用户名: 密码: 验证码:
三维曲井抽油杆柱动力学特性分析方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油工业中的定向井、水平井的实际井眼轨迹是一条不规则三维空间曲线,具有复杂的空间特征,本文统称其为三维曲井。三维曲井中的抽油杆柱力学行为与常规直井存在很大的差别,主要缘于井眼轨迹的曲率和挠率变化使得具有超细长比的抽油杆柱在井下往复运动时承受轴向拉压、扭转和弯曲的耦合作用,并表现出典型的几何非线性和接触非线性特征,也间接造成了抽油杆柱的偏磨和断脱问题日益严重。而小井眼定向井及稠油水平井的应用更加凸显了这种差别,所以常规的有杆泵抽油系统数值模拟理论不再能够准确适用于定向井。此外,在这一领域还有一个核心的科学问题一直没有得到有效的解决,即目前常用的抽油杆柱力学模型,都采用了抽油杆柱轴线与井眼轴线重合的假设,这样就无法反映抽油杆柱在井筒中的偏心特征。为了能够准确的描述井下抽油杆柱的动态特征和三维构形、分析稳定器数量和位置的影响,开展抽油杆柱三维力学分析新方法探讨就十分必要。
     本文首先在抽油杆柱微元体三维受力分析的基础上,考虑实际井眼轨迹变化和环空液体阻力的影响,完善了抽油杆柱在实际井眼中的振动模型,并以实测数据为边界条件,用有限差分法对其进行了求解,分析了抽油杆柱的动力学特性,预测了抽油杆柱偏磨严重点位置。
     其次,针对抽油杆柱动力学特性有限差分法的局限性,利用有限元法建立了抽油杆柱动力学模型。这种方法能够体现在实际井眼约束条件下,抽油杆柱的几何非线性和接触非线性特征,能够反映抽油杆柱的轴向载荷和横向变形、弯曲之间的耦合作用。首次采用结点迭代法和Newmark直接积分法相结合的方式对抽油杆柱的动力学有限元模型进行了求解,利用直接约束法处理杆-管的非线性接触问题,通过循环迭代求解得到了抽油杆柱每一结点在6个自由度方向的受力和变形,描述了抽油杆柱在实际井眼中的动态三维构形及载荷、应力特征。同时,比较了扶正器安装前后及安装方式对抽油杆柱的空间构形和受力的影响,阐明了本文提出的抽油杆柱三维动力学特性有限元分析方法的可靠性和有效性。
     第三,动态边界条件是计算分析抽油杆柱动力学特性的必要参数。在小井眼定向井中泵的小型化会导致下端动态边界条件的变化,利用经典的经验公式计算的泵功图作为边界条件的准确性已远远不能满足计算分析的需要。为了获得更加准确的计算结果,针对小井眼定向井的特点,首次研制了适合于小井眼定向井的井下测量工具,进行了小井眼定向井抽油杆柱的井下动态参数测试工作,得到了实测的边界条件。
     第四,通过实测井筒温度数据,研究了克拉玛依油田两口稠油水平井的流体粘度变化特征,确定了杆、管环空中变粘性流体的阻力模型,并对稠油水平井抽油杆柱的动态载荷、应力、变形进行了计算分析。
     最后,采用本文建立的模型和算法,用MATLAB语言编制了计算程序,通过与已有解析结果的算例进行对比和分析,验证了程序的正确性。通过比较抽油杆柱动态特性的数值分析结果和实测数据,进一步验证了抽油杆柱有限元模型及本文算法的合理性与有效性。
The trajectory of directional or horizontal well, which is called three-dimension (3D) curved well in this thesis, is an irregular spatial curve in petroleum industry. Generally, the mechanical behaviors of sucker rod strings in 3D curved well are significant different from that in conventional vertical well. The differences between them are mainly due to the variation of curvature and torsion of wellbore trajectory. It makes the super-thin rod strings with reciprocating motion in wellbore endure the couplings among axial force, torsion and flexure, and the features of geometrical nonlinearity and contact nonlinearity of rod strings are exhibited. Thus the eccentric wear and the break-off of rod strings are induced indirectly and seriously. When slim hole directional well and heavy oil horizontal well were used, this kind of difference is more obviously. Therefore, the numerical simulation method of rod strings dynamics for conventional vertical well and 2D directional well is not applicable to 3D curved well. In addition, a key science problem has not been solved in the dynamic analysis of rod strings, that is, the axis of rod strings is assumed to coaxial with the borehole, then the eccentric characteristics of rod strings in wellbore can not be described clearly. In order to characterize the dynamic properties and the space configuration of rod strings accurately, and to analyze the effection of the position of centralizers on them, a new method for three dimension mechanical analysis of rod strings is need to be studied.
