用户名: 密码: 验证码:
钴基费托催化剂的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是国家高技术研究发展计划(863计划)项目,“生物质气化集成-费托合成”工艺制取液体燃料的费托合成部分。费托合成是CO和H2在金属催化剂的作用下,生成烃类的反应,是获取清洁燃料油和化工产品的有效途径,对缓解日益严重的石油资源危机有着重大的意义。为获得理想的费托合成反应效果,对费托合成催化剂的改进是主要手段之一,金属负载型费托合成催化剂是近几年人们研究的热点。负载型金属催化剂的载体起到承载、分散金属活性组分的作用,载体的孔道结构、酸性、机械强度等性质,都可能影响到费托合成催化剂的反应活性、产物选择性,因此,选择适宜的载体或对载体的改进,是制备性能优良的费托合成催化剂的关键。
     本论文用浸渍法制备了不同载体的钴基费托合成催化剂,并且在小型固定床反应装置上对催化剂进行费托反应性能测试,通过催化剂表征以及费托反应实验结果,来考查载体的性质对催化剂结构和费托反应催化性能的影响。
     本论文的具体研究工作和主要结论如下:
     (1)在制备钴基催化剂之前,对γ-A1203载体进行水热预处理,以此来改进Co/γ-Al2O3催化剂的费托反应性能。实验结果表明:用10wt%的柠檬酸或正丁胺溶液在高压釜中对γ-A1203进行水热预处理,可提高Co/y-Al2O3催化剂的费托反应活性、C5+烃类的选择性,降低CH4的选择性。
     (2)通过对三种不同孔道结构的纯硅分子筛载体(SBA-15、MCM-41、Silicate-1)钴基催化剂费托反应测试实验结果的对比,考查纯硅载体孔道结构对催化剂性能影响。实验结果表明:载体孔道尺寸大,钴基催化剂的反应活性高,CH4选择性高,C5+的选择性低,不利于长链液态烃类产物的生成。
     (3)采用过量浸渍法制备Co/Hβ催化剂,考查其FT反应性能,费托反应实验结果表明:Co/Hβ催化剂具有较好的反应活性和稳定性,在2.0MPa、230°C、0.9SLh-lg-1、nH2/nco=2的条件下,其CO转化率可连续46h保持在50%以上。并且适宜的Co担载量和Hp-沸石载体的柠檬酸改性都能提高Co/Hβ催化剂的反应活性和C5+烃类选择性。
     (4)按照白松木屑催化裂解的产气组成,配制费托反应合成气,并用配制的合成气对Co/Hβ催化剂进行费托反应测试,实验结果表明:在一定条件下的费托合成反应的CO转化率连续96h稳定在60%以上。
The topic is about Fischer-Tropsch synthesis, which is a part of "Biomass integrated gasification-FT synthesis"technology, supported by the National High Technology Research and Development Program of China(863 Program). Fischer-Tropsch synthesis is a reaction that converts CO and H2 into hydrocarbons over metallic catalysts. It is an available in environment-friendly fuel oil and chemical products synthesis, and may solve the problem of petrol oil resources. To obtain ideal results of FT reaction, the improvement of catalysts for FT synthesis is a key problem, metal supported catalysts have become a hot topic. The support of catalyst is used to support and disperse active compositions, its properties such as pore structure, acidity, mechanical strength, have great influence on catalytic performances.So the selection and improvement of the support are the key stage of catalysts preparation.
     In the paper, cobalt catalysts for FT synthesis were prepared by using different supports.Their catalytic performances for FT synthesis were evaluated in a fixed bed reactor.The influence on the catalytic performances of the supports was investigated.
     The main work and conclusions of my paper include the following aspects:
     (1) To improve the perforrmances of Co/γ-Al2O3 catalyst,γ-AI2O3 was pretreated with 10wt% critic acid or n-butylamine. The experimental results showed that the pretreatment ofγ-Al2O3 support could increase the activity and the selectivity of C5+ hydrocarbons of CO/γ-Al2O3 catalyst.
     (2) According to the performances test over Co-based catalysts supported by three kinds of silica molecular sieve(SBA-15, MCM-41, Silicate-1), we got the conclusion that Co-based catalyst supported by the silica molecular sieve with larger poresize, had higher catalytic activity and methane selectivity for FT reaction, but the selectivity of long-chain hydrocarbons was decreased.
