用户名: 密码: 验证码:
玉米秸秆及其纤维素的改性和吸附水体镉离子的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,包括含镉废水在内的许多工业废水给周边的环境以及人类的健康造成了严重危害,从而引起广泛的关注和成为研究的热点。许多的水体重金属离子去除技术应运而生,然而这些治理技术面临的最大缺陷就是运行成本较高。吸附法能通过选择来源广泛、价格低廉、以及吸附性能良好的吸附剂,有效地去除水体中的重金属离子。因此,吸附法成为一种较为流行的废水处理方法。
     玉米秸秆是世界上生物量巨大的农业废弃物。它富含纤维素成分,可以在许多领域发挥重要的作用。但是现有的利用状况造成了相当一部分的玉米秸秆被低值使用和直接废弃,其后果是既浪费了资源,又污染了环境。现有的农业废弃物吸附剂改性方法和制备技术,为玉米秸秆作为重金属离子吸附剂提供了理论基础和研究方向。如果能把成本低廉的玉米秸秆,通过适当的化学改性,研制成性能良好的吸附剂,不但可以解决水体重金属污染的问题,而且为玉米秸秆的综合利用开辟了一条新途径。
     本研究通过使用改性剂丙烯腈,选择两种原理不同的改性方法——醚化和接枝化改性方法,将玉米秸秆(RCS-A和RCS-B)制备出两种不同的吸附剂AMCS和AGCS。同时,对玉米秸秆纤维素实现提纯和接枝化改性,可得到纤维素吸附剂AGCS-Cell。然后分别地对它们的性质表征和吸附性能进行研究,详细地阐述了它们的改性和吸附机理,并具体地拟合了吸附过程的各种模型,以及对吸附后的AMCS和AGCS进行了解吸研究。主要的研究结果如下:
     1、从表征分析的结果来看,AMCS和AGCS结构的内部表面积比RCS (-A \ -B)分别大2.74和3.43倍;经过醚化或接枝化改性后,AMCS和AGCS结构内成功地被引入了新的官能基团—氰基(-CN),而且氰基的进入造成结构中N元素含量的增加;XRD图谱分析出X-射线结晶指数关系AGCS < AMCS < RCS (-A \ -B),意味着AGCS和AMCS中的-OH大部分从氢键的束缚中被“解放”出来,可以更加容易地被新引入的-CN基团所替代,并且更有利于接触并吸附水体Cd~(2+)离子。~(13)C核磁共振图谱解释了AGCS和AMCS的结晶度降低和氰基引入位置的原因。此外,TGA及DSC曲线证实了AGCS良好的热稳定性。
     2、从吸附效果、吸附过程动力学和热力学的研究结果,可以得知它们的吸附能力主要受到溶液初始pH值和吸附剂投加量的影响。当pH值较高和投加量在较少时,它们的吸附效果最好,而且AGCS的吸附能力要好于AMCS和RCS (-A \ -B)。这四种吸附剂对水体镉离子的吸附符合Langmuir吸附等温式,AMCS和AGCS的理论最大吸附量分别为12.73和22.17 mg g~(-1)。AMCS和AGCS还符合准二级动力学方程学,说明了它们的吸附速率由膜扩散和颗粒内扩散的速率共同决定的,是与驱动力的平方成正比关系。
     3、AMCS和AGCS吸附水体Cd~(2+)主要机理包括:因化学改性而获得的较大比表面积和孔隙层状结构的物理吸附;它们结构中的新功能基团——氰基(-CN)对Cd~(2+)具有配位络合作用以及它们带负电荷的表面电位,可与Cd~(2+)金属阳离子之间产生静电吸附作用。唯一不同的是AGCS对水体镉离子还具有空间网捕作用。
     4、对比分析AGCS和AGCS-Cell结构和吸附,表明AGCS-Cell接枝化改性程度更高。并推导出玉米秸秆纤维素二元接枝共聚反应的动力学速率方程,指出反应速率是与引发剂和单体浓度有密切的正比关系。验证结果也表明二元纤维素接枝共聚反应的动力学模型一定的条件下是合理的。
     5、解吸效果研究表明:纯水、硝酸、氢氧化钠、柠檬酸、氯化钠和EDTA这六种解吸剂的解吸效果会受到解吸温度和浓度的影响,性能有所差异。EDTA的解吸效果较为明显。
Recently, many industrial wastewaters including cadmium-wastewater have become one of the most serious problems for surrounding environment and hunman health, thus cause widespread concern and research hotspot. Many heavy metal treatment technologies have been applied, but these are expensive because of higher operating costs. Adsorption, depending on various sources, low cost and excellent capacity, is a popular and effective process for the removal of heavy metals from wastewater.
     Corn stalk is an abundant agricultural waste in the world and usually has a high levels of cellulose, which can paly an important role in many fields. However, some corn stalks have been wasted and burnt without useful utilization. Base on the existing modification methods and treatment techniques, corn stalk can be modified into heavy metals adsorbent. These not only can solve pollution problems in aqueous, but also provide a new approach for corn stalk.
     In this study, acrylonitrile (AN) as chemical modification reagents, selecting two different methods to produce adsorbents. One was etherification, and another was grafting modification, then untreated corn stalks (named RCS-A and RCS-B) were modified completely in order to make the adsorbents (named AMCS and AGCS). Meanwhile, the cellulose adsorbent (AGCS-Cell) was also produced through purification and grafting. These adrobents were analyzed by characterizated technologies, and their adsorption capacities, adsorption isotherm, kinetics, thermodynamics and models in the adsorption process were evaluated in batch experiments. The main results are as follow:
     1. In the characterization analysis of four adsorbents, the internal area of AMCS and AGCS were 2.74 and 3.43 times larger than RCS-A and RCS-B. After etherification and grafting modification, AMCS and AGCS structrues had been successfully introduced a new functional group, cyano (-CN), which lead to N content increasing. The XRD patterns showed AGCS < AMCS < unmodified forms in X-ray crystallography exponential relationship, indicated that–OH groups in AGCS and AMCS were“liberated”from the hydrogen bonds and could be replaced easily by–CN groups, which were favor for Cd (II) ions adsorption. ~(13)C-NMR explained the lower crystallinity and -CN location in AMCS and AGCS. In addition, TGA and DGC curves confirmed good thermal stability in AGCS.
