用户名: 密码: 验证码:
固体热载体法生物质催化气化制氢新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为改善未来的能源结构和缓解目前严重的环境污染问题,人们越来越重视清洁能源——氢能的开发和利用。生物质催化气化制氢是富有发展前景的利用可再生资源制氢技术。但是,制约目前生物质气化制氢技术发展的主要问题是产气中H_2含量低和焦油含量高。水蒸汽作为气化剂和使用催化剂是提高产气中H_2含量和降低焦油含量的有效手段。基于此,本论文提出了用循环固体热载体法的ECCMB(External CirculatingConcurrent Moving-Bed,外循环并流移动床)催化气化制氢工艺,目标是减少焦油产生和提高产气中H_2含量。ECCMB反应系统由气固并流移动床气化器和快速流化床燃烧器构成。催化剂同时作为固体热载体在两器间循环,将燃烧半焦和催化剂积炭释放的热量提供给气化反应。在气化器内,顺序发生灼热固体热载体加热条件下的生物质快速热解、热解焦油催化转化和半焦气化等过程。ECCMB气化工艺综合了生物质快速热解、焦油催化转化、热载体加热和催化剂再生无切换连续进行等特点。
     围绕该工艺的构建,本论文主要展开下述工作:
     作为ECCMB气化过程的初始阶段,快速热解过程对气化产品分布有重要影响。本论文用落下床反应器研究生物质快速热解和水蒸汽气化特性,考察了原料、粒度、温度、S/B比(水蒸汽与生物质进料质量比)等对产品分布的影响。研究发现,在落下床中短停留时间(<2s)和高加热速率下,生物质热解和原位焦油水蒸汽转化、半焦水蒸汽气化、水煤气变换反应同时发生;高加热速率有利于生物质转化、提高产气中H_2含量和减少焦油含量。研究还发现,在落下床生物质水蒸汽气化过程中,高温下水煤气变换反应对产气组成有重要影响;在落下床中催化剂和焦油的接触时间短,焦油不能得到充分转化。
     ECCMB气化工艺要求催化剂具有高催化活性和强抗磨损能力,并且价格低廉。本沦文通过比较石灰石、白云石和橄榄石等天然矿石的焦油转化催化活性,筛选出适合用于ECCMB气化工艺的催化剂。研究发现,煅烧预处理可以提高橄榄石的催化活性,其原因是高温煅烧使Fe从镁铁硅酸盐结构中脱出,在颗粒表面生成α-Fe_2O_3;在生物质水蒸汽气化过程中,α-Fe_2O_3被产气中的H_2原位还原为金属Fe,充当催化活性中心;随着煅烧温度升高和时间延长,可还原α-Fe_2O_3生成量增多,橄榄石催化活性提高;煅烧预处理使橄榄石颗粒表面Fe的分布比原矿均匀;MgO和Fe_2O_3含量高的橄榄石有较高催化活性;橄榄石的抗磨损能力强,因此它是一种理想的气化器内焦油转化催化剂。虽然白云石催化活性高,但是煅烧后质地软,不适合用于流化床气化反应体系。
For optimizing the energy utilizations and reducing environmental problems, more and more people paid much attention to hydrogen energy. Gasification of the renewable biomass for hydrogen production is a promising technology. However, there are still many obstacles required to resolve until the commercial breakthrough could be obtained, such as high tar content in dry gas and low hydrogen yield. The addition of steam and catalyst favor hydrogen production and tar reduction. In this thesis, a novel process of catalytic gasification of biomass with solid heat carrier is proposed, which is called ECCMB (External Circulating Concurrent Moving-Bed) gasification system. The ECCMB gasification system is composed of two reactors, a gas-solid concurrent moving-bed gasifier and a riser-type combustor. A circulation loop of bed material is achieved between the two reactors. The circulating bed material acts as not only solid heat carrier from the combustor to the gasifier, which supplies the required energy of gasification reactions of biomass, but also catalyst in tar reduction. In gasifier, fast pyrolysis of biomass, catalytic reforming of tar and gasification of char sequently occurs. A dry gas with low tar content and high hydrogen content should be obtained in the ECCMB process. In the combustor, reheating of solid heat carrier and regenerated catalyst are made by burning off the residual char and coke on catalyst.
    For developing the ECCMB process, investigations were conducted in this thesis as follows:
