用户名: 密码: 验证码:
有源符合中子法测量贫化轴部件质量的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在核裁军过程中,核弹头的探测是对核裁军条约执行情况进行核查的重要内容。因为弹芯的结构涉及到核武器的设计机密,在对核武器的类型或拆卸的核材料进行核查时,不允许将其取出进行直接测量,因此如何确定密封容器中核材料的属性就成了军控核查中的重要环节,无损测量技术也就由此发展而来。
     铀是核武器重要的核材料,但由于其放射性比较弱,自发裂变中子发射率较低,通常来说,被动法难以测量,只能采用主动方法进行探测才更为有效。因此,铀部件及其属性的测量一直是军控核查技术中的一个难点。
     铀部件的属性虽然目前仍没有明确的定义,但是质量与浓缩度毫无疑问是铀部件最为重要的两个属性,铀部件质量的无损测量技术的研究,在军控核查中有着重要的意义。目前,对铀材料质量的探测方法主要有四种:时间关联符合法、主动缓发中子法、中子多重性测量分析法以及本论文所研究的有源符合中子法。有源符合中子法是通过外源中子诱发可裂变核素发生裂变,测量裂变中子的符合计数,从而确定核材料的含量。
     本论文的研究是通过有源符合中子法对贫化铀部件进行测量,寻求符合中子计数率与贫化铀部件的质量之间的关系。采用由62根3He计数管构成的井型符合中子探测器,选取Am-Be源作为诱发裂变的外中子源,通过屏蔽体的设计与优化减小了偶然符合计数对真符合计数的影响。实验测得的符合中子计数率与贫化铀部件质量存在着一定的线性关系,在中子源距离贫化铀部件132cm的距离条件下,线性拟合质量与标称质量的最大偏差为7.34%,主要形状影响因素为部件的外径。此外,依靠本实验的探测设备,还成功的进行了被动法测量,且由于消除了外径因素的影响,与主动测量结果相比线性更好,拟合质量最大偏差仅为4.05%,证明了对于贫化铀部件被动法测量同样可行。
     本论文之后也在同样的条件下进行了高浓铀部件的主动法测量,证明了本论文中搭建的实验系统也兼具了对高浓铀部件质量的测量能力。而对于高浓铀,符合中子计数率与其质量近似成指数关系,拟合质量最大偏差为12.16%,且部件的厚度成为了更大的影响因素。
In the process of nuclear disarmament, nuclear warhead detection is an important verification technology of nuclear disarmament treaty. Because the structure of warhead core concerns to the secrets of nuclear weapons'design, it isn't allowed to take the core out for direct measurement during the verification of the nuclear material. So it becomes an important part of arms control verification that how to certain the attributes of the nuclear material in the sealed containers, the non-destructive measurement technique appears and develops from this.
     Uranium is an important nuclear weapons material, but because of its weak radioactivity and low emission rate of the spontaneous fission neutrons, the passive method is difficult to measure generally, and active method is more effective. Therefore, the attributes measurement of uranium components is a difficult in arms control verification.
     The attributes of uranium is still no clear definition, but it is undoubtedly that the mass and the enrichment of uranium components are the most important two attributes. So the research of uranium components non-destructive measurement technique is quite important in arms control verification. At present, there are four methods of the mass measurement of uranium components, they are:time-correlated coincidence, active delayed neutron counting method, neutron multiplicity counting method, and active coincidence neutron counting method which is studied in this thesis. Active coincidence neutron counting method is to induce the fissile nuclides for fission reaction by external neutrons firstly, and then measure the fission neutron coincidence counting to determine the mass of nuclear material.
     The research of this thesis is through the measurement of the depleted uranium components with the active coincidence neutron counting method to explore the relationship between the coincidence neutron counting rate and the mass of the depleted uranium components. A well neutron coincidence detector including 62 3He counters is used, an Am-Be source is selected as the external neutron source for induced fission, and a shield is optimized to reduce influence of the accidental coincidence counts. As a result of the experiments, there is a linear relationship between the coincidence neutron counting rate and the mass of the depleted uranium components. In the 132cm distance conditions, the maximum deviation of the linear fit mass from the nominal mass of is 7.34%, and the main impact factor is the outer diameter of the depleted uranium components. In addition, relying on the detection equipments used in this experiment, the passive measurement is also finished successfully, and the linear correlation is better than that in the active measurement, because of the elimination of the influence of outer diameter. The maximum deviation of the linear fit mass is only 4.05% and it proves that it is feasible to measure the depleted uranium components with the passive method.
