用户名: 密码: 验证码:
内电解技术处理化工制药废水的效能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以典型化工制药废水为研究对象,考察了内电解技术对废水可生化性和生物毒性的影响规律,进一步探讨了内电解反应的降解途径及其机理;在此基础上,系统考察了多种内电解联合工艺的处理效果;深入分析了内电解过程中填料板结问题的机理,为解决内电解技术在工程应用的问题提供了理论支持。采用烧杯间歇试验和自行开发的多级鼓泡塔内电解反应器的连续试验,系统考察了内电解技术处理制药废水的效果及其影响因素。试验结果表明,内电解技术对废水COD的去除率为20%,B/C提高率为60%,生物毒性削减率为40%。内电解填料的铁炭质量比为2,在进水低pH值条件下有较好的处理效果。整理试验数据,得到内电解反应对制药废水COD的降解动力学符合一级反应动力学,得出最佳进水pH为2.5,铁炭质量比为2.125。
     内电解反应对有机物的去除过程包括氧化还原反应和吸附-混凝作用。内电解过程中生成的铁的氢氧化物可以吸附废水中的小分子有机物,过程中发生了酯类水解反应和氧化还原反应,将废水中的大分子有机物分解为小分子物质,增加了给电子的有机官能团。
     试验对比了3种内电解技术与其他方法的联合处理工艺。内电解-Fenton技术对废水COD的去除率最大为为61.5%;三种联合工艺都能使废水的可生化性得到明显改善,B/C的提高率约为50%。;内电解-超声和内电解-Fenton联合工艺具有很好的去毒效果,经综合对比三种联合工艺的处理效果和处理成本,推荐内电解-Fenton联合工艺为难降解化工废水预处理的首选工艺。
     采用中试规模的内电解-Fenton处理装置,在天津某化工园区废水处理厂进行了现场试验。2个月的连续运行结果表明,该处理技术对综合化工废水有着比较好的预处理效果,COD的平均去除率可以达到30%,B/C提高率平均达到60%,生物毒性削减率可以达到50%以上。
     通过SEM观察发现板结后的内电解填料表面沉积了大量的颗粒状物质,采用EDX、XPS和XRD分析推断出这些物质主要为氢氧化铁,通过FTIR分析推断氢氧化铁可以吸附废水中含有给电子官能团的有机物。吸附有机物时,有机物作为路易斯碱,氢氧化铁作为接受电子的路易斯酸,吸附过程中电子从有机物向氢氧化铁中的氧转移,内电解过程产生的氢氧化铁吸附有机物并沉积在填料表面是引起内电解技术填料板结问题的主要原因。
In this paper, a typical chemical pharmaceutical wastewater was selected as the target water and the internal electrolysis (IE) and combined technologies were chosen as the main treatment technologies. The biotoxicity removal of the IE process on the typical pharmaceutical wastewater was investigated, Moreover, the changes of the biodegradability and the the degradation products after IE treatment were analyzed and the removal mechanisms of the main pollutants in the pharmaceutical wastewater were discussed, further, the combined technologies composed of IE and other physical chemical technologies were studied, simultaneously .to understand the mechanism of fillings agglomeration, various techniques were implemented to characterize in order to provide the basic basis to the rational application of the internal electrolysis in the treatment of the toxic chemical wastewater.
     Long operation results showed that the internal electrolysis was an effective pre-treatment technology, the COD removal efficiency was 20%, the B/C enhancement efficiency was 60% and the acute biotoxicity removal efficiency was 40%. The iron carbon mass ratio was 2; low initial pH was favorable to the treatment. A new kinetics model was established, according to the model, the best reaction factors were obtained under initial pH value of 2.5 and the iron carbon mass ratio of 2.125.
     The process of the organics removal was complicated; the internal electrolysis reactions were the main effect. Some compounds with cyclic or long carbon chain could be decomposed into small molecule substance; in addition, suspended particles and colloidal matters of wastewater could be adsorbed by the newborn iron oxide hydroxide which was good flocculants with high activity of adsorption and flocculation.