    As a part of the ECCMB process, fast pyrolysis of biomass influences greatly the product distribution. As a preliminary work, fast pyrolysis and steam gasification of biomass were studied in a free fall reactor. Effects of reactor temperature, particle size, fuel type and S/B ratio (steam to biomass mass ratio) on product distribution were investigated. It has been shown that the occurrence of the in-situ steam reforming of tar, the steam gasification of char and the water-gas shift reaction after the primary fast pyrolysis of the biomass took place even in a short gas residence time in the free fall reactor. Fast pyrolysis favors biomass conversion for tar reduction and hydrogen production. In addition, during steam gasification of biomass, water-gas shift reaction influences greatly the gas composition at higher temperature. In the free fall reactor, only a limited conversion of tar was achieved because of the short contact time between the catalyst and volatiles.
引文
[1] 刘荣厚,牛卫生,张大雷.生物质热化学转化技术.北京:化学工业出版社,2005.
    [2] 孙艳,苏伟,周理.氢燃料.北京:化学工业出版社,2005.
    [3] 马隆龙,吴创之,孙立.生物质气化技术及其应用.北京:化学工业出版社,2003.
    [4] 袁振宏,吴创之.生物质能利用原理与技术.北京:化学工业出版社,2005.
    [5] 张瑞琴.生物质衍生的燃料和化学物质.郑州:郑州大学出版社,2004.
    [6] 朱清时,阎立峰,郭庆祥.生物质洁净能源.北京:化学工业出版社,2002.
    [7] Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy. 2000, 18(6):489-497.
    [8] McKendry P. Energy production from biomass (part 3): gasification technologies. Biomresource Technology. 2002, 83(1):55-63.
    [9] Midilli A, Dogru M, Howarth C R et al. Hydrogen production from hazenut shell by applying air-blown downdrft gasification technique. International Journal of Hydrogen Energy. 2001, 26(1):29-37.
    [10] Yamazaki T, Kozu H, Yamagata S et al. Effect of superficial velocity on tar from downdraft gasification of biomass. Energy & Fuels. 2005, 19(3): 1186-1191.
    [11] De Bari I, Barisano D. Cardinale Met al. Air gasification of biomass in a downdrft fixed bed: A comparative study of the inorganic and organic products distribution. Energy & Fuels. 2000, 14(4):889-898.
    [12] 郭建维,宋晓瑞,崔英德.流化床反应器中生物质的催化裂解气化研究.燃料化学学报.2001,29(4):319-322.
    [13] Franco C, Pinto F, Gulyurtlu J et al. The sudy of reactions influencing the biomass steam gasification process. Fuel. 2003, 82(7):835-842.
    [14] Herguido J, Corella J, Gonzalez-Saiz J. Steam gasification of lignocellusic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock. Ind. Eng. Chem. Res. 1992, 31 (5):1274-1282.
    [15] Gil J, Coreila J, Aznar M P et al. Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution. Biomass and Bioenergy. 1999, 17(5): 389-403.
    [16] Turn S, Kinoshita C, Zhang Z et al. An experimental investigation of hydrogen production from biomass gasification. International Journal of Hydrogen Energy. 1998, 23(8):641-648.
    [17] Jiang H, Zhu X, Guo Q X et al. Gasification of rice husk in a fluidized-bed gasifier without inert additives. Ind. Eng. Chem. Res. 2003, 42(23):5745-5750.
    [18] 王智微,唐松涛,苏学泳等.流化床中生物质热解气化的模型研究.燃料化学学报.2002,30(4):342-346.
    [19] Cao Y, Wang Y, Riley J T et al. A novel biomass air gasification process for producing tar-free higher heating value fuel gas. Fuel processing technology. 2006, 87(4):363-353.