     First, with the 3D microelement analysis, the vibration model for sucker rod strings was improved by taking into account the influence of actual well trajectory and the fluid resistance. The finite difference method was used to solve the model with the measured data as boundary condition. Then the dynamic properties of rod strings were analyzed, and the eccentric wear position of rod strings was predicted by this method.
     Second, to overcome the coaxial assumption used in above finite difference method, a new dynamic model of sucker rod strings was established and solved by using finite element method. This new method can embody the features of geometrical nonlinearity and contact nonlinearity, and the couplings among axial force, lateral deformation and flexure of super-thin rod strings in actual 3D curved wellbores. With the time-domain straggling of the kinetic process for sucker rod strings by the Newmark method, the 3D dynamic finite element equation was circularly solved by using the crunode iterative method for the first time. Therefore, the deformation and load in six orientations for each node could be obtained through treating with the dynamic contact between tube and rod strings by means of a direct constraint procedure. Then the 3D spatial configuration of rod strings in wellbore was described in details. In the meantime, the validity and reliability of the finite element method proposed in this thesis were confirmed by comparing the difference of spatial configuration and load of rod strings with various fixation patterns of centralizer and with or without it.
     Third, the classical empirical formula can not give an reasonable boundary condition when new unconventional rod pumps with small sizes were used in slim hole directional well. In order to obtain more accurate results, a testing tool for slim hole directional well was developed and then used in two wells, and the measured boundary conditions were obtained for the first time.
     Forth, with the measured temperature data, the oil viscosity in heavy oil horizontal wells of Kelamayi oil field was investigated, and a resistance model related to variable-viscosity annulus fluid was determined. Then the dynamic features of rod strings in heavy oil horizontal wells were calculated and analyzed.
     Finally, based on the simulation model and numerical methods presented in this thesis, a simulating program was compiled by using MATLAB language. The program was verified by examples with analytic solution, and the validity and rationality of the finite element method proposed in this thesis were confirmed by comparing the numerical results and the measured data.
引文
[1]万仁溥.采油工程手册[M].北京:石油工业出版社, 2000, 8: 361.
    [2]冉箭声,王海绘.抽油杆常见事故原因分析及防治对策[J].断块油气田, 2002, 9(1): 73-75.
    [3]杨海滨,狄勤丰,王文昌.抽油杆柱与油管偏磨机理及偏磨点位置预测[J].石油学报, 2005, 26(2): 100-103.
    [4]狄勤丰,王文昌,胡以宝,等.钻柱动力学研究及应用进展[J].天然气工业, 2006, 26(4): 57-59.
    [5]王文昌,狄勤丰,邹海洋,等.抽油杆柱三维力学分析及设计系统(DARS)的开发和应用[J].钻采工艺, 2008, 31(1): 98-101.
    [6] Miska S, Sharaki A, Rajtar J M. A simple model for computer-aided optimization and design of sucker-rod pumping systems[J]. Journal of Petroleum Science and Engineering, 1997, 17: 303-312.
    [7] Xu Jun. Design and analysis of deviated rod-pumped wells[R]. SPE 64523, 2000.
    [8] DaCunha J J, Gibbs S G. Modeling a finite-length sucker rod using the semi-infinite-wave equation and a proof of Gibbs’conjecture[J]. SPE Journal, 2009, 14(1): 112-119.