     (3) The performances of Co/HβFT catalyst was tested. The results showed that the catalyst had great catalytic activity and stability for FT reaction, the catalyst could be improved by suitable Co loading and treating (3 support with O.lmol/L critic acid.
     (4) According to the composition of products of biomass gasification, we compounded syngas for FT synthesis. The performances of Co/Hβcatalyst was investigated by using the syngas. The results showed that under particular reaction conditions, its CO conversion stayed above 60% for 96h.
引文
[1]朱清时.生物质洁净能源[M].北京:化学工业出版社,2001.
    [2]支乾坤,左春丽,赵会艳,杨文学.生物质能源的利用技术与开发对策[J].河北林果研究,2007年9月,第22卷第3期:262-266.
    [3]贺元启,鲁皓,等.生物质气化合成燃料的绿色化学效应分析[J].可再生能源,2005(2):47-50.
    [4]武全萍,王桂娟,李业发.生物质洁净能源利用技术[J].能源与环境,2004年第2期:41-43
    [5]陈蔚萍,陈迎伟,刘振峰.生物质气化工艺技术应用与进展[J].河南大学学报,2007年1月,第37卷第一期:35-41.
    [6]孙路石,孔继红,向军,胡松,彭丹.负载型钯催化剂上生物质气化气催化燃烧[J].燃料化学学报,2010年12月,第38卷第六期:679-683.
    [7]陈冠益,高文学,颜蓓蓓,贾加妮.生物质气化技术研究现状与发展[J].煤气与热力,2006年7月,第26卷第7期:20-26.
    [8]吴家桦,沈来宏,王雷,肖军.串行流化床生物质气化制氢研究[J].太阳能学报,2010年2月,第31卷第2期:242-247.
    [9]Angelos A. Lappas, Dimitris K. latridis, Iacovos A. Vasalos. Production of Liquid Biofuels in a Fluid Catalytic Cracking Pilot-Plant Unit Using Waxes Produced from a Biomass-to-Liquid (BTL) Process[J]. Ind. Eng. Chem. Res.2011,50,531-538.
    [10]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报,2001年8月,第29卷第4期:319-322.
    [11]Carlo N. Hamelinck, Andre P.C.Faaij, Herman den Uil, Harold Boerrigter. Production of FT transportation fuels from biomass; technical options, process analysis and optimization, and development potential[J]. Energy.2004,29:1743-1771.
    [12]吴越.应用催化基础[M].北京:化学工业出版社,2009.
    [13]马文平,刘全生,赵玉龙,周敬来,李永旺.费脱合成反应机理的研究进展[J].内蒙古工业大学学报,1999,18(2):121-127.
    [14]R.B.Anderson, Z. The Fischer-Tropsch Synthesis[J]. Academic Press, NewYork,1984: 176-177.
    [15]凡俊琳.FT合成清洁燃料新型催化剂的研制[D].郑州:郑州大学,2007.
    [16]熊海峰.SBA-15负载的钴、钌费-托合成催化剂结构及性能的研究[D].苏州:苏州大学,2008.
    [17]张铱鈖.FT合成反应器的研制与开发[J].煤炭转化,1997年10月,第20卷第4期:15-19.
    [18]高云龙,焦安亮.煤液化油发展现状及投资前景分析[J].化工技术经济,2001,(6):6-11.
    [19]陈建刚,向宏伟,等.费托合成液体燃料关键技术研究进展[J].化工学报,2003,(4):514-521.
    [20]张碧江.煤基合成液体燃料[M].山西:山西科技出版社,1993.
    [21]孙艳平.费托合成催化剂研究进展[J].化学工程与装备,2010年,第8期:149-150.
    [22]陈宜俍,凡俊琳,郭十岭,等.FT合成产物分布影响因素的研究进展[J].2007年6月,第27卷增刊(1):74-76.
    [23]罗康碧,罗明河,李沪萍.反应工程原理[M].北京:科学出版社,2005.
    [24]梁斌,段大平,傅红梅,等.化学反应工程[M].北京:科学出版社,2003.
    [25]Guettel R, Turek T. Comparison of Different Reactors Types for Low Temperature Fischer-Tropsch Synthesis A Simulation Study[J]. Chem. Eng. Sci,2009,64(5):955-964.
    [26]朱加清,刘化章,宁文生,等.浆态床反应器中熔铁催化剂的费托合成反应性能[J].石油化工,2009,38(6):593-597.