     The measurement of the highly enriched uranium components with the active coincidence neutron counting method under the same conditions is also carried out, which proves that the high enriched uranium components are also able to be measured in this experimental system. For highly enriched uranium, the relationship between the coincidence neutron counting rate and the mass of the components is exponential, the maximum deviation of the fit mass is 12.16%, and the thickness of the components has become the greater impact factor.
引文
[1]孙向丽.军备控制的发展与演变[J].世界经济与政治,2001(5):50~55.
    [2]刘恭梁,解东.军控核查与监测技术——历史回顾、技术特点与发展前景[A].中国工程物理研究院2003军控与核查技术论文集[C].中物院科技委军控学科委员会,中物院科技信息中心,2003.10:68~77.
    [3]刘成安,伍钧.核军备控制核查技术概论[M].北京:国防工业出版社,2007.
    [4]http://www.armscontrol.org/documents/sort
    [5]Kissinger, Shultz, Perry & Nunn call for A World Free of Nuclear Weapons, The Wall Street Journal January 4,2007.
    [6]Renewed call from Kissinger, Nunn, Perry and Shultz for Nuclear-free World, The Wall Street Journal, January 15,2008.
    [7]http://www.whitehouse.gov/the_press_office/Remarks-By-President-Barack-Obama-In-Prague-As-Delivered/
    [8]Tom Z. Collina, Daryl G. Kimball and the ACA Research Staff. The Case for the New Strategic Arms Reduction Treaty[R]. An Arms Control Association Brief,2010.12.
    [9]伍钧.核弹头探测技术数值模拟研究[D].中国工程物理研究院博士学位论文,2003.
    [10]Walter R. Kane, James R. Lemley, Peter E.Vanier, et.al. On Attributers and Templates for Identification of Nuclear Wapons in Arms Control. SAC-00-02, BNL-67164,2000.
    [11]刘素萍,龚建.属性测量与模板测量[A].中国工程物理研究院2003军控与核查技术论文集[C].中物院科技委军控学科委员会,中物院科技信息中心,2003.10:217~223.
    [12]Diana G. Langner, Robert P. Landry, Sin-Tai Hsue, et.al. Attribute Measurement Systems Prototypes and Equipment in the United States. LA-UR-01-765,2001.
    [13]The Joint United States DOE-DOD Information Working Group, The Functional Requirements and Design Basis for Information Barriers, PNNL-13285,1999.
    [14]John M. Puckrtt, Diana G. Langner, Sin-Tai Hsue, et.al. General Technical Requirements and Functional Specifications for an Attribute Measurement System for the Trilateral Initiative. LA-UR-01-3306,2001.
    [15]Technical Overview of Fissile Material Transparency Technology Demonstration-Executive Summary, http://www-safeguards.lanl.gov/FMTT/index_main.htm
    [16]D. W. MacArthur, D. G. Langner, R. Whiteson, et.al. The Effects of Information Barrier Requirements on the Trilateral Initiative Attribute Measurement System (AVNG). LA-UR-01-3333,2001.
    [17]J.T. Mihalczo, J.K. Mattingly, J.S. Neal, et.al. NMIS Plus Gamma Spectroscopy for Attributes of HEU, PU and HE Detection[J]. Nuclear Instruments and Methods in Physics Research B,2004,213: 378-384.
    [18]L. G. Chiang, J. K. Mattingly, J. A. Ramsey, et.al.. Verification of Uranium Mass and Enrichments of Highly Enriched Uranium (HEU) Using the Nuclear Materials Identification System (NMIS) [R]. Y/LB-16,056,2000.4.
    [19]Steven Fetter, Valery A Frolov. Detecting Nuclear Warhead[J]. Science & Global Security,1990, 1:225.
    [20]龚建,陈波,郝樊华.核材料的探测和识别[J].核电子学与探测技术,1995.11,15(6):334-338.
    [21]Thomas B. Gosnell. Uranium Measurements and Attributes[R].41st Annual Meeting of the Institute of Nuclear Materials Management, New Orleans, UCRL-JC-139450,2000.7.
    [22]李鲲鹏,赵学军.探测封装浓缩铀的γ无损分析方法[J].核化学与放射化学,2002.11,24(4):214-217.
    [23]赵德山,陈琦,陈秋云等.浓缩铀材料存在属性测量技术研究[A].军控核查属性测量技术学术研讨会论文集[C].中国工程物理研究院核物理与化学研究所,2006:119-122.
    [24]李井怀,刘国荣,李安利.重屏蔽下HEU存在的探测方法研究[A].军控核查属性测量技术学术研讨会论文集[C].中国工程物理研究院核物理与化学研究所,2006:141-144.
