana, C.; Clearfield, A.; Goodman, D. W. The formation of PdCx over Pd-based catalysts in vapor-phase vinyl acetate synthesis: does a Pd-Au alloy catalyst resist carbide formation? Catal. Lett.2004,94,131-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700