    [20] van der Drift A, van Doorn J, Vermeulen J Wet al. Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass and Bioenergy. 2001, 20(2):45-56.
    [21] Chert G, Andries J, Spliethoff H et al. Bioamss gasification intergrated with pyrolysis in acirculating fluidized bed. Solar Energy. 2004, 76(1-3): 345-349.
    [22] Yin X L, Wu C Z, Zheng S P et al. Design and operation of a CFB gasification and power generation system for rice husk. Biomass and Bioenergy. 2002, 23(3): 181-187.
    [23] 吴正舜,吴创之,马隆隆等.1MW木粉气化发电系统的运行特性分析.2003,24(3):390-393.
    [24] Lappas A A, Samolada M C, Iatridis D K et al. Bioamss pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel. 81 (16):2087-2095.
    [25] 姚建中,王风鸣.生物质在热载体循环流化床中的热解气化.新能源.1998,20(5):14—18.
    [26] 姚建中,王凤鸣,李佑楚等.载体循环生物质热解气化装置.中国,实用新型专利.zl.96209381.5.1997.
    [27] 郭慕孙,姚建中,林伟刚等.循环流态化碳氢固体燃料的四联产工艺及装置.中国,发明专利.zl01218480.2.2004.
    [28] Devi L, Ptasinki K J, Janssen F J J G. A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy. 2003, 24(2):125-140.
    [29] Sutton D, Review of literature on catalysts for biomass gasification. Fuel processing technology. 2001, 73(3):155-173.
    [30] Garcia X A, Alarcon N A, Gordon A L. Steam gasification of tars using a CaO catalyst. Fuel Processing Technology. 1999, 58(2-3):83-102.
    [31] Radovic L R, Walker P L, Jenkins R G. Importance of catalyst dispersion in the gasification of lignite chars. Journal of Catalysis. 1983, 82(2):382-394.
    [32] Ohtsuka Y, Tomita A. calcium catalysed steam gasification of yallourn brown coal. Fuel. 1986, 65(12): 1653-1657.
    [33] Cazorla-Amoros D, Linares-Solano A, Salinas-Martines de Lecea C. A temperature-programmed reaction study of calcium-catalyzed carbon gasification. Energy & Feuls. 1992, 6(3):287-293.
    [34] 骆仲泱,张晓东,周劲松.生物质热解焦油的热裂解与催化裂解.高校化学工程学报.2004,18(2):162-167.
    [35] Dayton D. A review of the literature on catalytic biomass tar destruction. National Renewable Energy Labrotory, NREL/TP-510-32815. 2002.
    [36] Delgado J, Azar M P. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind. Eng. Chem. Res. 1997, 36(5):1535-1543.
    [37] Delgado J, Aznar M P, Corella J. Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: Life and usefulness. Ind. Eng. Chem. Res. 1996, 35(10):3637-3643.
    [38] Corella J, Aznar M P, Gil J et al. Biomass gasification in fluidized bed: Where to locate the dolomite to improve gasification. Energy & Fuels. 1999, 13(6): 1122-1127.
    [39] Corella J, Toledo J M, Padilla R. Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: Which is better?. Energy & Fuels. 2004, 18(3):713-720.
    [40] 周劲松,王铁柱,豁仲泱等.生物质焦油的催化裂解研究.燃料化学学报.2003,31(2):144-148.
    [41] 张晓东,骆仲泱,周劲松等.焦油催化裂化催化剂积炭失活的实验研究.燃料化学学报.2004,32(5):542-546.
    [42] Rapagna S, Jand N, Kiennemann A et al. Steam-gasification of biomass in fluidized-bed of olivine particles. Biomass and Bioenergy. 2000, 19(3):187-197.
    [43] Devi L, Ptasinski K. J, Janssen F J J G. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy. 2005, 30(4):565-587.
    