     The comparisons of the results by there internal electrolysis combined technologies were studied. The COD removal efficiency for IE-Fenton technology was 61.5%, the B/C enhancement efficiency of these three technologies was 50%; the acute biotoxicity of IE-ultrasonic irradiation technology was 88% and it was 80% for the IE-Fenton technology. Accoding to the comparison of the effects and the cost, the internal electrolysis-Fenton technology was chosn to treat the chemical wastewater.
     Actual mixed chemical wastewater was treated using the internal electrolysis-Fenton technology, with long operation times (more than 2 months), the COD removal efficiency was 30%, the B/C enhancement efficiency was 60% and the acute biotoxicity was 50%. To understand the mechanism of agglomeration, various techniques were implemented to characterize. Scanning electron microscopy (SEM) indicated that there were granular matters on the surface of agglomerate fillings to arouse the agglomeration. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicated that the granular matters were ferric hydroxide and the crystal structure was amorphous. XPS and Fourier transform infrared (FTIR) indicated that adsorption of the internal electrolysis was chemical adsorption and ferric hydroxide could easily adsorb the organics which contained the donating electron groups. The deposition on the surface of fillings by ferric hydroxide which adsorbed the organics was the main reason of agglomeration of the internal electrolysis technology.
引文
[1]黄明,朱云,肖锦,等.高浓度难降解有机工业废水处理技术评价[J].工业水处理,2004,24(4):1-5.
    [2]《中国环境年鉴》编辑委员会编.中国环境年鉴[M].北京:中国环境科学出版社,1999.
    [3]胡晓东.制药废水处理技术及工程实例.北京:化学工业出版社,2008.
    [4] Sirtori C.Decontamination industrial pharmaceutical wastewater by combining solar photo-fenton and biological treatment[J].Water Research,2009,43(3):661-668.
    [5]谭智,汪大晕,张伟烈.深井曝气处理高浓度制药废水[J].环境污染与防治,1993,15(6):5-8.
    [6] Nandy T,Kaul S N.Anaerobic pre-treatment of herbal-based pharmaceutical wastewater using fixed-film reactor with recourse to energy recovery[J].Water Research,2001,35(2):351-362.
    [7] Oktem Y A,Ince O,Sallis P,et al.Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor[J].Bioresource Technology,2008,99(5):1089-1096.
    [8]刘峰.综合制药废水生物处理工程化技术研究[D].吉林:吉林大学环境学院,2008.
    [9]周莉莉.化工合成制药废水的高效厌氧生物处理技术研究[D].天津:天津大学环境学院,2010.
    [10]李世忠,高冠道,张爱勇.化学絮凝法处理制药废水应用研究进展[J].工业用水与废水,2008,39(6):6-10.
    [11]张月峰.电解-生化法处理制药废水研究[D].浙江:浙江大学环境学院,2002.
    [12]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社,2006.
    [13]孙兵.循环式活性污泥工艺处理制药废水的研究[J].有色金属设计,2004,31(3):68-72.
    [14]肖广全,黄毅,刘文艳.微波-生物接触氧化法处理制药废水的研究[J].中国给水排水,2006,22(11):76-79.
    [15]谭智,汪大晕,张伟烈.深井曝气处理高浓度制药废水[J].环境污染与防治,1993,15(6):5-8.
    [16]李道棠,赵敏钧,杨虹,等.深井曝气-ICEAS技术在抗菌素制药废水处理中的应用[J].给水排水,1996,22(3):21-24.
    [17]简英华.ORBAL氧化沟处理合成制药废水[J].重庆环境科学,1994,16(1):22-24.
    [18]邹平,高廷耀.SBR法处理制药废水的试验研究给水排水[J].2000,26(5):43-44.
    [19] Chen Z Q,Wang H C,Chen Z B.Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin[J].Journal of Hazardous Materials,2011,185(2-3):905-913.
    [20] Chelliapan S,Wilby T,Sallis P J.Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics[J].Water Research,2006,40(3):507-516.
    [21] Oktem Y A,Ince O,Donnelly T,et al.Determination of optimum operating conditions of an acidification reactor treating a chemical synthesis-based pharmaceutical wastewater[J] . Process Biochemistry , 2006 , 41(11) :2258-2263.