    [25]章剑华,向永春,郝樊华.活化法区分浓缩铀与贫化铀的可行性分析[J].中国核科技报告,2008(1):20-27.
    [26]Bushuev A. V., Zubarev V. N., Proshin I. M. Possibility of activation γ-spectrometric measurements for determining the masses of nuclear materials in samples[J]. Atomic Energy,2002,93 (4):823-826.
    [27]伍钧,张本爱,胡思得.符合测量中子方法核查核弹头技术分析[J].原子能科学技术,2004.5,38(3):200-203.
    [28]向永春,熊宗华,郝樊华等.主动法探测贫化铀的实验研究[J].核电子学与探测技术,2007.3,27(2):376-379.
    [29]伍钧,刘成安,胡思得等.以中子作外源的假象核弹头主动探测[J].计算物理,2003.1,20(1):71-75.
    [30]伍钧,张本爱,沈姚崧等.用缓发中子探测核弹头的技术探索[J].核技术,2004.4,27(4):317-320.
    [31]刘荣.核查中的中子探测技术研究[J].原子核物理评论,1997.6,14(2):118-120.
    [32]刘荣,林理彬,陈渊等.中子源有源法核查技术研究[J].原子核物理评论,2000.6,17(2):110-113.
    [33]韦孟伏,张海路,张连平等.容器内铀同位素丰度的非破坏探测技术研究[J].核技术,2003.8,26(8):605-608.
    [34]唐培家,李鲲鹏.γ能谱法测定铀、钚同位素丰度[J].同位素,2001.8,14(3-4):166-173.
    [35]田东风,解东,霍裕昆等.核裂变材料核素成分的γ特征谱分析[J].计算物理,2000,3,17(1-2):71-76.
    [36]向永春,郝樊华,章剑华等.铀样品丰度分析技术研究[J].核电子学与探测技术,2008.1,28(1): 138-141.
    [37]张松柏,师学明,伍钧.主动法缓发中子探测铀金属富集度的可行性分析[A].中国工程物理研究院2007军控与核查技术论文集[C].中物院科技委军控学科委员会,中物院科技信息中心,2007.11:343-347.
    [38]D. R. Norman, J. L. Jones, K. J. Haskell, et.al. Active Nuclear Material Detection and Imaging[A]. 2005 IEEE Nuclear Science Symposium Conference Record[C],2005:1004-1008.
    [39]陈正,韦孟伏,吴淑梅等.国外中子核查技术近期研究进展[A].中国L程物理研究院2003军控与核查技术论文集[C].中物院科技委军控学科委员会,2003.10.
    [40]L. G. Chiang, A. C. Gehl, J. K. Mattingly, et.al. Nuclear Materials Identification System Operations Manual[R], ORNL/TM-2001/65, Rev.2,2001.
    [41]J. K. Mttingly, T. E. Valentine, J. T. Mihalczo. NWIS Measurements for Uranium Metal Annular Castings[R]. Oak Ridge Y-12 Plant,1998.3.
    [42]T. E. Valentine, L. G. Chiang, J. T. Mihalczo. Preliminary Evaluation of NMIS for Interrogation of Pu and HEU in AT400-R Containers at Mayak[R]. ORNL/M-6648 R4, Oak Ridge National Laboratory, 2000.1.
    [43]J. T. Mihalczo, J. A. Mullens, J. K. Mattingly, et.al.. Physical description of nuclear materials identification system (NMIS) signatures[J]. Nuclear Instruments and Methods in Physics Research A, 2000,450:531-555.
    [44]J. T. Mihalczo, et.al. NMIS With Gamma Spectrometry For Attributes of Pu and HEU, Explosives and Chemical Agents[R]. Oak Ridge Y-12 Plant,2002.5.
    [45]S. A. Pozzi, E. Padovani, J. K. Mattingly, and J. T. Mihalczo. MCNP-PoliMi Simulation of Active and Passive Measurements on Uranium and Plutonium Objects. Phoenix, Arizona:Proceedings of the Institute of Nuclear Materials Management 44th Annual Meeting,2003.7.
    [46]杨天丽,刘雪梅,龙开明等.浓缩铀年龄分析技术[A].军控核查属性测量技术学术研讨会论文集[C].中国工程物理研究院核物理与化学研究所,2006:83-88.
    [47]何周国,李安利,范显华等.高浓铀年龄的测定[J].核化学与放射化学,2005.5,27(2):91-95.
    [48]吕学升,金惠民,刘大鸣等.γ能谱法测定高浓铀样品年龄[J].核化学与放射化学,2008.11,30(4):243-247.