    [44] Devi L, Ptasinski K J, Janssen F J J G. Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar. Fuel processing technology. 2005, 86(6):707-730.
    
    [45] Devi L, Craje M, Thune P et al. Olivine as tar removal catalyst for biomass gasifiers: catalyst characterization. Appllied Catalysis A: General. 2005, 294(l):68-79.
    
    [46] Devi L. Ptasinski K J, Janssen F J J G. Decomposition of naphalene as a biomass tar over pretreated olivine: Effect of gas composition, kinetic approach, and reaction scheme. Ind. Eng. Chem. Res. 2005, 44(24):9096-9104.
    
    [47] Encinar J M, Beltran F J, Romiro A et al. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Processing Technology. 1998, 55(3):219-233.
    
    [48] Azar M P, Corella J, Delgado J et al. Improved steam gasification of lignocellulosic residues in fluidized bed with commercial steam reforming catalysts. Ind. Eng. Chem. Res. 1993,32(1):1-10
    
    [49] Caballero M A, Azar M P,Gil J et al. Commercial steam reforming catalyst to improve biomass gasification with steam-oxygen mixtures. 1. Hot gas upgrading by the catalytic reactor. Ind. Eng. Chem. Res. 1997, 36(12):5227-5239.
    
    [50] Azar M P, Caballero M A, Gil J et al. Commercial steam reforming catalyst to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Ind. Eng. Chem. Res. 1998, 37(7):2668-2680.
    
    [51] Wang T J, Chang J; Lv P M et al. Novel Catalyst for Cracking of Biomass Tar. Energy & Fuels. 2005,19(1): 22-27.
    
    [52] 王铁军,常杰,吴创之等。生物质气体焦油催化裂解特性。太阳能学报。 2003,24(3):376-379.
    
    [53] Courson C, Makaga E, Prtit C et al. Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catalysis Today. 2000, 63(2-4):427-437.
    
    [54] Courson C, Udron L, Petit C et al. Grafted NiO on natural olivine for dry reforming of methane. Science and Technology of Advanced Mterials. 2002, 3(3):271-282.
    
    [55] Courson C, Udron L, Swierczynski D et al. Hydrogen production from biomass gasification on nickel catalysts tests for dry reforming of methane. Catalysis Today. 2002,76(1):75-86.
    
    [56] Swierczynski D, Courson C, Bedel L et al. Oxidation reduction behavior of iron-bearing olivines (Fe_xMg_(1.=-x))2SiO_4 used as catalysts for biomass gasification. Chem. Mater. 2006, 18(4):897-905.
    
    [57] Garcia L, Benedicto A., Romeo E et al. Hydrogen production by steam gasification of biomass using Ni-Al coprecipitated catalysts promoted with magnesium. Energy & Fuels, 2002, 16(5): 1222-1230.
    
    [58] Garcia L, Bilbao S R, Arauzo J. Influence of calcination and reduction conditions on the catalyst performance in the pyrolysis process of biomass. Energy & feuls. 1998, 12(1): 139-143.
    
    [59] Wang W, Padhan N, Ye Z et al. Kinetics of ammonia decomposition in hot gas cleaning. Ind. Eng. Chem. Res. 1999, 38(11):4175-4182.
    