    [27]张金柯.F-T合成钴基催化剂的研究[D].杭州:浙江工业大学,2008.
    [28]Hammache. S, Goodwin. J. G. Oukaci. R. Passivation of a Co-Ru/y-Al2O3 Fischer-Tropsch catalyst[J]. Catalysis Today,2002,71, (3-4):361-367.
    [29]银董红,李文怀,杨文书,等.钴基催化剂在Fischer-Tropsch合成烃中的研究进展[J].化学进展,2001,13(2):118-127.
    [30]I. Iliuta, F. Larachi, et al. Comparative simulations of cobalt-and iron-based Fischer-Tropsch synthesis slurry bubble column reactors[J]. Ind. Eng. Chem. Res.,2008,47:861-869.
    [31]P. J. Van Berge, R.C. Everson. Cobalt as an alternative Fischer-Tropsch catalyst to iron for the production of middle distillates[J]. Stud. Surf. Sci. Catal.,1997,107:207-212.
    [32]徐东彦,李文钊,段宏敏,等.Pt, Ru和Pd助剂对F-T合成中Co/y-Al2O3催化剂性能的影响[J].催化学报,2005,26,(9):780-784.
    [33]Ishihara T, Iwakuni H. CO+H2 over the Mixed Catalysts Composed of Co-Ni/MnO-ZrO2 and Zeolite Catalysts[J]. Applied Catalysis A:General,1991,75:225-231.
    [34]Standfield R M, Deglass W N. Mossbauer Spectroscopy of Supported Fe-Co Alloy Catalysts for F-T Synthesis[J]. Journal of Catalysis,1981,72:37-44.
    [35]林治田,等.用于FT合成燃料的各种催化剂[J].煤炭综合利用(译从),1991年第1期:64-71.
    [36]李强,代小平,徐继鹏,等.铈助剂对Co/SiO2催化剂上费托合成反应性能的影响[J].催化学报,2001,22,(5):469-474.
    [37]李晨,应卫勇,房鼎业.一氧化碳加氢合成烃的钴基催化剂研究进展[J].化工进展,2004,23,(12):1285-1290.
    [38]Tuskubaki N, Sun S, Fujimoto, et al. Different Functions of the Noble Metals Added to Cobalt Catalysts for Fischer-Tropsch Synthesis[J]. Journal of Catalysis,2001,199, (2): 236-246.
    [39]Zhang.Y, Nagamori.S., Hinchirana.S., et al. Promotional Effects of Al2O3 Addition to Co/SiO2 Catalysts for Fischer-Tropsch Synthesis[J]. Energy&Fuels,2006,20, (2):417-421.
    [40]Jacobs G, Das T K, Zhang Y, et al. Fischer-Tropsch Synthesis:Support, loading, and promoter effects on the reducibility of cobalt catalysis[J]. Applied Catalysis. A:General, 2002,233, (1-2):263-281.
    [41]张峻岭,任杰,陈建刚,等.助剂对F-T合成Co/Al2O3催化剂反应性能的影响[J].物理化学学报,2002,18,(3):260-263.
    [42]Haddad.G J, Chen B, Goodw in Jr J G.. Effect of La3+Promotion of Co/SiO2 on CO Hydrogenation[J]. Journal of Catalysis,1996,161, (1):274-281.
    [43]Sui-Wen Ho. Effects of Ethanol Impregation on the Properties of Thoria-Promoted Co/SiO2 Catalyst[J]. Journal of Catalysis,1998,175, (2):139-151.
    [44]王涛,丁云杰,熊建民,等.Zr助剂对Co/AC催化剂催化FT合成反应性能的影响[J].催化学报,2005,26,(3):178-182.
    [45]孙艳平,郭十岭.费脱合成催化剂的研究进展[J].高校理科研究,2005(4):66-67.
    [46]陈宜俍,张广瑞,凡俊琳,郭十岭.载体的孔道结构对FT合成产物的影响[J].郑州大学学报,2008,29,(1):10-13.
    [47]Bezemer G Leendert, Bitter Johannes, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. JACS,2006,128(12):3956-3964.
    [48]马忠义,董庆年,魏伟,等.不同形态Zr02负载Co催化剂上CO+H2吸附与反应行为研究[J].高等学校化学学报,2005,26,(5):902-906.
    [49]代小平,余长春,沈师孔.助剂Ce02对Co/Al2O3催化剂上F-T合成反应性能的影响[J].催化学报,2001,22,(2):104-108.