     2. In the adsorption capacity experiments, adsorption kinetics and thermodynamics of four adsorbents, they were mainly affected by initial pH values and adsorbent dosage. When at high pH values and in small dosage, their adsorption capacities were better, and AGCS was best in all adsorbents. Their adsorption precesses fitted for Langmuir adsorption isotherm and the adsorption capacities of AMCS and AGCS were 12.73 and 22.17 mg g~(-1), obtained from linearization of Langmuir isotherm. AMCS and AGCS met the pseudo-second-order kinetics, describing that the adsorption rate was relation with square driving force. And film diffusion and particle diffusion rate controlled mainly the adsorption rate.
     3. The summary in the main mechanism of removal of Cd (II) ions by AMCS and AGCS was physical adsorption depengding on their larger surface are and pore structure, chemical adsorption such as coordination-complexation reaction because of–CN groups, their surface potential was useful for Cd (II) metal cations adsorption. AGCS also had spatial netting.
     4. The comparative analysis between AGCS and AGCS-Cell in their structure and adsorption capacities showed that AGCS-Cell is higher grafting. The graft copolymerization binary kinetic rate equation for corn stalk cellulose was deduced and proportion relationship with initiator and monimer concentration, confirmed to be reasonable under certain conditions by the validation results.
     5. The desorption studies showed that the desorption capacities of six reagents such as pure water, sodium hydroxide, citric acid, sodium chloride and EDTA, were relation with temperature and concentration. EDTA was a most excellent desorption reagent obviously.
引文
[1]百度百科[DB/OL].?http://baike.baidu.com/view/150061.htm. 2010.12.31
    [2] Wang J.L., Chen C. Biosorption of heavy metal by Saccharomyces cerevisiae: a review [J], Biotech. Adv, 2006, 24, 427-451.
    [3]张树芹.蒙脱石、高岭土和层状双金属氢氧化物对Pb2+和对硝基苯酚的吸附研究[D].济南:山东大学博士学位论文. 2007.
    [4] Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith [J]. Sep. Purif. Technol, 2001, 24, 497-505.
    [5] Williams, C.J., Aderhold, D., Edyvean, G.J. Comparison between biosorbents for the removal of metal ions from aqueous solution [J]. Water Res, 1998, 32, 216-224.? ?
    [6] Wang J.L., Chen C. Removal of Pb2+, Ag+, Cs+, and Sr2+ from aqueous solution by brewery’s waste biomass [J]. J. Hazard. Mater, 2008, 151, 65-70.
    [7] Gode, F., Pehlivan. E. A comparative study of two chelating ion-exchange resins for the removal of chromium (III) from aqueous solution [J]. J. Hazard. Mater, 2003, B100, 231-243.
    [8] Gode, G., Pehlivan, E. Adsorption of Cr (III) ions by Turkish brown coals [J]. Fuel Process. Technol, 2005, 86, 875-884.
    [9] Gode, G., Pehlivan, E. Removal of chromium (III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature [J]. J. Hazard. Mater, 2006, B136, 330-337.?
    [10] Wan Ngah W.S., Hanafiah M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review [J]. Bioresour. Technol, 2008, 99, 3935-3948.
    [11] Cheung C.W., Porter, J.F. Mckay G. Sorption kinetic analusis for the removal of cadmium ions fro effluents using bone char [J]. Water Res, 2001, 35, 605-612.
    [12] Salim R., Al-Subu M.M., Sahrhage E. Uptake of cadmium from water by beech leaves [J]. J. Environ. Sci, Health A, 1992, 27 (3), 603-627.
    [13] Miretzky P., Mu?oz C., Carrillp-Chavez A. Cd (II) removal from aqueous solution by Eleocharis acicularis biomass, equilibrium and kinetic studies [J]. Bioresour. Technol, 2010, 101, 2637-2642.
    [14] Semerjian L. Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust [J]. J. Hazard. Mater, 2010, 173, 236-242.
    [15] Zhu C., Luan Z., Wang Y., et al. Removal of cadmium from aqueous solutions by adsorption on granular ted mud (GRM) [J]. Sep. Purif. Technol, 2007, 57, 161-169.
    [16] Barka N., Abdennouri M., Boussaoud A., et al. Biosorption characteristics of Cadmium (II) onto Scolymus hispanicus L. as low-cost natural biosorbent [J]. Desalination, 2010, 258, 66-71.
    [17] Tsezos M. The experience accumulated and the outlook for technology development [J]. Hydrometallurgy, 2001, 59, 241-243
    [18]杨根祥,沙日娜,乌云高娃.酸性矿山废水的污染与治理技术研究[J].西部探矿工程, 2000, 6, 51-52.
    [19]蔡美芳,党志.磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J].环境污染与防治, 2006, 28 (1), 58-61.
    [20] Valenzuela F., Araneda C., Vargas F., et al. Liquid membrane emulsion process for recovering the copper content of a mine drainage [J], Chem. Eng. Res. Des, 2005, 87, 102-108.
    [21] Evangelou V.P., Zhang Y.L. A review: pyrite oxidation mechanisms and acid mine drainage prevention [J], Crit. Rev. Env. Sci. Tec, 1995, 25, 141-199.
    [22]周建民,党志,蔡美芳等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究, 2005, 18 (3), 5-10.
    [23]饶俊,张锦瑞,徐晖.酸性矿山废水处理技术及其发展前景[J].矿业工程, 2005, 3 (3), 47-49.
    [24]林初夏,卢文洲,吴永贵等.大宝山矿水外排的环境影响:II农业生态系统[J].生态环境, 2005, 14 (2), 169-172.
    [25]付善明,周永章,赵宇鴳等.广东大宝山铁多金属矿废水对河流沿岸土壤的重金属污染[J].环境科学, 2007, 28 (4), 805-812.
