用户名: 密码: 验证码:
不同温度对樟巢螟蛹体内氧化还原状态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
樟巢螟(Orthaga achatina Butler)是香樟(Cinnamomum camphora)的一种重要的害虫,其越夏蛹和越冬蛹发育经历的温度差异明显,本文研究了不同温度对樟巢螟羽化率和蛹发育过程中谷胱甘肽代谢及相关的抗氧化酶活性的影响。
     1不同温度下樟巢螟羽化率的变化
     25℃下,樟巢螟的羽化率是86%,而16℃和30℃时樟巢螟的羽化率较25℃的比较显著降低,分别下降为22%和76%。
     2低温处理樟巢螟蛹体内抗氧化酶活性和谷胱甘肽含量变化
     25℃下,GSH/GSSG从1.01降到0.87,16℃下从1.01降到0.24,标志低温条件下樟巢螟蛹内氧化胁迫严重;与25℃相比,16℃下GSH含量显著下降,GSSG含量、总谷胱甘肽含量升高,进一步说明谷胱甘肽代谢氧化加强,氧化胁迫严重;同时16℃下的樟巢螟蛹中XOD活性显著升高,表明XOD活性升高,导致H_2O_2含量积累,CAT、GST和TPX活性也显著高于25℃,更进一步证实樟巢螟蛹代谢处于过氧化状态。
     3高温处理樟巢螟蛹体内抗氧化酶活性和谷胱甘肽含量变化
     30℃下,GSH/GSSG从1.01降到0.50,介于25℃和16℃之间,表明高温条件下樟巢螟蛹内氧化胁迫严重,但与低温下相比氧化胁迫较轻;30℃下,XOD、CAT、GST和TPX的活性显著高于25℃,说明随着XOD活性升高,导致H_2O_2含量积累,从而提高CAT、GST和TPX的活性,谷胱甘肽氧化加强,GSH被氧化为GSSG,樟巢螟蛹处于过氧化状态。
     因此,温度胁迫下,樟巢螟的羽化率显著降低,并且低温下对樟巢螟蛹的氧化胁迫较高温严重,这可能与活性氧积累,导致谷胱甘肽氧化加强有关,樟巢螟蛹处于过氧化状态。
Orthaga achatina Bulter (Lepidoptera: Pyralidae) is a significant defoliator of Cinnamomum camphora (Lauraceae). The mean temperatures during pupal development are obviously different between the overwintering and oversummering generations. Effects of different temperatures on the eclosion rate and enzymes related to glutathione metabolism were examined in Orthaga pupae.
     1 Effects of different temperatures on the eclosion rate
     When pupae of Orthaga achatina Bulter were transferred from 25℃to 16℃and 30℃, the eclosion rate decreased from 86% to 22% and 76%, respectively.
     2 Variations of glutathione and related enzymes in the 16℃-treated pupae
     Ratios of GSH and GSSG decreased from 1.01 to 0.87 in the 25℃-treated pupae and from 1.01 to 0.24 in the 16℃-treated pupae, respectively. It indicated that oxidative stress in pupae at 16℃is involved in the marked decline of eclosion rate. Compared with 25℃, the content of GSH decreased obviously,whereas the contents of GSSG and total glutathione increased. It showed that the stronger oxidation of glutathione in pupae at 16℃. Furthermore, the 16℃-treated pupae had higher activities of XOD, CAT, GST and TPX. It suggested that XOD enhancement in the 16℃-treated pupae leads to H_2O_2 accumulation, which reversely up-regulating CAT, GST and TPX.
     3 Variations of glutathione and related enzymes in the 30℃-treated pupae
     Ratio of GSH and GSSG decreased from 1.01 to 0.50 in the 30℃-treated pupae, which was intermediate between 25℃and 16℃. It indicated that oxidative stress in pupae at 30℃is involved in the marked decline of eclosion rate, whereas it was lower than that in pupae at 16℃. Variations of other biochemical parameters in the 30℃-treated pupae were similar to the 16℃-treated pupae.
     In conclusion, the marked decline of eclosion rate of Orthaga pupae at 16℃and 30℃is involved in pro-oxidative status, and also it was more serious in 16℃-treated pupae, which may be resulted from the stronger oxidation of glutathione catalyzed by GST and TPX.