    [9]刘柏希,刘宏昭,原大宁,等.定向井有杆抽油系统动态性能分析方法[J].计算力学学报, 2008, 25(1): 54-58.
    [10]王旱祥,马邦勇,刘传礼.水平井抽油杆柱力学模型的建立与分析[J].机械强度, 2009, 31(6): 952-956.
    [11]油气资源统计数据. http://www.petrochina.com.cn. 2003.
    [12]刘文章.稠油注蒸汽热采工程[M],北京:石油工业出版社, 1997.
    [13] Samuel M Jones. Sucker rod [P]. U.S.528168, October 30, 1894.
    [14] Emory N Kemler. Hydraulic pumping: a patent and literature survey of hydraulic Pumping of oil wells[R]. Texas, USA: Summary Reports, Spring Park, MN, 1955.
    [15] Halderson M H. Artificial brain is required to solve the sucker-rod pumping problem[J]. Drilling and Production Practice, 1953: 210-222.
    [16]崔振华,刘元虎.机械采油系统工程[M].北京:石油工业出版社, 1998.
    [17]董世民,李宝生.水平井有杆抽油系统设计[M].北京:石油工业出版社, 1996.
    [18]张琪.采油工程原理与设计[M].北京:石油大学出版社, 2000.
    [19] Design calculation of sucker rod pumping systems[S]. API RP 11L, American Petroleum Institute, Washington, D.C., 1967.
    [20] Fred D Griffin. Electric analog study of sucker-rod pumping systems[J]. Drilling and Production Practice, 1968: 232-250.
    [21] API catalog of analog computer dynamometer Cards[S]. API BUL 11L2, First Ed., Washington, D.C., 1969.
    [22] Gibbs S G. Predicting the behavior of sucker-rod pumping systems[J]. Journal of Petroleum Technology, 1963, 15(7): 769-778.
    [23] Gibbs S G. A general method for design and analysis of rod pumping system Performance [R]. SPE 6850, 1977.
    [24] Neely A B. API recommend practice for design calculation for sucker rod pumping system[S]. API RP 11L, Thirded, Washington, D. C., 1977.
    [25] Doty D R. An improved model for suck rod pumping[R]. SPE 10245, 1982.
    [26] Chancin J E, Purcupile J C. A new model for studying oil well pumping installations[R]. SPE 16918, 1987.
    [27]余国安.有杆泵抽油井的三维振动[J].石油学报, 1989, 10(2): 76-83.
    [28] Khodabandeh A, Miska S. A simple method for predicting the performance of a sucker- rod pumping system[R]. SPE 23429, 1991.
    [29] Khodabandeh A, Miska S. A new approach for modeling fluid inertia effects on sucker- rod pump performance and design[R]. SPE 24329, 1992.
    [30] Everitt T A, Jennings J W. An improved finite-difference calculation of down-hole dynamometer cards for sucker-rod pumps[R]. SPE 18189, 1991.
    [31] Lukasiewicz S A. Dynamic behavior of the sucker rod string in the inclined well[R]. SPE 21665, 1991.
    [32] Lekia S D, Evans R D. A coupled rod and fluid dynamic model for predicting the behavior of sucker-rod pumping systems[R]. SPE 21664, 1991.
    [33] Gibbs S G. Design and diagnosis of deviated rod-pumped wells[C]. Journal of Petroleum Technology, 1992(6): 281-290.
    [34] Xu Jun. A new approach to the analysis of deviated rod-pumped wells[R]. SPE 28697, 1994.
    [35] Xu Jun. A method for diagnosing the performance of sucker rod string in straight inclined wells[R]. SPE 26970, 1994.
    [36] Lubinski A, Woods H B. Factors affecting the angle of inclination and dog-legging in rotary bore holes[J]. Drilling and Production Practice, 1953: 222-251.