    [26] Wang F.Y., Wang H., Ma J.W. Adsorption of Cadmium (II) ions from aqueous solution by a new low-cost adsorbent– Bamboo charcoal [J]. J. Hazard. Mater, 2010, 177, 300 -306
    [27] Volesky B., Holan Z.R. Biosorption of heavy metal [J]. Biotechnol. Progr, 1995, 11, 235-250.
    [28] Rathinam A., Maharshi B., Janardhanan S.K., et al. Biosorpiton of cadmium metal ions from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study [J]. Bioresour. Technol, 2010, 101, 1466-1470.
    [29] Marín A.B.P., Ortu?o J.F., Aguilar M.I., et al. Use of chemical modification to determine the binding of Cd (II), Zn (II) and Cr (III) ions by orange waste [J]. Biochem. Eng. J, 2010, 53, 2-6.
    [30]孔庆瑚.环境镉污染对人体健康的影响[J].浙江省医学科学院学报, 2001, 45, 1-3.
    [31] U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Toxicological profile for cadmium, 1999.
    [32] Sud D., Mahajan G., Kaur M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solution - A review [J]. Bioresour. Technol, 2008, 99, 6017-6027.
    [33]方学智.锌对镉胁迫下小白菜生长与抗氧化系统的影响[D].浙江:浙江大学硕士学位论文. 2004.
    [34] Kjellstrom T., Shiroishi K., Erwin P.E. Urinary beta. /sub 2/- macroglobulin excretion among people exposed to cadmium in the general environment [J]. Environ. Res, 1977, 13, 318-344.
    [35]新浪新闻中心.广东北江流域污染事故[DB/OL]. http://news.sina.com.cn/z/gdbjwr/ 2010. 12. 17.
    [36]刘奕生,高怡,王康玮等.广东消化道恶性肿瘤高发村的病因学研究[J].中国热带医学, 2005, 5 (5), 1139-1141.
    [37]邹晓锦,仇荣亮,周小勇等.大宝山矿区重金属污染对人体健康风险的研究[J].环境科学学报, 2008, 28 (7), 1406-1412.
    [38] UK Red List Substances: Environmental Protection ( Prescribed Processes and Substances) Regulations, 1991 (SI 1991/472)
    [39] Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substance discharged into the aquatic environment of the community.
    [40] US Environmental Protection Agency, Integrated Risk Information System (IRIS) on Cadmium, National Centre for Environmental Assessment, Office of Research and Development, Washington, DC, 1999.
    [41]周文敏,傅德黔,孙宗光.中国水体优先控制污染物黑名单的确定[J].环境监测管理与技术, 1991, 3 (4), 18-20.
    [42] SL 63-94.中华人民共和国行业标准地表水资源质量标准[S].中华人民共和国水利部, 1994.
    [43] L330/32-54. Council directive 98/83/EC Official Journal of the European Communities [S]. 1998.
    [44] Srivastava N.K., Majumder C.B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater [J]. J. Hazard. Mater, 2008, 151 (1), 1-8.
    [45] Ku Y., Jung I.L. Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide [J]. Water Res, 2001, 35, 135-142.
    [46] Fu F., Wang Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environ. Mange, 2011, 92, 407-418.
    [47]王春峰.利用粉煤灰合成沸石技术与吸附性能研究[D].南京:南京理工大学博士学位论文. 2009.
    [48] Charerntanyarak L. Heavy metals removal by chemical coagulation and precipitation [J]. Wat. Sci. Technol. 1999, 39, 135-138.
    [49]尹爱君.在冶炼废水处理中应用[J].湖南冶金, 1995, 3, 25-27.
    [50] Alyüz B., Veli S. Kinetic and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins [J]. J. Hazardous. Mater, 2009, 167, 482-488.
    [51] Misra R.K., Jain S.K., Khatri P.K. Iminodiacetic acid functionalized cation exchange resin for adsorption removal of Cr (II), Cd (II), Ni (II) and Pb (II) from their aqueous solutions [J]. J. Hardous. Mater, 2011, 185, 1508-1512.
    [52] Truitt R.E., Weber J.H. Influence of fulvic acid on the removal of trace concentrations of cadmium (II), copper (II) and zine (II) from water by alum coagulation [J]. Water Res, 1979,13 (12), 1171-1177.
    [53] Rubio J., Souza M.L., Smith R,W. Overview of flotation as a wastewater treatment technique [J]. Miner. Eng, 2002, 15, 139 -155.
    [54] Yuan X.Z., Meng Y.T., Zeng, G.M., et al. Evalutaion of tea-derived biosurfactant in removing heavy metal ions form dilute wastewater by ion flotation [J]. Colloid Surf, 2008, 317, 256-261.
    [55] Ennigrou D.J., Gzara L., Ben Romdhane, M.R., et al. Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration [J]. Desalination, 2009, 246, 363-369.
    [56] Wang L.K., Hung, Y.T., Shammas, N.K. Advanced physicochemical treatment technologies. In: Handbook of Environmental Engineering. 2007, Vol. 5. Human, New Jersey
    [57] Srinicasa V., Subbaiya M. Electroflotation studies on Cu, Ni, Zn, and Cd with ammonium dodecyl dithiocarbamate [J]. Sep. Sci.Technol, 1989, 24 (1&2), 145-150.
    [58](日)近藤精一,石川达雄,安部郁夫.吸附科学[M].李国希(译).北京:化学工业出版社.2006.
    [59] O'Connell D.W., Birkinshaw C., O'Dwyer T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review [J]. Bioresour. Technol, 2008, 99, 6709-6724.
    [60] Escudero C., Gabaldon C., Marzal P., et al. Effect of EDTA on divalentmetal adsorption onto grape stalk and exhausted coffee waste [J]. J. Hazard. Mater, 2008, 152, 476-485.
    [61] Chen J.P., Wu S. Study on EDTA-chelated copper adsorption by granular activated carbon [J]. Technol. Biotechnol, 2000, 75, 791-797.
    [62] O'Cooney D., Adsorption design for wastewater treatment. CRC Press [J], Boca Raton, Florida, USA, 1998, 9-25.