引文
[1]梅爱中,李瑛,钱爱林等.樟巢螟发生规律及防治对策[J].植物医生, 2005, 18 (5): 24-25
    [2]徐东生.樟巢螟生物学特性和防治方法研究[J].湖北植保, 2001, 5: 19-20
    [3]杨代凤,张青,沈国清等.樟巢螟的生物学特性及综合防治技术[J].江苏农业科学, 2005, 4: 59-60
    [4]高冬平,蒋景德.樟巢螟的生物学特性及防治[J].江苏林业科技, 2005, 32 (3): 31-32
    [5]刘于成,沈利明,朱福官等.樟巢螟的发生预测与防治对策探讨[J].中国植保导刊, 2005, 25 (6): 25-26
    [6]魏书军,许发良,滑福林等.香樟害虫-橄绿瘤丛螟的生物学特性[J].昆虫知识2008, 45 (4): 562-565
    [7]吴雪芬,黄顺,朱广慧等.樟巢螟的发生特点及综合防治[J].林业科技, 2006, 31 (4): 25-27
    [8]戴传良.樟巢螟的危害及防治[J].湖南林业, 2004, 6: 24
    [9]张念环,钱彪.百部·楝·烟等药剂防治樟巢螟药效试验初报.浙江林业科技[J], 2004, 24 (6): 24-25
    [10]蔡建武,陈荣发.打孔注射药剂防治香樟樟巢螟试验[J].江苏林业科技, 2003, 30 (3): 36-37
    [11]尤民生,王联德,郑琼华等.温度对柑桔潜叶蛾实验种群的影响[J].福建农业大学学报, 1995, 24 (4): 414-419
    [12]杨永康.樟巢螟防治技术[J].江苏林业科技, 2005, 32 (4): 42
    [13]杨晓娟,章霞,高泰东.防治樟巢螟耐雨药剂筛选试验[J].中国植保导刊, 2006, 10: 35-36
    [14]温小玲,吴希从.华东地区樟巢螟的发生及其综合防治技术研究[J].安徽农业科学, 2007, 35 (29):9309-9310
    [15]樊敏,徐薇玉,管丽琴等.樟巢螟、樟叶蜂发生危害和防治技术研究[J].上海农业学报, 2006, 22 (3): 51 - 54
    [16]高冬平,蒋景德.樟巢螟的生物学特性及防治[J].江苏林业科技, 2005, 32 (3): 31-32
    [17]滕金洪,刘于成,沈利明等.樟巢螟发生原因与防治技术研究[J].上海农业科技, 2006, l: 97-98
    [18]吴雪芬,黄顺,朱广慧等.樟巢螟综合防治研究[J].安徽农业科学, 2006, 34 (10): 2198-2199, 222
    [19]仵均祥,李长青,李怡萍等.小麦吸浆虫滞育研究进展[J].昆虫知识, 2004, 41 (6): 499-503
    [20]马俊,陈永年,肖素娟.温度对甜菜夜蛾实验种群增长的影响[J].湖南农业大学学报, 1999, 25 (4): 305-309
    [21]焦懿,赵苹.不同温度下白蜡虫花翅跳小蜂的实验种群生命表[J].昆虫学报, 2002, 45 (1): 86-90
    [22]李凌,谢立群,许田芬等.温度对樟巢螟实验种群生长发育及存活的影响[J].江苏农业科学, 2009, 1: 124-125
    [23]杨晓娟,章霞,高泰东.樟巢螟幼虫的危害特点及防治技术[J].江苏林业科技2006, 33 (5): 42-47
    [24]刘井兰,于建飞,吴进才等.昆虫活性氧代谢[J]. 2006, 43 (6): 752-756
    [25]张谨华,黄登宇.昆虫体外化学防御的研究[J].山西科技, 2005, (3):89-90
    [26]郑荣梁.生命科学中自由基研究的鸟瞰[J].自由基生命科学进展, 1993, 1: 5-13
    [27] Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen [J]. Annual Review of Pharmncology and Toxicology, 1999, 39: 67-101
    [28]方允中,郑荣梁.自由基生物学理论与应用[M].北京科学出版社, 2002: 233-271
    [29] Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen [J]. Annual Review of Pharmncology and Toxicology, 1999, 39: 67-101
    [30]崔亚东,杜予州,陆明星等.热胁迫对二化螟幼虫血淋巴细胞内活性氧、HSP90及细胞凋亡的影响[J].昆虫学报, 2010, 53 (7): 721-726
    [31]刘俊英,姚科云,冯耀飞等.低温胁迫对雪松膜脂过氧化及保护酶的影响[J].山西农业大学学报, 2004, 24 (4): 396-400
    [32] Meiter A. Glutathione metabolism and its selective modification [J]. The Journal of Biological Chemistry, 1988, 26: 17250-17208.
    [33] Mary EA. Glutathione: an overview of biosynthesis and modulation [J]. Chemico-Biological Interactions, 1998, 111-112: 1-14.