    [50]Li. H, Wang S, Ling F, et al. Studies on MCM-48 supported cobalt catalyst for Fischer-Tropsch Synthesis[J]. Journal of Molecular Catalysis A:Chemical 2006,244, (1-2): 33-40
    [51]Reuel R C, Bartholomew C H. Effects of dispersion on the CO hydrogenation activity/selectivity properties of Cobalt[J]. Journal of Catalysis,1984,85, (1):78-88.
    [52]Liu Z. W, Li X. H, et al. Selective production of iso-paraffins from syngas over Co/SiO2 and Pd/Beta hybrid catalysts[J]. Catalysis Communications,2005,6 (8):503-506.
    [53]Storsaeter. S, Totdal. B, et al. Characterization of alumina-, silica-, and tatania-supported cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis,2005,236, (1):139-152.
    [54]Botes, et al. The addition of ZSM-5 to the Fischer-Tropsch process for improved gasoline production[J]. Applied Catalysis A:General,2004,267, (1-2):217-225.
    [55]S. Bessell. Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts[J]. Applied Catalysis A:General,1995,126:235-244.
    [56]Suk-Hwan Kang, Jong Wook Bae, et al. ZSM-5 supported iron catalysts for Fischer-Tropsch production of light olefin[J]. Fuel Processing Technology,2010:,91:399-403.
    [57]Agustin Martinez, Carlos Lopez. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer-Tropsch products over hybrid catalysts[J]. Applied Catalysis A:General,2005,294:251-259.
    [58]Guillermo Calleja, Antonio de Lucas, Rafael van Grieken. Co/HZSM-5 catalyst for syngas conversion:influence of process variables[J]. Fuel,1995,74, (3):445-451.
    [59]Motchelaho MAM, Xiong HF, Moyo M, et al. Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe-Co supported on CaCO3:Correlation with Fischer-Tropsch catalyst activity[J].2011,355, (1-2):189-198.
    [60]Xiong Kun, Li Jinlin, et al. Preparation and characterization of stable Ru nanoparticles embedded on the ordered mesoporous carbon material for applications in Fischer-Tropsch synthesis[J]. Applied Catalysis A:General,2010,389, (1-2):173-178.
    [61]Ma Wenping, Ding Yunjie, Lin Liwu. Fischer-Tropsch Synthesis over Ativated-Carbon-Supported Cobalt Catalysts:Effect of Co Loading and Promoters on Catalyst Performance[J]. Ind. Eng. Chem. Res.,2004:,43:2391-2398.
    [62]张益群,余立挺,马建新.构件化催化剂的研究现状与应用[J].工业催化,2003,11,(1):1-6.
    [63]Carlo Giorgio Visconti, Enrico Tronconi, et al. An experimental investigation of Fischer-Tropsch synthesis over wash coated metallic structured supports[J]. Applied Catalysis A:General,2009,370:93-101.
    [64]Robert Guettel, Jens Knochen, Ulrich Kunz, et al. Preparation and Catalytic Evaluation of Cobalt-Based Monolithic and Power Catalysts for Fischer-Tropsch Synthesis[J]. Ind. Eng. Chem. Res.2008,47:6589-6597.
    [65]A.-M. Hilmen, E. Bergene, et al. Fischer-Tropsch synthesis on monolithic catalysts of different materials[J]. Catalysis Today,2001,69:227-232.
    [66]陈乐,陈群,何明阳.不同硅铝比H β沸石对二甲苯异构体吸附动力学的研究[J].石油化工,2010,39,(3):291-295.
    [67]刘虎威.气相色谱方法及应用[M].北京:化学工业出版社,2007.
    [68]王桂茹.催化剂与催化作用[M].辽宁:大连理工大学出版社,2000
    [69]M.H. Rafiq, H.A. Jakobsen, R.Schmid, J.E. Hustad. Experimental studies and modeling of a fixed bed reactor for Fische-Tropsch synthesis using biosyngas[J]. Fuel Processing Technology,2011:,92:893-907.
    [70]D.G.. Wei, J.G.. Goodwin Jr., R. Oukaci, A.H. Singleton. Attrition resistance of cobalt F-T catalysts for slurry bubble column reactor[J]. Applied Catalysis A:General,2001,137, (1-2):137-150.
    [71]S. Vada, A. Hoff, E. Adnanes, D. Schanke, A. Holmen. Fischer-Tropsch Synthesis on supported cobalt catalysts promoted by platinum and rhenium[J]. Topics in Catalysis,1995, (2):155-162.