    [63] Tajar A.F., Kaghazchi T.K., Soleimani M. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells [J]. J. Hazard. Mater, 2009, 165, 1159-1164.
    [64] Bailey S.E., Olin T.J., Bricka R.M., et al. A review of potentially low-cost sorbents for heavy metals [J]. Water Res, 1999, 33, 2469-2479.
    [65] Wang S., Peng Y. Natural zeolite as effective adsorbents in water and wastewatertreatment [J]. Chem. Eng. J, 2010,156, 11-24.
    [66] Dal Bosco S.M., Jimenez R.S., Carvalho W.A. Removal of toxic metals from wastewater by Brazilian natural scolecite [J]. J. Colloid. Interf. Sci, 2005, 281, 424-431.
    [67] Gedik K., Imamoglu I. Affinity of clinoptilolite-based zeolites towards removal of Cd from aqueous solutions [J]. Sep. Sci. Technol, 2008, 43, 1191-1207.
    [68] Bhattacharyya K.G., Gupta S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review [J]. Adv. Colloid. Interf. Sci, 2008, 140, 114-131.
    [69] Gupta S.S., Bhattacharyya K.G. Removal of Cd (II) from aqueous solution by kaolinite, montmorillonite and their poly (oxo zirconium) and tetrabutylammonium derivatives [J]. J. Hazard. Mater, 2006, B126, 247– 257.
    [70] Andini S., Cioffi R., Montagnaro F., et al. Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite [J]. Appl. Clay Sci, 2005, 31, 126-133.
    [71] Davis T.A., Volesky B., Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae [J]. Water Res, 2003, 37, 4311-4330.
    [72] Iyer A., Mody K., Jha B. Biosorption of heavy metal by a marine bacterium [J]. Mar. Pollut. Bull, 2005, 50, 340-343.
    [73] Say R., Denizli A., Arιca M.Y. Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium [J]. Bioresour. Technol, 2001, 76, 67-70.
    [74] Hashim M.A., Chu K.H. Biosorption of cadmium by brown, green and red seaweeds [J]. Chem. Eng. J, 2004, 97, 249-255.
    [75]陈炳稔.可再生甲壳质的吸附特性研究[M].广州:华南理工大学出版社, 1998.
    [76] Shammen H., Abburi K., Tushar K.G., et al. Adsorption of divalent cadmium (Cd (II)) from aqueous solutions onto chitosan coated perlite beads [J]. Ind. Eng. Chem. Res, 2006, 45, 5066-5077.
    [77] Kumar M., Bijay P.T., Vinod K.S. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd (II) from wastewater [J]. J. Hazard. Mater, 2009, 172, 1041-1048.
    [78] Zhang G.Y., Qu R.J., Sun C.M., et al. Adsorption for heavy metal ions of chitosan coated cotton fiber [J]. J. Appl. Polym. Sci, 2008, 110, 2321-2327.
    [79] Ayala J., Blanco F., García P., et al. Asturian fly ash as a heavy metals removal material [J]. Fuel, 1998, 77 (11), 1147-1154.
    [80] Bhatnagar A., Minocha A.K. Utilization of industrial waste for cadmium removal from water and immobilization in cement [J]. Chem. Eng. J, 2009, 1 (15), 145-151.
    [81]刘传富,张爱萍,孙润仓等.农林废弃物用作重金属离子吸附剂的研究进展[J].林产工业, 2005, 5, 6-9.
    [82] Farajzadeh M.A., Monji A.B. Adsorption characteristics of wheat bran towards heavy metal cations [J]. Sep. Purif. Technol, 2004, 38, 197-207.
    [83] ?zer A., Pirin??i H.B. The adsorption of Cd (II) ions on sulfuric acid-treated wheat bran [J]. J. Hazard. Mater, 2006, B 137, 849-855.
    [84] Iqbal M., Saeed A., Akhtar N. Periolar felt-sheath of palm: a new biosorbent for the removal of heavy metals from contaminated water [J]. Bioresour. Technol, 2002, 81, 151-153.
    [85] Bena?ssa H. Screening of new sorbent materials for cadmium removal from aqueous solutions [J]. J. Hazard. Mater, 2006, B 132, 189– 195.
    [86] Anwar J., Shafique U., Waheed-uz-Zaman, et al. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana [J]. Bioresour. Technol, 2010, 101, 1752-1755.
    [87] Saeed A., Iabal M., Akhtar M.W. Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solution by crop milling waste ( black gram husk) [J]. J. Hazard. Mater, 2005, B117, 65– 73.
    [88] Saeed A., Iabal M. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum) [J]. Water Res, 2003, 37, 3472-3480.
    [89] Ajmal M., Rao R.A.K., Khan M.A. Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake) [J]. J. Hazard. Mater, 2005, B 122, 177-183.
    [90] Azouaou N., Sadaoui Z., Djaafri A., et al. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics [J]. J. Hazard. Mater, 2010, 184, 126-134.
    [91] O. Karnitza Jr., L.V.A. Gurgel, J.C.P. de Melo, et al. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol, 2007, 98, 1291-1297.
    [92] Gardea-Torresdey J.L., Gonzalez J.H., Tiemann K.J., et al. Phytofiltration of hazardous cadmium , chromium, lead and zinc ions by biomass of Medicago sativa (Alfalfa) [J]. J. Hazard. Mater, 1998, 57, 29-39.
    [93] Saeed A., Akhter M.W., Iqbal M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent [J]. Sep. Purif. Technol, 2005, 45, 25-31.
    [94] Vaughan T., Seo C.W., Marshall W.E. Removal of selected metal ions from aqueous solution using modified corncobs [J]. Bioresour. Technol, 2001, 78, 133-139;
    [95] Leyva-Ramos R., Bernal-Jacome LA., Acosta-Rodriguez I. Adsorption of cadmium (II) from aqueous solution on natural and oxidized corncob [J]. Sep. Purif. Technol, 2005, 45, 41-49.