    [34] Morris PE, Bernard GR. Significance of glutathione in lung disease and implication for therapy [J]. The American Journal of the Medical Sciences, 1994, 307: 119-127.
    [35] Meredith MJ, Reed DJ. Status of the mitochondrial pool of glutathione in the isolated hepatocyte [J]. The Journal of Biological chemistry, 1982, 257: 3747-3753.
    [36] Hwang C, Sinsky AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum [J]. Science, 1992, 257 (5076): 1496-1502.
    [37] Chai. YC, Ashraf SS, Rokutan K, et al. S-Thiolation of Individual Human Neutrophil Proteins Including Actin by Stimulation of the Respiratory Burst: Evidence against a Role for Glutathione Disulfide [J]. Archives of Biochemistry and Biophysics, 1994, 310 (1): 273-281.
    [38] Holger B, Stefan MK, Schirmer RH. Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster isolation and characterization of a second thioredoxin in D. Melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2 [J]. The Journal of Biological Chemistry, 2002, 277: 17457–17463.
    [39] Holger B, Stephan G, Andrea U, et al. Thioredoxin reductase from the malaria mosquito Anopheles gambiae Comparisons with the orthologous Enzymes of Plasmodium falciparum and the human host [J]. European Journal of Biochemistry, 2003, 270 (21): 4272–4281.
    [40] Holger B, Vincent M, David LA, et al. The mechanism of high M-r thioredoxin Reductase from Drosophila melanogaster [J]. The Journal of Biological Chemistry, 2003, 278: 33020–33028.
    [41] Fanis M, Julia KU, Mitsuko HT, et al. Mitochondrial and Cytoplasmic Thioredoxin Reductase Variants Encoded by a Single Drosophila Gene Are Both Essential for Viability [J]. The Journal of Biological Chemistry, 2002, 277: 11521–11526.
    [42] Alscher RG. Biosynthesis and antioxidant function of glutamylcysteine synthetase in tomato cells selected for gluthaione in plants [J]. Physiology Plant, 1989, 77:457-464
    [43] Dorothy EH, Brian GT, James JG. Redox state changes in density-dependent regulation of proliferation [J]. Experimental Cell Research, 1997, 232 (1): 435–438.
    [44] Danyelle MT, Kenneth DT, Haim T. The importance of glutathione in human disease [J]. Biomedicine and Pharmacotherapy, 2003, 57: 145–155.
    [45] Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis [J]. Molecular Aspects of Medicine, 2009, 30:1-12.
    [46] Helmut S. Glutathione and its role in cellular functions [J]. Free Radical Biology and Medicine, 1999, 27 (9-10): 916-921.
    [47] Radyuk SN, Sohal RS, Orr WC. Thioredoxin peroxidases can foster cytoprotection or cell death in response to different stressors: over- and under-expression of thioredoxin peroxidase in Drosophila cells [J]. Biochemistry Journal, 2003, 371:743-752.
    [48] Wei NW, Jun Z, Peng W, et al. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress [J]. Comparative biochemistry and physiology Toxicology pharmacology, 2009, 150 (4): 428-35.
    [49] Shelly CL. Regulation of hepatic glutathione synthesis: current concept and controversies [J]. The FASBE Journal, 1999, 13: 1169-1183.
    [50] Katja S, Sabrina J, Leane L. Intracellular glutathione level as indicator for cellular stress: Method development [J]. Toxicology Letters, 2009, 189: S118.
    [51] Gerd PB, Jan KS, Thomas PJn. Membrane transport of hydrogen peroxide [J]. Biochimica and Biophysica Acta, 2006, 1758 (8): 994-1003.
    [52] Jeffrey AS, Brown FB. Energy, quiescence and the cellular basis of animal life spans [J]. Comparative Biochemistry and Physiology Part A, 2006, 143 (1): 12-23.
    [53] Cadenas E, Boveris A, Ragan CI. Production of superoxide redicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome C reductase from beef-heart mitochordria [J]. Archives of Biophysics, 1997, 180: 248-254.
    [54]方允中,郑荣梁.自由基生物学理论与应用[M].北京科学出版社, 2002: 233-271
    [55] Ying W, Larry WO, David WM. Antioxidante defense systems of two lipidopteraninsect cell lines [J]. Free Radical Biology & Medicine, 2001, 30 (11): 1254–1262.