    [37] Lubinski A, Blenkarn K A. Buckling of tubing in pumping wells, Its effects and means for controlling it[J]. Petroleum Transactions, AIME, 1957, 210(12): 73-88.
    [38]江汉采油工艺研究所.封隔器理论及应用基础[M].北京:石油工业出版社, 1983.
    [39]龚伟安.液压下的管柱弯曲问题[J].石油钻采工艺, 1988, 2(3): 35-39.
    [40]金国梁,陈琳.下部抽油杆柱的失稳弯曲及滚轮接箍扶正器的合理配置[J].石油学报, 1990(2): 91-94.
    [41]冯建华,罗铁军,金学锋.双封隔器复合管柱受力分析方法及应用[J].石油钻采工艺, 1993(2): 84-88.
    [42]李子丰,李敬媛,张少南.定向水平井有杆泵抽油系统动态参数诊断和预测的数学模型[J].大庆石油学报, 1994, 18(1): 28-31.
    [43]李子丰,李敬元.定向井有杆泵抽油系统井下工况力学分析的数学模型及应用[J].工程力学, 1995(增刊): 498-504.
    [44] Lollback P A, Wang G Y, Rahman S S. An alternative approach to the analysis of sucker-rod dynamics in vertical and deviated wells[J]. Journal of Petroleum Science and Engineering. 1997, 17(3): 313-320.
    [45] Kyllingstad A. Buckling of tubular strings in curved wells[J]. Journal of Petroleum Science and Engineering, 1995, 12(3): 209-218.
    [46] Long S W. Measured rod string/tubing wear and associated side loading[R]. SPE 37502, 1997.
    [47] Long S W. Euler loads and measured sucker rod/sinker bar buckling[R]. SPE 35214, 1996.
    [48]高国华.杆柱在水平圆孔中的稳定性分析[J].力学与实践, 1995, 17(4): 28-31.
    [49]高国华,高德利.管柱在垂直井眼中的屈曲分析[J].西安石油学报, 1996, 11(1): 45-48.
    [50]高宝奎,高德利,王平.水平井管柱屈曲研究中的争议[J].石油钻采工艺, 1997, 19(3): 20- 24.
    [51]高国华.油井管柱的屈曲和分叉[M].北京:石油工业出版社, 1996.
    [52]李敬元,李子丰,魏继得,等.螺杆泵驱动杆柱力学分析及稳定器布置[J].石油机械, 1998, 26(1): 13-28.
    [53] Li Zifeng. Fundamental equations for dynamical analysis of rod and pipe string in oil and gas wells[R]. SPE 56044, 1999.
    [54]李子丰,李敬元,马兴瑞,等.油气井杆管柱动力学基本方程及应用[J].石油学报, 1999, 20(3): 97-90
    [55] Li Jingyuan, Li Zifeng. Prediction and diagnosis of sucker-rod pumping systems in directional wells[R]. SPE 57014, 1999.
    [56] Xu Jun, Doty D R. A comprehensive rod-pumping model and its applications to vertical and deviated[R]. SPE 52215, 1999.
    [57] Xu Jun, Shirazi S A, Doty D R, et al. Prediction of turbulent friction in rod-pumped wells [R]. SPE 62489, 2000.
    [58]从蕊,董世民.抽油杆柱稳定性问题的研究[J].石油机械, 2002, 30(8): 17-19.
    [59]董世民,马德坤,黄秀华.抽油杆柱的纵向振动特性与共振条件[J].石油机械, 2003, 29(5): 22-24.
    [60]王荩贤,蔡中熊,田丰,等.用有限元方法求解FRP抽油杆头部的接触问题[J].石油学报, 1989, 10(2): 67-73.
    [61]彭勇,余国安,高国华.抽油杆柱有限元模型及诊断用解法[J].石油机械, 1993. 21(12): 44-48.
    [62]彭勇,王鸿飞,余国安,等.抽油杆柱有限元动力方程的差分解及其收敛性[J].西安石油学院学报, 1994, 9(3): 42-46.