    [96] Rocha C.G., Zaia D.A.M., Alfaya R.V.D.S., et al. Use of rice straw as biossorbent for removal of Cu (II)、Zn (II)、Cd (II) and Hg (II) ions in industrial effluents [J]. J. Hazard. Mater, 2009, 166, 383-388.
    [97]韩鲁佳,闫巧娟,刘向阳等.中国农作物秸秆资源及其利用现状[J].农业工程学报, 2002, 18 (3), 87-91.
    [98]中华人民共和国统计局.国际统计年鉴[M].北京:中国统计出版社, 2001.
    [99]毕于运,王道龙,高春雨等.中国秸秆资源评价与利用[M].北京:中国农业科学技术出版社, 2008.
    [100]毕于运,王亚静,高春雨.中国主要秸秆资源数量及其区域分布[J].农机化研究, 2010, 3, 1-7.
    [101]孙永明,李国学,张夫道等.中国农业废弃物资源化现状与发展战略[J].农业工程学报, 2005, 21 (8), 169-172.
    [102]胡晓霞,李贤进,崔峰等.农作物秸秆青贮对农村卫生影响的调查研究[J].职业与健康, 2003, 19 (5), 88-89.
    [103]罗子华.农作物秸秆利用的新途径[J].生态农业, 2007, (3), 52.
    [104]赵超,高兆银,何莉莉.农作物秸秆栽培香菇研究[J].广东农业科学, 2007, 9,38-41.
    [105]崔明,赵立欣,田宜水等.中国主要农作物秸秆资源能源化利用分析评价[J].农业工程学报, 2008, 24 (12), 291-296.
    [106]张雪松.生物质秸秆利用化学-活性污泥法制取氢气的初步研究[D].南京:南京工业大学硕士学位论文, 2005.
    [107] Prasad S., Singh A., Joshi H.C. Ethanol as an alternative fuel from agricultural, industrial and urban residues [J]. Resour. Conserv. Recy, 2007, 50 (1), 1-39.
    [108] Demirbas A. Biomass resources for energy and chemical industry [J]. Energy Edu. Sci. Technol, 2000, 5, 21-45.
    [109] Demirbas A., Recent advances in biomass conversion technologies [J]. Energy Edu. Sci. Technol, 2000, 6, 19-40.
    [110]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社, 2005.
    [111]王宇.利用农业秸秆制备阴离子吸附剂及其性能的研究[D].济南:山东大学博士学位论文. 2007.
    [112]詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学出版社, 2005.
    [113]杨军,余木火,陈惠芳.秸秆纤维复合材料的发展情况[J].材料导报, 1999, 13 (6), 50-52.
    [114]解战峰.用农产品废弃物制备纤维素强阳离子交换机及其应用[D].西安:西北大学硕士学位论文, 2003.
    [115] Liu C.F., Xu F., Sun J.X., et al. Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne) [J], Carbohydr. Res, 2006, 341, 2677-2687.
    [116]许凤,钟新春,孙润仓等.秸秆中纤维素的结构和分离新方法综述[J].林产化学与工业, 2005, 25(增), 179-182.
    [117]吴靖.菠萝皮渣中纤维素成分的提取和作为燃料吸附剂的改性研究[D].广州:华南理工大学硕士学位论文, 2010
    [118]杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社, 1993.
    [119] Van Soest P.J. Methods for dietary fiber, Neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition [J]. J. Dairy Sci, 1991, 74, 3583-3597.
    [120]李华,孔新刚,王俊.秸秆饲料中纤维素、半纤维素和木质素的定量分析研究[J].新疆农业大学学报, 2007, 30 (3), 65-68.
    [121] Wojnárovits, L. F?ldváry Cs.M., Takács E. Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: A review [J]. Radiat. Phys. Chem, 2010, 79, 848-862.
    [122] Gurgel L.V.A., Júnior O.K., Gil R.P.F., et al. Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride [J]. Bioresour. Technol, 2008, 99, 3077-3083.
    [123] Liu C.F., Sun R.C., Zhang A.P., et al. Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium [J]. Carbohyd. Polym, 2007, 68, 17-25.
    [124]王德翼.苎麻纤维素化学与工艺学——脱胶和改性[M].北京:科学出版社, 2001.
    [125]赵艳峰.纤维素的改性技术及进展[J].天津化工, 2006, 20 (3), 11-13.
    [126] Pavlov P, Makaztghieva V, Lozanov E. High reactivity of cellulose after high temperature mercerization [J]. Cell. Chem. Technol, 1992, 26 (2), 151-160.
    [127]邵自强,李志强,刘建华.纤维素酯在涂料中的研究与应用[J].纤维素科学与技术, 2005, 13 (3), 46-55.
    [128] Marchetti M., Clement A., Loubinoux B., et al. Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains [J]. J. Wood Sci, 2000, 46, 331-333.
    [129] LüL., Lu D., Chen L., et al. Removal of Cd (II) by modified lawny grass cellulose adsorbent [J]. Desalination, 2010, 259, 120-130.
    [130] Aoki N., Fukushima K., Kurakata H., et al. 6-Deoxy-6-mercaptocellulose and its S-substituted derivatives as sorbents for metal ions [J]. React. Funct. Polym, 1999, 42 (3), 223-233.
    [131]李琳,赵帅,胡红旗.纤维素氧化体系的研究进展[J].纤维素科学与技术, 2009, 17 (3), 59- 64.
    [132]武利顺,王庆瑞.纤维素的选择性氧化反应及其体系[J].人造纤维. 2000, 157 (3), 27-31.
    [133] Maekawa E., Koshijima T. Properties of 2,3-dicarboxy cellulose combined with various metallic ions [J]. J. Appl. Polym. Sci, 1984, 29, 2289-2297.
    [134] Maekawa E., Koshijima T. Preparation and characterisation of hydroxamic acid derivatives and its metal complexes derived from cellulose [J]. J. Appl. Polym. Sci, 1990, 40, 1601-1613.
    [135]张光华,朱军风,徐晓凤.纤维素醚的特点、制备及在工业中的应用[J].纤维素科学与技术, 2006, 14 (1), 59-65.