    [56] Felton GW, Summers CB. Antioxidant systems in insect [J]. Arch Insect Biochem Physiol, 1995, 29 (2): 187-197
    [57] Wang Y, Oberley LW, Murhammer DW. Antioxidant defense systems of two Lepidopteran insect cell lines [J]. Free Radical Biology & Medicine, 2001, 30 (11): 1254-1262
    [58] Lu SC, Ge JL. Loss of suppression of GSH synthesis under low cell density in primary cultures of rat hepatocytes [J]. The American Journal of Physiology Cell Physiol, 1992, 263: C1181–C1189.
    [59] Huang ZZ, Li H, Cai J, et al. Changes in glutathione homeostasis during liver regeneration in the rat [J]. Hepatology, 1998, 27 (1): 147–153.
    [60] Huang ZZ, Chen CJ, Zeng ZH, et al. Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration [J]. The FASEB Journal, 2001, 15: 19-21.
    [61] Julian C, Elena O, Miren JA, et al. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells [J]. Clinical and Experimental Metastasis, 1999, 17 (7): 567–574.
    [62] Davis KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems [J]. IUBNB Life, 2000, 50: 279-289.
    [63] Kanzok SM, Fechner A, Bauer H, et al. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster [J]. Science, 2001, 291: 643- 646.
    [64]? Lu SC. Regulation of glutathione synthesis [J]. Molecular Aspects of Medicine, 2009, 30: 42-59.?
    [65]杨春宝,潘家祜. Prousion对氧自由基的清除作用[J].中国医药指南, 2 010, 8 (26): 48-50
    [66] Frank V, Eva V, James FD, et al. The role of active oxygen species in plant signal transduction [J]. Plant Science, 2001, 161: 405-414
    [67] Quan YY, Cheng L, Bin L, et al. Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori [J]. Insect Biochemistry and Molecular Biology, 2008. 38 (12): 1158-1164.
    [68] Kono Y, Shishido T. Distribution of glutathione S-transferase activity in insecttissues [J]. Appl Entomol Zool, 1992, 27 (3): 391-397
    [69] Zhao LC, Shi LG. Metabolism of hydrogen peroxide between univoltine and polyvoltine strains of Bombyx mori [J]. Comparative Biochemistry and Physiology, 2009, 152B: 339-345.
    [70] Zhao LC, Shi LG. Metabolism of hydrogen peroxide between diapause and non-diapause eggs of the bivoltine strain, Bombyx mori during chilling at 5oC [J]. Archives of Insect Biochemistry Physiology, 2010, 74 (2):127-134.
    [71] Rhee SG, Kang SW, Jeong W, et al. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins [J]. Current Opinion Cell Biology, 2005, 17: 183-189
    [72]李伟人,岑瑛,李晓红.病理性瘢痕中丙二醛、黄嘌呤氧化酶和总抗氧化能力的变化[J].中华整形外科杂志,2007, 23 (6): 526-527
    [73]刘冰,梁婵娟.生物过氧化氢酶研究进展[J].中国农学通报, 2005, 21(5): 223-224
    [74]王志华,沈良.锰过氧化氢酶及其模拟物的研究进展[J].杭州师范学院学报(自然科学版), 2006, 5 (6): 465-468
    [75] Kono Y, Fridovich I. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum-A new manganese containing enzyme [J]. Biochemistry Journal, 1983, 258 (10): 6015-6019
    [76] Barynin VV, Grebenko AI. T-catalase is a nonheme catalase of extremely thermophilic bacterium Thermus thermophi lus [J]. DoklAkad Nauk SSSR, 1986, 286 (2): 461-464
    [77]刘丽华,沈卫德,王蕾.过氧化氢酶与家蚕抗性[J].中国蚕业, 2004, 25 (2): 13-15.
    [78]陈凤菊,高希武等.昆虫谷胱甘肽S转移酶的基因结构及其表达调控[J].昆虫学报, 2005, 48 (4): 600-608.
    [79] Grant DF, Hammock BD. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti [J]. Molecular General Genetics, 1992, 234 (2): 169–176.
    [80] Federica O, Louise CR, John V, et al. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae [J]. Biochemistry Journal, 2003, 373 (3):957-963.
    [81] Kohji Y, Yuichi S, Yoichi A, et al. Molecular and biochemical characterization of a Zeta-class glutathione S-transferase of the silkmoth [J]. Pesticide Biochemistry and Physiology, 2009, 94 (1): 30-35.
    [82] Kohji Y, Sumiharu N, Yutaka B, et al. Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori [J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2009, 149 (4): 461-467.
    [83] Kohji Y, Zhang PB, Fumio M, et al. Cloning, expression and characterization of theta-class glutathione S-transferase from the silkworm, Bombyx mori [J].Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, 141 (3): 340-346.