    [60] Perez P, Aznar P M, Caballero M A et al. Hot gas cleaning and upgrading with a calcined dolomite located downstream a biomass fluidized bed gasifier operating with steam-oxygen mixtures. Energy & Feuls. 1997, 11(6): 1109-1118.
    [61] Navaez I, Corella J, Orio A. Fresh tar (from a biomass gasifier) elimination over a commercial steam-reforming catalyst. Kinetics and effect of different variables of operation. Ind. Eng. Chem. Res. 1997,36(2):317-327.
    [62] Corella J, Caballero M A, Azar M P et al. Two advanced models for the kinetics of the variation of the tar composition in its catalytic elimination in biomass gasification. Ind. Eng. Chem. Res. 2003, 42(13):3001-3011.
    [63] Aznar M P, Caballero M A, Corella J et al. Hydrogen production by biomass gasification with steam-O_2 mixtures followed by a catalytic steam reformer and a CO-shift system. Energy & Feuls. 2006, 22(3): 1305-1309.
    [64] Zhang R Q, Brown R C, Suby A. Thermochemical generation of hydrogen from switchgrass. Energy & Fuels. 2004, 18(1):251-256.
    [65] 吕鹏梅,常杰,付严等.生物质流化床催化气化制取富氢燃气.太阳能学报.2004,25(6):769-775.
    [66] Lv P M, Chang J, Wang T et al. Hydrogen-rich gas production from biomass catalytic gasification. Energy & Fuels. 2004, 18(1):228-233.
    [67] Lv P M, Chang J, Xiong Z et al. Biomass air-steam gasification in a fluidized bed to produce hydrogen-rich gas. Energy & Fuels. 2003:17(3):677-682.
    [68] Pfeifer C, Rauch R, Hofbauer H. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind. Eng. Chem. Res. 2004, 43(7): 1634-1640.
    [69] 沈来宏,肖军,高杨.串行流化床生物质催化制氢模拟研究.中国电机工程学报.2006,26(11):7-11.
    [70] Antal J M J, Allen S G, Schulman O et al. Biomass gasification in supercritical water. Ind. Eng. Chem. Res. 2000, 39(1):4040-4053.
    [71] Osada M, Sato T, Watanabe Met al. Low-temperature catalytic gasification of lignin and cellulose with a Ruthenium catalyst in supercritical water. Energy & Feuls. 2004, 18(2):327-333.
    [72] 关宇,郭烈锦,张西民等.生物质模型化合物在超临界水中的气化.化工学报.2006,57(6):1426-1431.
    [73] 吕友军,郭烈锦,郝小红等.锯木屑在超临界水中气化制氢过程的主要影响因素.化工学报.2004,55(12):2060-2066.
    [74] Johnsen K, Ryu H J, Grace J R et al. Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO_2-acceptor. Chemical Engineering Science. 2006, 61 (4): 1191-1198.
    [75] Mondal K, Piotrowski K, Dasgupta D et al. Hydrogen form coal in a single step. Ind. Eng. Chem. Res. 2005, 44(15): 5508-5517
    [76] Reijers H T J, Valster-Schiermeier A E A, Cobden P D. Hydrotalcite as CO_2 sorbent for sorption-enhanced steam reforming of methane. Ind. Eng. Chem. Res. 2006, 45(8):2522-2530.
    [77] Wang J, Takarada T. Role of calcium hydroxide in supercritical water gasification of low-rank coal. Energy & Fuels. 2001, 15(2):356-362.
    [78] Curran G P, Clancey J T, Scarpiello D A et al. Carbon dioxide acceptor process. Chemical Engineering Process. 1966, 62(2): 80-86.
    [79] Lin S Y, Harada M, Suzuki Yet al. Hydrogen production from coal by separating carbon dioxide during gasification. Fuel, 2002, 81(16): 2079-2085.
    [80] Hanaoka T, Yoshida T, Fujimoto S et al. Hydrogen production from woody biomass by steam gasification using a CO_2 sorbent. Biomass and Bioenergy, 2005, 28(1):63-68.
    [81] Kuramoto K, Shibano S, Fujimoto Set al. Deactivation of Ca-based sorbents by coal-derived minerals during multicycle CO_2 sorption under elevated pressure and temperature. Ind. Eng. Chem. Res. 2003, 42(15):3566-3570.
    [82] Kuramoto K, Ohtomo K, Suzuki K et al. Localized interaction between coal-included minerals and Ca-based CO_2 sorbents during the high-pressure steam coal gasification (HyPr-RING) process. Ind. Eng. Chem. Res. 2004, 43(25): 7989-7995.