    [136] Navarro R.R., Sumi K., Fujii N., et al. Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine [J]. Water Res, 1996, 30 (10), 2488-2494.
    [137] Saliba R., Gauthier H., Gauthier R., et al. Amidoximated cellulose as scavenger for cadmium and nickel cations [J]. Cell. Chem. Technol, 2001, 35, (5– 6), 435-449.
    [138] Saliba R., Gauthier H., Gauthier R., et al. The use of amidoximated cellulose for the removal of metal ions and dyes [J]. Cellulose, 2002, 9, 183-191.
    [139] Saliba R., H. Gauthier, R. Gauthier, M. Petit-Ramel. The use of eucalyptus barks for the adsorption of heavy metal ions and dyes [J]. Adsorpt. Sci. Technol, 2002, 20 (2), 119-129.
    [140] Saliba R., Gauthier H., Gauthier R.. Adsorption of heavy metal ions on virgin and chemically modified lignocellulosic materials [J]. Adsorpt. Sci. Technol, 2005, 23 (4), 313-322.
    [141] [日]土田英俊,高分子科学[M].北京:人民教育出版社, 1981.
    [142]黄建辉,刘明华,范娟等.纤维素吸附剂的研究和应用[J].造纸科学与技术, 2004, 23 (1), 50 - 54.
    [143] Bhattacharay A., Misra B.N. Grafting: a versatile means to modify polymers: techniques, factors and applications [J]. Prog. Polym. Sci, 2004, 29 (8), 767-814.
    [144]申屠宝卿,赵黎,翁志学等.聚乙烯的表面光接枝改性研究进展[J].高分子通报, 2001, (4), 24-30
    [145] Kubota H., Suzuki S. Comparative examinations of reactivity of grafted celluloses prepared by ultra violet and ceric salt-initiated graftings [J]. Eur. Polym. J, 1995, 31 (8), 701-704.
    [146] Nasef M.M., El-Sayed A.H. Preparation and applications of ion exchange membranes by radiation-induced graft copolyerisation of polar monomers onto non-polar films [J].Prog. Polym. Sci, 2004, 29, 499-561.
    [147] Abdel-Aal S.E., Gad Y., Dessouki A.M. The use of wood pulp and radiation modified starch in wastewater treatment [J]. J. Appl. Polym. Sci, 2006, 99, 2460-2469.
    [148] Shukla S.R., Athaly A.R. Graft copolymerization of glycidyl methacrylate onto cotton cellulose [J]. J. Appl. Polym. Sci, 1994, 54, 279-288.
    [149]蒋先明,曾宪家.引发淀粉接枝共聚的氧化还原体系[J].淀粉与淀粉糖, 1993, (3), 45-51.
    [150]李和平.自交联型淀粉接枝共聚物的合成与动力学研究[D].大连:大连理工大学博士学位论文, 2003.
    [151] Hon D.N.S. Graft copolymerization of lignocellulosic fibers. American Chemical Society Symposium Series, 187, Washington DC, USA. 1982.
    [152]张黎明.纤维素接枝共聚改性的若干途径[J].广州化工, 1995, 23 (4), 11-16.
    [153] Gü?lüG., Gürda? G., ?zgümü? S. Competitive removal of heavy metal ions by cellulose graft copolymers [J]. J. Appl. Polym. Sci, 2003, 90 (8), 2034-2039.
    [154] Gaey M., Marchetti V., Clement A., et al. Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains [J]. J. Wood Sci, 2000, 46, 331-333.
    [155] Vázquez B., Go?i I., Guruchaga M. et al. A study of the graft copolymerization of methacrylic acid onto starch using the H2O2 / Fe2+ [J]. J. Polym. Sci. Part A: Polymer chemistry. 1989, 27 (2), 595-603.
    [156] Shibi I.G., Anirudhan T.S. Synthesis, characterisation, and application as a mercury (II) sorbent of banana stalk-polyacrylamide grafted copolymer bearing carboxyl groups [J]. Ind. Eng. Chem. Res, 2002, 41, 5341-5352.
    [157]肖超渤,吴力立,高山俊.过硫酸铵引发衣康酸与苎麻纤维接枝共聚反应的研究[J].武汉大学学报(自然科学版), 1999, 45 (6), 781-784.
    [158] Anbarasan R., Vasudevan T., Gopalan A. Peroxosalts initiated graft copolymerization of aniline onto wool fibre-a comparative kinetic study [J]. J. Mater. Sci, 2000, 35, 617-625.
    [159] Athawale V.D. Rathl S.C. Graft polymerization: Starch as a model substrate [J]. Rev. Macromol. Chem. Phys, 1999, C 39 (3), 445-480.
    [160]柳明珠,吴靖嘉,谢永红.丙烯酸丁酯与土豆淀粉接枝共聚反应规律研究[J].高分子材料科学与工程, 1993, 9 (5), 26-33.
    [161] Lutfor M.R., Sidik S., Rahman M.Z.A., et al. Graft copolymerization of methylacrylate onto sago starch using ceric ammoniu nitrate as initiator [J]. J. Appl. Polym. Sci, 2000, 77, 784-789.
    [162] Lutfor M.R., Rahman M.Z.A., Sidik S., et al. Kinetic of graft copolymerization of acrylonitrile onto sago starch using free radicals initiated by ceric ammonium nitrate [J]. Des. Monomers Polym, 2001, 4 (3), 253-260.
    [163]邹卫华.锰氧化物改性过滤材料对铜和铅离子的吸附研究[D].长沙:湖南大学博士学位论文, 2006.
    [164]张利波.烟杆基活性炭的制备及吸附处理重金属废水的研究[D].昆明:昆明理工大学博士学位论文, 2007.
    [165]黄美荣,李舒.重金属离子天然吸附剂的解吸与再生[J]. 2009, 29 (5), 385-392.
    [166] Mehmet A.E., Sukru D. A new approach to modification of natural adsorbent for heavy metal adsorption [J]. Bioresour. Technol, 2008, 99 (7), 2516-2527.
    [167] Qi B.C., Aldrich C. Biosorption of heavy metals from aqueous solution with tobacco dust [J]. Bioresour. Technol, 2008, 99, 5595- 5601.