    [84] Agianian B, Tucker PA, Schouten A, et al. Structure of a Drosophila Sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products [J]. J Molecular Biology Journal, 2003, 326: 151-165.
    [85] Atkins WM, Wang RW, Bird AW, et al. The catalytic mechanism of glutathione S-transferase (GST): spectroscopic determination of the pKa of Tyr-9 in ratalpha 1–1 GST [J]. J Biochemistry Journal, 1993, 268: 19188-11991.
    [86] Beall C, Fyrberg C, Song S, Fyrberg E. Isolation of a Drosophila gene encoding glutathione S-transferase [J]. Biochemistry Genetics, 1992, 30: 515-527.
    [87] Board PG, Baker RT, Chelvanayagam G, Jermiin LS. A novel class of glutathione transfease in a range of species from plants to humans [J]. Biochemistry Journal, 1997, 328: 929-935.
    [88] Board PG, Coggan M, Chelvanayagam G, et al. Identifica-tion, characterization, and crystal structure of the Omega class glutathione transferases [J]. Biochemistry Journal, 2000, 275: 24798-24806.
    [89] Kenneth DT. Glutathione-associated enzyme in anticancer drug resistance [J]. Cancer Research, 1994, 54: 4313-4320.
    [90] Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast [J]. Biochemistry Journal, 1994b, 269 (4): 27670-27678
    [91] Chae HZ, Robison K, Poole LB, et al. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiolspecific antioxidant define a large family of antioxidant enzymes [J]. Proc NatlAcad Sci USA, 1994b, 94 (91): 7017-7021
    [92] Chae HZ, Uhm TB, Rhee SG. Dimerization of thiolspecific antioxidant and the essential role of cysteine 47 [J]. Proceedings of the National Academy of Sciences , 1994c, 91: 7022-7021
    [93] Wood ZA, Schroder E, Robin HJ, Poole LB. Structure, mechanism and regulation of peroxiredoxins [J]. Trends Biochemistry Science, 2003b, 28: 32-40
    [94] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling [J]. Free Radical Biology and Medicine, 2005, 38: 1543-1552
    [95] Noguera MV, Krimm I, Walker O, Lancelin JM. Protein-protein interactions within peroxiredoxin systems [J]. Photosynth Research, 2006, 89: 277-290
    [96] Lee KS, Kim SR, Park NS, et al. Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection [J]. Insect Biochemistry and Molecular Biology, 2005, 35: 73-84
    [97] Wang Q, Chen K, Yao Q, et al. Identification and characterization of a novel 1-Cys peroxiredoxin from silkworm, Bombyx mori [J]. Comparative Biochemistry and Physiology, Part B, 2008, 149: 176-182
    [98] Zong ZH, Chang JC, Zhao HZ, et al. Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration [J]. The FASEB Journal, 2001, 15:19-21
    [99] Huang ZZ, Li H, Cai J, et al. Changes in glutathione homeostasis during liver regeneration in the rat [J]. Hepatology, 1998, 27 (1): 147–153.
    [100] Julian C, Elena O, Miren JA, et al. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells [J]. Clinical and Experimental Metastasis, 1999, 17 (7): 567–574.
    [101] Cadenas E, Boveris A, Ragan CI. Production of superoxide redicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome C reductase from beef-heart mitochordria [J]. Archives of Biophysics, 1997, 180: 248-254.
    [102]方允中,李文杰.自由基与酶在生物学和医学中的作用[M].北京:科学技术出版社, 1989, 45-162.
    [103] Schrecker R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor inHIV-1 [J]. European Molecular Biology Organization Journal, 1991, 10: 2247-2258.
    [104] Boyland E, Chasseaud LF. The role of glutathione and glutathione S-transferase in mercapturic acid biosynthesis [J]. Advances in Enzymology and Related Areas of Molecular Biology, 1969, 32: 173-219.
    [105] Meister A. Biosynthesis and function of glutathione, an essential biofactor [J]. Journal of Nutrition Science and Vitaminology (Tokyo), 1992, Spec No: 1-6.
    [106] Vontas JG, Small GJ, Hemingway J. Glutathione S-transferase as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal, 2001, 357: 65-72.
    [107] Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferase [J]. Annual Review of Pharmacology and Toxicology, 2005, 45: 51-88.
    [108] Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis [J]. Molecular Aspects of Medicine, 2009, 30: 1-12.
    [109] Krishnan N, Kodrík D, Kíudkiewicz B, Sehnal F. Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say) [J]. Insect Biochemistry and Molecular Biology, 2009, 39: 180-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700