    [83] Lin S Y, Harada M, Suzuki Y et al. Continous experiment regarding hydrogen production by coal/CaO rreaction with steam (Ⅱ) solid formation. Fuel. 2006, 85(7-8): 1143-1150.
    [84] 王智化,王勤辉,骆仲泱等.新型煤气化燃烧集成制氢系统得热力学研究.中国电机工程学报.2005,25(12):91-97.
    [85] 王勤辉,沈洵,骆仲泱等.新型近零排放煤气化燃烧利用系统.动力工程.2003,23(5):2711-2715.
    [86] Wang Z H, Zhou J S, Wang Q H et al. Termodynamic equilibrium analysis of hydrogen production by coal based on Coal/CaO/H2O gasification system. International Journal of Hydrogen Energy. 2006, 31(7):945-952.
    [87] 乔春珍,肖云汉.碳制氢过程的比较及直接制氢分析.工程热物理学报.2005,26(5):729-732.
    [88] 吴创之,阴秀丽,刘平等.生物质焦油裂解得技术关键.新能源.1998,20(7):1-5.
    [89] Milne T A, Evans R J, Abatzoglou N. Biomass gasifier "tars": their nature, formation, and conversion. NREL/TP-570-25357, November 1998.
    [90] Xu G W, Murakami T, Suda T et al. The superior technical choice for dual fluidized bed gasification. Ind. Eng. Chem. Res. 2006, 45(7):2281-2286.
    [91] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev.. 2006, 106(9): 4044-4098.
    [92] Rapagna S, Provendier H, Petit C et al. Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification. Biomass and Bioenergy. 2002, 22(5): 377-388.
    [93] Bridgwater A V, Meier D, Radlein D. A overview of fast pyrolysis of biomass. Organic Geochemistry. 1999, 30(12):1479-1493.
    [94] Jand N, Foscolo P U. Decomposition of wood particles in fluidized beds. Ind. Eng. Chem. Res. 2005, 44(14):5079-5089.
    [95] Fushimi C, Goto M, Tsutsumi Aet al. Steam gasification characteristics of coal with rapid heating. J. Anal. Appl. Pyrolysis. 2003, 70(2): 185-197.
    [96] Williams P T, Besler S. The pyrolysis of rice husks in a thermogravimatric analyzer and static batch reactor. Fuel. 1993, 72(2): 151-159.
    [97] Orfao J J M, Antunes F J A, Figueiredo J L. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel. 1999, 78(3):349-358.
    [98] Di Blasi C. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis. 1998, 47(1):43-64.
    [99] Lv P M, Chang J, Wang T J et al. A kinetic study on biomass fast catalytic pyrolysis. Energy & Feuls. 2004, 18(6): 1865-1869.
    [100] Scott D S, Piskorz J, Bergougnou M A et al. The role of temperature in the fast pyrolysis of cellulose and wood. Ind. Eng. Chem. Res. 1988, 27(1):8-15.
    [101] Torrest R S, VanMeurs P. Laboratory studies of the rapid pyrolysis and desulphrization of a texas lignite. Fuel. 1980, 59(7):458-464.
    [102] Xu W C, Matsuoka K, Akiho H et al. High pressure hydropyrolysis of coals by using a continuous free-fall reactor. Fuel. 2003, 82(6): 677-685.
    [103] Zanzi R, Sjostrom K, Bjornbom E. Rapid high-temperature pyrolysis ofbiomass in a free fall reactor. Fuel. 1996, 75(5):545-550.
    [104] Zanzi R, Sjostrom K, Bjombom E. Rapid pyrolysis of agriculture residues at high temperature. Biomass and Bioengery. 2002, 23(5):357-366.
    [105] Yu Q Z, Brage C, Chen G X et al. Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor. Journal of Analytical and Applied Pyrolysis. 1997, 40-41: 481-489.
    [106] Li S G, Xu S P, Liu S Q et al. Fast pyrolysis ofbiomass in a free-fall reactor for hydrogen-rich gas. Fuel Processing Technology. 2004, 85(8-10): 1201-1211.
    [107] 李文,李保庆,孙成功等.生物质热解、加氢热解及其与煤共热解的热重研究.燃料化学学报.1996,24(4):341-347.
    [108] Shin S M, Sohn H Y. Nonisothermal determination of the intrinsic kinetics of oil generation from oil Shale. Ind Eng Chem Pro Des Dev. 1980, 19(3):420-426.
    [109] 赖艳华,吕明新,马春元等.秸秆类生物质热解特性及其动力学研究.太阳能学报.2002,23(2):203-206.
    [110] Minkova V, Razvigorova M, Bjornbom E et al. Effect of water vapor and biomass nature on the yield and quality of the pyolysis products from biomass. Fuel. Processing Technology. 2001, 70(1):53-61.