    [168]钱国勇,侯明,汪菊玲.绿茶对水溶液中Pb2+和Cd2+吸附性能初步研究[J].分析试验室, 2008, 27 (1), 63- 66.
    [169] Amber C., Raveender V. Cyanobacteria as a biosorbent for mercuric ion [J]. Bioresour. Technol, 2008, 99 (14), 6578-6586.
    [170]刘振学,黄仁和,田爱民.实验设计与数据评价[M].北京:化学工业出版社, 2005.
    [171] Saikia C.N., Ali F. Graft copolymerization of methylmethacrylate onto highα-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea [J]. Bioresour. Technol, 1999. 165-171.
    [172] Fernandez M.T., Casinos I., Guzman G.M. Effect of the way of addition of the reactants in the graft copolymerization of a vinyl acetone methyl acrylate mixture onto cellulose [J]. J. Polymer. Sci. Part A, Polym. Chem, 1999, 28, 2275-2292.
    [173] Mishra D.K., Tripathy J., Srivastava A. et al. Graft copolymer (chitosan-N-vinyl formamide): synthesis and study of its properties like swelling, metal ion uptake and flocculation [J]. Carbohyd. Polym, 2008, 74, 632-639.
    [174]于九皋,刘峰,高建平等.高锰酸钾引发淀粉/丙烯腈接枝共聚反应动力学[J].化学工业与工程, 1999, 16 (2), 81-84.
    [175]曾汉民.功能纤维[M].北京:化学工业出版社, 2005.
    [176](德)施威特(Schwedt, Georg).图释分析化学[M].谭忠印,何鸿斌,朱再明编译.沈阳:辽宁师范大学出版社, 2002.
    [177]王九思.水处理化学[M].北京:化学工业出版社. 2002.
    [178]刘继芳,曹翠华,蒋以超等.铜与镉在褐土中竞争吸附动力学[J].土壤肥料, 2000, (3), 10-15
    [179]刘继芳,曹翠华,蒋以超等.竞争吸附动力学的竞争规律与竞争系数[J].土壤肥料, 2000, (2), 30-34.
    [180]张金池,姜姜,朱莉等.黏土矿物中重金属离子的吸附规律及竞争吸附[J].生态学报, 2007, 27 (9), 3811-3819.
    [181] Xi Y.J. The Absorption Model of Single-aperture and Multi-aperture Material [J]. Journal of Qinghai University (Natural Science Edition), 2001, 19 (6), 30-35.
    [182]赵振国.吸附作用应用原理[M].北京:化学工业出版社, 2005, 282-284.
    [183]周利民.磁性壳聚糖改性以及对金属离子的吸附特性研究[D].天津:天津大学博士论文, 2007.
    [184]许保玖,龙腾锐.当代给水与废水处理原理[M],北京:高等教育出版社, 2001.
    [185] Febrianto J., Kosasih A.N., Sunarso J., et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies [J]. J. Hazard. Mater, 2009, 162, 616-645.
    [186] Gupta S., Babu B.V. Utilization of waste product (tamarind seeds) for the removal of Cr (VI) from aqueous solutions: Equilibrium, kinetics, and regeneration studies [J]. J. Environ. Manage, 2009, 90, 3013-3022.
    [187] Aksu Z., Acikel U., Kutsal T., Investigation of simultaneous biosorption of copper (II) and chromium (VI) on dried chlorella vulgaris from binary metal mixtures: application ofmulticomponent adsorption isotherms [J]. Sep. Sci. Technol, 1999, 34, 501-524.
    [188] Ho Y., Huang C.T., Haung H.W. Equilibrium sorption isotherm for metal ions on tree fern [J]. Process Biochem, 2002, 37, 1421-1430.
    [189] Sangi M.R., Shahmoradi A., Zolgharnein J., et al. Removal and recovery of heavy metal from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves[J]. J. Hazard. Mater, 2008, 155, 513-522
    [190]王毅,张婷,冯辉霞等.阴离子改性膨润土对水体亚甲基蓝吸附性能研究[J].非金属矿, 2008, 31 (2), 57-61.
    [191] Isik M. Biosorption of Ni (II) from aqueous solution by living and non-living ureolytic mixed culture [J]. Colloid. Surface. B: Biointerfaces, 2008, 62, 97-104.
    [192] Dursun A.Y., Kalayci ?.S. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin [J]. J. Hazard. Mater, 2005, B 23, 151-157.
    [193] Wang Y., Gao B.Y., Yue W.W., et al. Adsorption kinetics of nitrate from aqueous solution onto modified wheat residue [J]. Colloid. Surf. A: Physicochem. Eng. Aspects. 2007. 308, 1-5.
    [194] Yang X.Y., Bushra A.D. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon [J]. J. Colloid Interface Sci, 2005, 287, 25-34.
    [195]陈新.西南某地红壤中Sr、Cs协同吸附动力学研究[D].成都:成都理工大学硕士学位论文, 2007.
    [196] Ho Y.S., Ng J.C.Y., McKay G. Kinetics of pollutant sorption by biosorbents: review [J] Sep. Purif. Method, 2000, 29, 189-232.
    [197] Li Q., Chai L., Yang Z., et al. Kinetic, thermodynamics of Pb (II) adsorption onto modified spent grain from aqueous solution [J]. Appl. Surf. Sci, 2009, 255 (7), 4298-4303.
    [198] Willson R.J., Beezer A.E. The determination of equilibrium constants,ΔG,ΔH andΔS for vapour interaction with a pharmaceutical drug, using gravimetric vapour sorption [J]. Int. J. Pharm, 2003, 258, 77–83.
    [199] Namasivayam C., Yamuna R.T. Adsorption of chromium (VI) by a low cost adsorbent: Biogas residual slurry [J]. Chemosphere, 1995, 30, 561-578.
    [200]李冬梅.玉米秸秆为原料燃料乙醇制备的关键问题研究[D].哈尔滨:哈尔滨工业大学工学博士学位论文, 2008.