    [63] Dykstra M W. Nonlinear drill string dynamics[D]. Tulsa, USA: The University of Tulsa. 1996.
    [64]张宏,刘海浪,孙应民.定向井有杆泵抽油系统的有限元分析[J].石油学报, 2000, 21(6): 102-106.
    [65]丁泉顺,陈艾荣,项海帆.空间杆系结构实用几何非线性分析[J].力学季刊, 2001, 22(3): 300-306.
    [66]刘巨保,岳欠杯,李治淼,等.井筒内杆管柱双层接触有限元分析及应用[J].力学与实践, 2009, 31(2): 35-39.
    [67]刘合,王素玲.用有限元法预测抽油杆柱与油管柱偏磨点位置[J].石油学报, 2008, 29(1): 149-452.
    [68]吴奇,刘合,王素玲.抽油机井抽油杆柱瞬态力学行为有限元分析方法[J].中国机械工程, 2005, 16(22): 1991-1994.
    [69]刘柏希,刘宏昭,原大宁,等.定向井油管抽油系统动态性能分析方法[J].计算力学学报, 2008, 25(1): 54-58.
    [70]原大宁,张海峰,刘宏昭,等.基于ANN的定向井有杆抽油系统悬点示功图特征参数的计算[J].计算力学学报, 2008, 25(4): 557-562.
    [71]王风山,朱君,王素玲,等.抽油机井杆柱振动载荷有限元分析[J].大庆石油地质与开发. 2006, 25(1): 58-79.
    [72]朱君,史海峰,周瑞芬,等.基于瞬态动力学分析的抽油杆柱动态特性研究[J].系统仿真学报, 2008, 20(16): 4261-4268.
    [73]刘柏希,刘宏昭.基于LuGre摩擦模型的定向井有杆抽油系统动态参数预测[J].石油学报, 2008, 29(6): 938-941.
    [74]刘巨保,张强,罗敏.油管内偏心抽油杆下冲程阻尼系数研究[J].石油矿场机械, 2008, 37(1): 1-5.
    [75] Di Qinfeng, Chang Yongdou, Zhou Hejun. The application and evaluation of a newvertical and fast drilling technology in tuha oilfield[C]. Malaysia: Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, 2004.
    [76]狄勤丰,李天太,王文昌.磁独立六加速度计井斜方位角的测量机理研究[J].天然气工业, 2005, 25(2): 67-69.
    [77]唐继平,狄勤丰,胡以宝,等.铝合金钻杆的动态特性及磨损机理分析[J].石油学报, 2010, 31(4): 684-688.
    [78] Zhu Weiping, Di Qinfeng. Effect of prebent deflection on lateral vibration of stabilized drill collars[J]. SPE Journal, 2010(in press).
    [79]胡以宝,狄勤丰,王文昌,等.斜直井眼中转速对钻柱动力学特性的影响[J].工程力学, 2010, 27(5): 184-190.
    [80]王文昌,狄勤丰,杨海滨.基于实际井眼轨迹的抽油杆柱振动模型建立与应用[C].上海:国际工业博览会第三届上海市”工程与振动”科技论坛, 2005.
    [81]王文昌,狄勤丰,姚建林,等.三维定向井抽油杆柱力学特性有限元分析新方法[J].石油学报, 2010, 31(6): 1018-1023.
    [82]狄勤丰,王文昌,胡以宝,等.定向井抽油杆柱空间形态的计算方法研究[J].中国石油大学学报(自然科学版)(已录用).
    [83]狄勤丰,王文昌,姚永汉,等.底部钻具组合动力学模型及涡动特性仿真[J].中国石油大学学报(自然科学版), 2010, 34(3): 53-56.
    [84]王文昌,狄勤丰,王新亮,等.定向井抽油杆柱系统的力学分析[C].郑州:中国力学学术大会, 2009.
    [85]王文昌,狄勤丰,姚建林,等.小井眼定向井抽油杆柱底部边界载荷确定方法[J].钻采工艺, 2010, 03(6): 77-80.