    [49]刘国荣,叶峰,吕学升等.便携式高分辨γ谱仪测量高浓铀年龄[A].军控核查属性测量技术学术研讨会论文集[C].中国工程物理研究院核物理与化学研究所,2006:145-150.
    [50]Cong Tam Nguyen. Age-dating of highly enriched Uranium by γ-spectrometry [J]. Nuclear Instruments and Methods in Physics Research B,2005,229:103-110.
    [51]Cong Tam Nguyen, Jozsef Zsigrai. Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration [J]. Nuclear Instruments and Methods in Physics Research B,2006, 243:187-192.
    [52]刘国荣,李安利,王志强等.14MeV中子质询识别金属铀、氧化铀和氟化铀的实验研究[R].中国原子能科学研究院年报,2006.
    [53]党晓军,韦孟伏,张连平.康普顿成像在核弹头对称性属性中的应用前景初探[A].2008年中国工程物理研究院第四届学术年会摘要文集物理学科分册[c].绵阳:中国工程物理研究院科技委,2008:89-89.
    [54]刘晓波,胡倩,肖建国等.铀材料的中子多重性测量分析方法[J].核动力工程,2009.2,30(1):74-77.
    [55]N. Ensslin, W. H. Geist, M. S. Krick, et al. Active neutron multiplicity counting[R]. LA-UR-07-1403, 2007.
    [56]N. Ensslin, M. S. Krick, D. G. Langner, et al. Passive neutron multiplicity counting[R]. LA-UR-07-1402,2007.
    [57]N. Ensslin,W. C. Harker, M. S. Krick, et al. Application Guide to Neutron Multiplicity Counting. LA-13422-M,1998.
    [58]W.H. Geist, L.A. Carrillo, N. Ensslin, et.al. Evaluation of a fast neutron coincidence counter for the measurements of uranium samples[J]. Nuclear Instruments and Methods in Physics Research A,2001, 470:590-599.
    [59]赵德山,陈琦,陈想林.有源符合中子法探测高浓缩铀的技术研究[J].核电子学与探测技术,2004.11,24(6):726-728.
    [60]王效忠,贾向军,赵荣生.有源符合中子法测量材料中的高浓铀[J].原子能科学技术,1998.5,32(3):256-262.
    [61]蒙延泰,王效忠,贾向军等.铀标样的无损测量检验[J].原子能科学技术,2007.1,41(1):121-124
    [62]D. G. Langner, M. S. Krick, K. E. Kroncke. The application of neutron multiplicity counting to the assay of bulk plutonium bearing materials at RFETS and LLNL[R]. LA-UR-95-3320,1995.
    [63]卢希庭,江栋兴,叶沿林.原子核物理[M].北京:原子能出版社,2000.
    [64]http://atom.kaeri.kr/cgi-bin/endfform.pl
    [65]丁富荣,班勇,夏宗璜.辐射物理[M].北京大学出版社,2007.
    [66]刘圣康.中子物理[M].原子能出版社,1986.
    [67]张明,施俊,任忠国.3He中子计数管的机理及结构[J].核电子学与探测技术,2009.9,29(5):1170-1171.
    [68]许小明,祝利群.3He正比计数管性能研究[J].中国原子能科学研究院年报,2007:322-325.
    [69]杨巧荣,张雅玲,江历阳等.3He正比计数管性能测试[J].中国原子能科学研究院年报,2009:221-222.
    [70]http://atom.kaeri.kr/cgi-bin/endfform.pl
    [71]X-5 Monte Carlo Team. MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Volume I:Overview and Theory. LA-UR-03-1987,2003.
    [72]徐小三Am-Be中子源屏蔽体的蒙卡模拟与设计[D].兰州大学研究生学位论文,2008.
    [73]陈金象,朱培,李永明等.国产Am-Be中子源能量低于1.5MeV中子所占份额的实验测定[J].原子能科学技术,2008,42(5):475-480.
    [74]刘镇洲,陈金象,朱培等.国产Am-Be中子源4.438MeVγ射线与中子强度比值测量[J].原子能科学技术,2008,42(4):300-304.
    [75]刘镇洲,陈金象Am-Be中子源辐射场周围剂量当量与吸收剂量的计算[J].原子能科学技术,2009,43(1):11-15.
    [76]丁大钊,叶春堂,赵志祥.中子物理学——原理、方法与运用[M].北京:原子能出版社,2001.
    [77]滕君锐,龚建,胡广春等.10B靶转换法测量金属钚质量的MC模拟[M].核技术,2009.7,32(7):525-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700