    [72]P.A. Chernavskii, G..V. Pankina, V.V. Lunin. The influence of oxide-oxide interacton on the catalytic properties of Co/Al2O3 in CO hydrogenation[J]. Catalysis Letters.2000,66: 121-124.
    [73]Chaitree W, Jiemsirilers S, Mekasuwandumrong, et al. Effect of nanocrysatlline chi-Al2O3 structure on the catalytic behavior of Co/Al2O3 in CO hydrogen[J]. Catalysis Today,2011. 164, (1):302-307.
    [74]Li Chen, Wang PL, Ying WY, Fang DY. Studies on Cobalt-based Catalyst to Synthesize Heavy Hydrocarbons[J], Advances in New Catalytic Materials,2010,132:257-263.
    [75]Junling Zhang, Jiangang Chen, Jie Ren, Yuhan Sun. Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis[J]. Applied Catalysis A:General,2003,243:121-133.
    [76]孔春龙.纯硅沸石及其复合膜的制备、表征与应用研究[D].大连:大连理工大学,2008.
    [77]Song. D, Li. J. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts[J]. Journal of Molecular Catalysis A:General,2006,247, (1-2): 206-212.
    [78]Andrei Y. Khodakov, Anne Griboval-Constant, et al. Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas[J]. Journal of Catalysis,2002, 206:230-241.
    [79]Donghong Yin, Wenhuai Li, Wenshu Yang, et al. Mesoporous HMS molecular sieves supported cobalt catalysts for Fischer-Tropsch synthesis[J]. Microporous and Mesoporous Materials,2001,47:15-24.
    [80]O. Gonzalez, H. Perez, P. Navarro, et al. Use of different mesostructured materials based on silica as cobalt supports for the Fischer-Tropsch synthesis[J]. Catalysis Today,2009, 148:140-147.
    [81]胡灯红,郑华均.MCM-41介孔分子筛改性研究进展[J].浙江化工,2011,42,(3):15-19.
    [82]韩会林,Silicate-1沸石膜的制备和改性及应用研究[D].大连:大连理工大学,2009.
    [83]Vanhove D, Zhuyong Z, Makamob L, et al. Hydrocarbon Selectivity in Fischer-Tropsch Synthesis in Realtion to Textural Properties of Supported Cobalt Catalysis[J]. Applied Catalysis. 1984,9, (3):327-342.
    [84]3rd Natural Gas Conversion Symposium, Sydney, Australia,1993[C].
    [85]贾宁Fischer-Tropsch合成钴基催化剂的制备及性能研究[D].大连:大连理工大学,2010.
    [86]鲁丰乐,邵倪,张海涛,等.蛋壳型钴基催化剂的费托合成反应性能[J].石油化工,2010,39(6):601-606.
    [87]刘辉,刘星云,李宣文,等.NaY沸石的酸脱铝[J].石油化工,1998,27,(12):880-885.
    [88]陈兴伟.沸石分子筛用以异丙苯生产研究[D].大连:大连理工人学,2009.
    [89]Chawalit Ngamcharussrivichai, Xiaohao Liu, et al. An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based Catalysts[J]. Fuel,2007,86:50-59.
    [90]庞新梅,高晓慧,张莉,等.β沸石催化裂化的反应性能[J].石油学报,2009年,10月,增刊:77-80.
    [91]Augstin Martinez, Gonzalo Prieto. The Application of Zeolites and Periodic Mesoporous Silicas in the Catalytic Conversion of Synthesis Gas[J]. Topic Catalysis,2009,52:75-90.
    [92]Suk-Hwan Kang, Jong Wook Bae, P.S. Prasad, Ki-won Jun. Fischer-Tropsch Synthesis Using Zeolite-supported Iron Catalysts for the production of Light Hydrocarbons[J]. Catalysis Letters, 2008,125:264-270.
    [93]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社,2005.
    [94]江琦.负载型钴催化作用下的二氧化碳加氢甲烷化[J].煤炭转化,2000,23,(4):87-90.
    [95]阴丽华,高志华,黄伟.CuCo基催化剂催化CO2加氢合成低碳醇[J].煤炭转化,2004,27,(2):85-88.
    [96]万华,王黎,孙雪莲.CO2加氢合成乙醇热力学分析及催化研究进展[J].煤化工,2005,12,(6):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700