    [86]王文昌,狄勤丰,姚建林,等.基于实际井眼轨迹的有杆泵抽油系统泵工况诊断方法[J].石油钻采工艺, 2010, 08(6).
    [87]曲占庆,杨海滨,刘松林,等.井下抽油杆力学检测装置的研制与应用[J].石油机械, 2006, 34(1): 71-73.
    [88] Gibbs S G. A review of methods for design and analysis of rod pumping installations[R]. SPE 9980, 1982.
    [89] Gibbs, S.G. Design and diagnosis of deviated rod-pumped wells[J]. Journal of Petroleum Technology, 1992, 44(7): 774-781.
    [90]李颖川.抽油杆柱设计数值方法[J].西南石油学院学报, 1993, 9(2): 75-79.
    [91] Miska S Z, Ardeshir Khodabandeh, Rajtar J M. Computer-aided design and optimization of sucker Rod Pumping Systems[R]. SPE 26966, 1994.
    [92] Xiang zhongYuan, Duan Yuting. The analysis of sucker rod string in directional well[J].SPE 29153, 1994.
    [93]赵洪激,苏福顺.抽油杆柱设计方法的讨论[J].钻采工艺, 1995, 18(4): 64-67.
    [94]赵洪激,张德春.竖直井抽油杆扶正器安放间距的研究[J].钻采工艺, 1995, 18(3): 31 -33.
    [95]赵洪激,董家梅.水平井抽油杆扶正器合理间距的二维研究[J].石油学报, 1995, 16 (4): 140-147.
    [96]赵洪激.斜直井抽油机井下杆柱力学计算[M].北京:石油工业出版社, 1997.
    [97]覃成锦,徐秉业,高德利.垂直井管杆柱的扶正器安放问题研究[J].石油钻采工艺, 2000, 22(3): 8-12.
    [98] Xu Jun. Design and analysis of deviated rod-pumped wells[R]. SPE 64523, 2000.
    [99]阎洪彬,刘景三,刘峰.在井斜60°以上井段实现有杆泵抽油[J].中国石油大学学报(自然科学版), 2002, 26(3): 41-46.
    [100] Kenneth Carstensen. Newly designed API-modified sucker rod connection & precision makeup method[R]. SPE 86920, 2004.
    [101]茅惠忠,王加富,王丘,等.稠油开采中抽油杆柱的优化配比设计应用[J].特种油气藏, 2004, 11(2): 43-47.
    [102]康小军,徐东.稠油生产过程中抽油杆柱断脱分析[J].石油天然气学报, 2005, 27(6): 954-956.
    [103]崔之健,胡洪平.新型空心液力反馈稠油泵及其结构优化设计[J].石油机械, 2006, 34(9): 39-41.
    [104]岳桂杰.抽稠油管柱的设计[J].装备制造技术, 2006, 5: 46-49.
    [105]王文昌,狄勤丰,顾春元,等.基于实际井眼轨迹的抽油杆柱API设计方法[J].石油钻探技术, 2006, 34(1): 49-53.
    [106]王文昌,狄勤丰,杨海滨,等.江苏油田抽油杆柱组合的合理性评价与设计优化[J].钻采工艺, 2006, 29(6): 89-91.
    [107]杨敏嘉,赵洪激,刘玉泉.斜直井抽油杆扶正器的使用[J].石油机械. 1991, 19(6): 24- 28.
    [108]吴则中,李景文,赵学胜,等.抽油杆[M].北京:石油工业出版社, 1994.
    [109]董世民,李宝生.水平井有杆抽油系统设计[M].北京:石油工业出版社, 1996.
    [110]许新华.助抽扶正器在防偏磨工艺技术的应用[J].内蒙古石油化工, 2006, 2: 104- 107.
    [111]曲明艺,吴树林,赵廷成,等.抽油杆万向导向技术的研究设计与应用[J].石油矿场机械, 2002, 31(5): 18-20.