    [111] Semino D, Tognotti L. Modelling and sensitivity anlysis of pyrolysis of biomass particles in afluidized bed. Computers Chem. Engng. 1998, 22(supplementl): s699-s702.
    [112] Di Blasi C. Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind. Eng. Chem. Res. 1996, 35(1):37-46.
    [113] Varhegyi G, Jakab E, Till F et al. Thermogravimetric-mass spectrometric characterization of the thermal decomposition of sunflower stem. Energy & Feuis. 1989, 3(6):755-760.
    [114] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion & Management. 2000, 41 (6):633-646.
    [115] Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components. Fuel. 2000, 75(8):987-998.
    [116] Boutin O, Ferrer M, Lede J. Radiant flash pyrolysis of cellulose—Evidence for the formation of short life time intermediate liquid species. Journal of Analytical and Applied Pyrolysis. 1998, 47(1): 13-31.
    [117] Yang H P, Yah R, Chen H P et al. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels. 2006, 20(1):388-393.
    [118] Fushimi C, Araki K, Yamaguchi Y et al. Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Ind. Eng. Chem. Res. 2003, 42(17):3929-3936.
    [119] Dai X W, Wu C Z, Li H B et al. The fast pyrolysis of biomass in CFB reactor. Energy & Feuls. 2000, 14(3):552-557.
    [120] Ferdous D, Dalai A K, Bej S K et al. Production of H_2 and medium heating value gas via steam gasification of lignins in fixed-bed reactors. The Canadan Journal of Chemical Engieering. 2001, 79(6): 913-922.
    [121] 斯特列洛夫K K著.马志春译.耐火材料结构与性能.北京:冶金工业出版社.1992.
    [122] Nordgreen T, Liliedahl T, Sjostrom K. Metallic iron as a tar breakdown catalyst related to atmospheric, fluidized bed gasification of biomass. Fuel. 2006, 85(5-6):689-694.
    [123] 郝庆兰,王洪,刘福霞等.焙烧温度对铁基催化剂催化浆态床F-T合成反应性能的影响.催化学报.2005,26(4):340-348.
    [124] Ma J, Zhang X J, Cai X H et al. Charaterization of iron-manganese mixed oxides prepared by oxydoreduction precipitation method.分子催化.1999,13(4):241-245.
    [125] Schuster G, Lbffier G, Weigl K et al. Biomass steam gasification-an extensive parametric modeling study. Biomass Technology, 2001, 77(1):71-79.
    [126] 何屏.高水分褐煤周体热载体部分气化质量平衡和热量平衡分析计算.昆明理工大学报.1996,21(6):92-99.
    [127] Lin S Y, Harada M, Suzuki Y et al. Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING). Energy Conversion and Management. 2005, (46):869-880.
    [128] 寇公.煤炭气化工程.北京:机械工业出版社.1992.
    [129] 许晓海,冯改山.耐火材料技术手册.北京:冶金工业出版社,2000.
    [130] 刘镜远,车维新.合成气工艺技术与设计手册.北京:化学工业出版社,2001.
    [131] 傅玉普,郝策,曹殿学.物理化学.大连:大连理工大学出版社,2000.
    [132] 金涌,祝京旭,汪展文等.流态化工程原理.北京:清华大学出版社,2001.
    [133] Kunii D, Levensiel O. Circulating fluidized-bed reactors. Chemical Engineering Science. 1997, 52 (15): 2471-2482.
    [134] 《化学工程手册》编辑委员会.《化学工程手册》(5).北京:化学工业出版社,1989.
    [135] 韩壮.褐煤固体热载体法快速热解工艺的研究:(硕士学位论文).大连:大连理工大学,1992.
    [136] 李洪钟,郭慕孙.非流态化气固两相流——理论及应用.北京:北京大学出版社,2002.
    [137] Wang J G, Lu X S, Yao J Z et al. Experimental study of coal topping process in a downer reactor. Ind. Eng. Chem. Res. 2005, 44(3):463-470.
    [138] Xu G W, Murakami T, Suda T et al. Distinctive effects of CaO additive on atmospheric gasification of biomass at different temperatures. Ind. Eng. Chem. Res. 2005, 44(15):5864-5868.
    [139] 李振山,蔡宁生,黄煜煜等.循环吸收CO_2的实验研究.燃烧科学与技术.2005,11(4):379-383.
    [140] Iyer M V, Gupta H, Sakadjian B B et al. Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO. Ind. Eng. Chem. Res. 2004, 43(14):3939-3947.
    [141] Bhatia S K, Perlmutter D D. Effect of the product layer on the kinetics of the CO_2-lime reaction. AIChE Journal. 1983, 29(1):79-86.
    [142] Stanmore B R, Gilot P. Review-calcination and carbonation of limestone durng thermal cycyling for CO_2 sequestion. Fuel Processing Technology. 2005, 86(16):1707-1743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700