    [201] Wang Y., Gao B., Wen Y., et al. Preparation and utilization of wheat straw anionic sorbent for the removal of nitrate in aqueous solution [J]. J. Environ. Sci. 2007, 19, 1305-1310.
    [202] Sun R.C., Sun X.F., Tomkinson J. Hemicelulose and their characterization [J]. ACS Symposium Ser. 2004, 864, 2-22.
    [203] Liu C.F., Sun R.C., Zhang A.P., et al. Structural and thermal characterization of sugarcane bagasse cellulose succinates prepared in ionic liquid [J]. Polym. Degrad. Stab, 2006, 91, 3040-3047.
    [204] Sun J.X., Sun X.F., Zhao H., et al. Isolation and characterization of cellulose from sugarcane bagasse [J]. Polym. Degrad. Stab, 2004, 84, 331-339.
    [205] Orlando U.S., Baes A.U., Nishijima W., et al. A New procedure to produce lignocellulose anion exchangers from agricultureal waste materials [J], Bioresour. Technol, 2002, 83, 195-198.
    [206] Laszlo J.A. Preparing an ion exchange resin from sugarcane bagasse to remove reactive dye from wastewater [J]. Textile Chem. Color, 1996, 28 (5), 13-17.
    [207]岳文文.改性农用秸秆对水体硝酸根、磷酸根吸附效果的研究[D].济南:山东大学硕士学位论文, 2007.
    [208] Anirudhan T.S., Divya L., Suchithra P.S. Kinetic and equilibrium characterization of uranium (VI) adsorption onto carboxylate-functionalized poly (hydroxyethylmethacry- late)-grafted ligncellulosics [J]. J. Environ. Manage, 2009, 90, 549-560
    [209] Ayd?n H., Bulut Y., Yerlikaya C′. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents [J]. J. Environ. Manage, 2008, 87, 37-45.
    [210] Taty-Costodes V.C., Fauduet H., Prote C., et al. Removal of Cd (II) and Pb (II) ions from aqueous solutions by adsorption onto sawdust of Pinus Sylvestris [J]. J. Hazard. Mater, 2003, 105 (1-3), 121-142.
    [211] Oliveira Waleska E., Franca Adriana S., Oliveira Leandro S., et al. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions [J]. J. Hazard. Mater, 2008, 152, 1073-1081.
    [212] Ho Y., Ofomaja A.E. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent [J]. Biochem. Eng. J, 2006, 30, 117-123.
    [213] Pasavant P., Apiratikul R., Sungkhum V., et al. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera [J]. Bioresour. Technol. 2006, 97, 2321-2329.
    [214] Brown P., Jefcoat I.A., Parrish D., et al. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution [J]. Adv. Environ. Res, 2000, 4, 19-29.
    [215] Kumar U., Bandyopadhyay M. Sorption of cadmium from aqueous solution using pretreated rice husk [J]. Bioresour. Technol, 2006, 97, 104-109.
    [216] Shen J., Duvnjak Z. Adsorption kinetics of cupric and cadmium ions on corncob particles [J]. Process. Biochem, 2005, 40, 3446-3454.
    [217] Farinella N.V., Matos G.D., Arruda M.A.Z. Grape bagasse as a potential biosorbent of metals in effluent treatments [J]. Bioresour. Technol, 2007. 98. 1940-1946.
    [218] Schiewer S., Patil S.B. Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics [J]. Bioresour. Technol, 2008, 99, 1896-1903.
    [219] Y. Ho. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods [J]. Water Res, 2006, 40, 119-125.
    [220] Ofomaja A.E., Ho Y. Effect of pH on cadmium biosorption by coconut copra meal [J]. J. Hazard. Mater, 2007, B 139, 356-362.
    [221] Pino G.H., Mesquita L.M.S., Torem M.L. G.A.S. Pinto. Biosorption of cadmiu by green coconut shell powder [J]. Miner. Eng, 2006, 19, 380-387.
    [222] Salem Z., Allia K. Cadmium biosorption on vegetal biomass [J]. Int. J. Chem. React. Eng, 2008, 6, 1-9.
    [223] Aksu Z., Karabbay?r G. Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal- complex dye [J]. Bioresour. Technol, 2008, 99, 7730-7741.
    [224]武玫玲.土壤矿质胶体的可变电荷表面对重金属离子的专性吸附[J].土壤通报, 1985, 16, 138-141.
    [225]何宏平,郭九皋,谢先德等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报, 1999, 19 (6), 231-235.
    [226] Bulter J.A.V., Ockrent C, Studies in electrocapillarity: Part III [J]. Physical Chemistry. 1930, 34, 2841 -2859.
    [227] Liu C.F., Sun R.C., Zhang A.P., et al. Preparation of surgarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium [J]. Carbohyd. Polym, 2007, 68, 17-25.
    [228] Fringant C., Desbrieres J., Rinaudo, M. Physical properties of acetylated starch-based materials: relation with their molecular characteristics [J]. Polymer, 1996, 37, 2663-2673.
    [229] Waramisantigul P., Pokethitiyook P., Kruatrachue M., et al. Kinetic of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza) [J]. Environ. Pollut, 2003, 125, 385-392.
    [230] Haluk A., Yasemin B., ?i?dem Y. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents [J]. J. Environ. Manage, 2008, 87, 37-45.
    [231] Bulut Y., Tez Z. Removal of heavy metals from aqueous solution by sawdust adsorption [J]. J. Environ. Sci, 2007, 19, 160-166.
    [232] Low K.S., Lee C.K., Liew S.C. Sorption of cadmium and lead from aqueous solutions by spent grain [J]. Process. Biochem, 2000, 36, 59-64.
    [233] Martell A.E., Smith R.M. Critical stability constants. Vol 3. Other organic ligands. New York: Plenum Press. 1977.
    [234] Martell A.E., Smith, R.M. Critical stability constants. Vol 5. First supplement. New York: Plenum Press. 1982.
    [235] Tseng J., Chang C., Chang C. et al. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent [J]. J. Hazard. Mater, 2009, 171, 370-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700