    [112]常瑞清,师国臣,王秀玲,等.新型抽油杆柱加重系统[J].石油机械, 2003, 31(7): 73-74.
    [113]狄勤丰,王文昌.小套管井抽油杆柱优化设计与防偏磨技术研究报告[R].西安:长庆油田分公司低渗透研究中心, 2009.
    [114]孙军.抽油机井抽油杆柱旋转工艺技术初探[J].钻采工艺, 2002, 25(3): 69-72.
    [115]杨荣建,李翔翔,张军,等.抽油杆自动间歇旋转器的研制与应用[J].石油矿场机械, 2005, 34(5): 90-91.
    [116]侯洪涛,尚朝辉,邹群,等.高含水期小泵深抽井防偏磨技术[J].石油地质与工程, 2009, 23(1): 125-127.
    [117] Ramey H J. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14 (4): 427-435.
    [118] Willhite G Paul, William K Dietrich. Design criteria for completion of steam injection wells[J]. Journal of Petroleum Technology, 1967, 19(1): 15-21.
    [119] Willhite G Paul. Over-all heat transfer coefficients in steam and hot water injection wells [J]. Journal of Petroleum Technology, 1967, 19(5): 607-615.
    [120] Earlougher Jr, Robert C. Some practical considerations in the design of steam injection wells[J]. Journal of Petroleum Technology, 1969, 21(1): 79-86.
    [121] Pacheco E F, Farouq S M Ali. Wellbore heat losses and pressure drop in steam injection[J]. Journal of Petroleum Technology, 1972, 24(2): 139-144.
    [122] Dale H Beggs, James P Brill. A study of two-phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973, 25(5): 607-617.
    [123] Ballal B Y, Rivlin R S. Flow of a viscoelastic fluid between eccentric rotating cylinders [J]. Journal of Rheology, 1976, 20(1): 65-101.
    [124] Balmer R T, Florina M A. Unsteady flow of an inelastic power-law fluid in a circular tube [J]. Journal of Non-Newtonian Fluid Mechanics, 1980, 7(2): 189-198.
    [125] Jerry P, Fontanilla, Khalid Aziz. Prediction of bottom-hole conditions for wet steam injection wells[J]. The Journal of Canadian Petroleum Technology, 1982, 21(2): 82-88.
    [126]昌锋,张琪,吴晓东.抽油杆柱在粘性流体中阻力的实验研究[J].中国石油大学学报(自然科学版), 1994, 18(1): 37-42.
    [127]余梅卿,申秀丽.稠油斜直井抽油杆扶正器安放间距计算[J].石油机械, 1997, 25(12): 7-9.
    [128]曲占庆,张琪.空心杆掺稀油深层稠油举升设计方法研究[J].中国石油大学学报(自然科学版), 2000, 24(5): 63-67.
    [129]郑俊德,孙智,任刚,等.聚合物产出液在杆管环空中的流动[J].石油钻采工艺, 2001, 23(5): 45-49.
    [130]马亮,聂建军.含运动杆及接箍的管流流动的数值模拟研究[J].水动力学研究与进展, 2003, 18(1): 1-7.
    [131] Jin hui, Xu Mingyu. Some notes to“on the axial flow of generalized second order fluid in a pipe”[C]. Dalian: Proceedings of the fourth international conference on fluid mechanics, 2004.
    [132]韩洪升,王德民,国丽萍,等.粘弹性流体法向应力对抽油杆偏磨的影响机理[J].石油学报, 2004, 25(4): 92-95.
    [133]刘德基,尹玉川,魏三林,等.深层稠油完井管柱及有杆泵系统优化研究[J].特种油气藏, 2007, 14(1): 94-98.
    [134]梁若筠.定向井有杆抽油系统诊断力学模型[J].石油矿场机械, 2001, 30(5): 19-21.
    [135]李颖川.采油工程[M].北京:石油工业出版社, 2002.
    [136] Maidla E E, Wojtanowicz A K. Field comparison of 2-D and 3-D methods for the borehole friction evaluation in directional wells[R]. SPE 16663, 1987.
    [137] Maidla E E, Wojtanowicz A K. Field method of assessing borehole friction for directional well casing[R]. SPE 15695, 1987.
    [138]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [139]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社, 2005.
    [140]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社, 1996.
    [141] Hsiao K M, Hou F Y. Nonlinear finite element analysis of elastic frames[J]. Computers & Structures. 1987, 26(4): 693-701.
    [142] K.M.Hsiao, J.Y.Jang. Nonlinear Dynamic Analysis of Elastic Frames[J]. Computers & Structures. 1989, 33(4): 1057-1063.
    [143]孙纬翰.应用向量式有限元素法于挠性机构的运动分析[D].台北:国立台湾大学, 2004.
    [144]罗尧治,董石麟.含可动机构的杆系结构非线性力法分析[J].固体力学学报, 2002, 23(3): 288-294.
    [145] Eyassu Woldesenbet. Finite element stress analysis of composite sucker rods[J]. Journal of Energy Resources Technology, 2003, 12(145): 299-303.
    [146]谈梅兰.三维曲井内钻柱的双重非线性静力有限元法[D].南京:南京航空航天大学, 2004.
    [147]薛纭,刘延柱,陈立群.超细长弹性杆的分析力学问题[J].力学学报, 2005, 37(4): 485-492.
    [148] Cook R D. Concepts and applications of finite element analysis[M].何穷,程耿东,译.北京:科学出版社, 1981.
    [149] Bathe K J, Wilson E L. Numerical methods in finite element analysis[M].林公豫,罗恩,译.北京:科学出版社, 1991.
    [150] Podio A L, Jaime Gomez, Mansure A J, et al. Laboratory-instrumented sucker-rod pump [R]. SPE 83674, 2003.
    [151]刘修善.井眼轨道设计理论与描述方法[M].哈尔滨:黑龙江科学技术出版社, 1993.
    [152]黄宗明,陈滔.基于有限单元柔度法和刚度法的非线性梁柱单元比较研究[J].工程力学, 2003, 20(5): 24-31.
    [153] Robert F Mltchell. The effect of friction on initial buckling of tubing and flowlines[R]. IADC/SPE 99099, 2007.
    [154] Timoshenko S. Theory of elastic stability[M].张福范,译.北京:科学出版社, 1958.
    [155]陈月明.注蒸汽热力采油[M].北京:石油大学出版社, 1996.
    [156]陶德伦.稠油区块采油工程技术的研究和应用[J].大庆石油地质与开发, 1999, 18(5): 36-38.
    [157]严其柱,王凯,薛二丽,等.河南油田含水稠油粘温关系的研究[J].油气储运, 2005, 24(12): 36-41.
    [158]康志勇,张勇.辽河油区计算稠油粘度通用方程[J].特种油气藏, 2005, 12(6): 101-102.
    [159]任瑛,李煌中,李景勤.水平井稠油开采中电加热井筒的抽汲工况[J].中国石油大学学报(自然科学版), 1997, 21(2): 46-49.
    [160]陈民锋,郎兆新,莫小国.超稠油油藏蒸汽吞吐参数优选及合理开发界限的确定[J].中国石油大学学报(自然科学版), 2002, 26(1): 39-42
    [161] Albahlani A M, Babadagli T. A critical review of the status of SAGD: Where are we and what is next?[R]. SPE 113283, 2008.
    [162]孙永权.超稠油开发技术现状与实例[J].内蒙古石油化工, 2010, 8: 240-241.
    [163]郑俊德,刘合,阎希照,等.聚合物产出液在抽油泵的缝隙中流动[J].石油学报, 2000, 21(1): 71-75.
    [164]吴晓东,张琪,陈德春.高凝、高粘油抽油机井诊断技术[J].中国石油大学学报(自然科学版), 1994, 18(增刊):27-30.
    [165]沈国华.高凝高粘原油井筒粘度计算模型[J].石油钻探技术, 2008, 36(4): 67-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700