    [22]刘风华,宋永会,宋存义,等.厌氧折流板反应器处理难降解黄连素废水的研究[J].中国环境科学,2011,31(4):591-596.
    [23] Enright A M,McHugh S,Collins G,et al.Low-temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater[J].Water Research,2005,39(19):4587-4596.
    [24] Luis G. T,Jorge J,Petia M,et al.Coagulation-flocculation pretreatment of high-load chemical-pharmaceutical industry wastewater: mixing aspects[J].Water Science and Technology,1997,36(2-3):255-262.
    [25]张鑫,白玲玲,黄佳佳,等.CaO絮凝沉淀-树脂吸附两步法处理制药废水[J].化工进展,2011,30(3):671-680.
    [26]刘明华,杨林,詹怀宇.复合型改性木质素絮凝剂处理抗生素类化学制药废水的研究[J].中国造纸学报,2006,21(2):47-50.
    [27]肖宏康,肖书虎,张国芳,等.电化学氧化法处理模拟黄连素制药废水的研究[J].环境工程学报,2011,5(5):987-991.
    [28]徐莺,朱承驻,张仁熙,等.电解法降解动物制药废水的研究[J].化学世,2002(增刊):94-96.
    [29]廖志民.MBR工艺处理发酵类制药废水中试研究[J].中国给水排水,2010,26(9):131-133.
    [30]冯斐,周文斌,汤贵兰,等.MBR工艺处理维生素C制药废水的中试实验[J].环境工程,2006,24(6):16-18.
    [31] Noble J.GE ZeeWeed MBR technology for pharmaceutical wastewater treatment[J].Membrane Technology,2006,26(9):7-9.
    [32] Tekin H,Bilkay O,Ataberk S S,et al.Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater[J].Journal of Hazardous Materials,2006,136(2):258-265.
    [33] Sirtori C,Zapata A,Oller I,et al.Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment[J].Water Research,2009,43(3):661-668.
    [34] Yang Y,Wang P,Shi S J,et al.Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater[J].Journal of Hazardous Materials,2009,168(1):238-245.
    [35] Melero J A,Martinez F,Botas J A,et al. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater[J].Water Research,2009,43(16):4010-4018.
    [36] Boroski M,Rodrigues A C,Garcia J C,et al.Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries[J].Journal of Hazardous Materials,2009,162(1):448-454.
    [37] Gotvajn A Z,Zagorc-Koncan J,Tisler T.Pretreatment of highly polluted pharmaceutical waste broth by wet air oxidation[J].Journal of Environmental Engineering-Asce,2007,133(1):89-94.
    [38]刘小芳.内电解法对化学合成制药废水的去毒效果评价[D].天津:天津大学环境学院,2010.
    [39] Pradeep K B,Prasad I M,Mishra S C.Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation[J].Journal of Hazardous Materials,2008,153(1-2):635-645.
    [40] Ngamlerdpokin K,Kumjadpai S,Chatanon P,et al.Remediation of biodiesel wastewater by chemical and electro-coagulation[J].Journal of Environmental Management,2011,92(10):2454-2460.
    [41] Zhang M H,Zhao Q L,Bai X,et al.Adsorption of organic pollutants from coking wastewater by activated coke[J].Physicochemical and Engineering Aspects,2010,362(1-3):140-146.
    [42] Marina S,Bogdanka R,Zarko K,et al.Adsorption of heavy metals from electroplating wastewater by wood sawdust[J].Bioresource Technology,2007,98(2):402-409.
    [43] Fallah N,Bonakdarpour B,Nasernejad B,et al.Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT)[J].Journal of Hazardous Materials,2010,178(2-3):718-724.
    [44] Sun C,Leiknes T,Weitzenb?ck J,et al.Development of an integrated shipboard wastewater treatment system using biofilm-MBR[J].Separation and Purification Technology,2010,75(1):22-31.
    [45] Badawy M I,Wahaab R A,Ekalliny A S.Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater[J].Journal of Hazardous Materials,2009,167(1-3):567-474.
    [46] Guo M T,Hu H Y,Liu W J.Preliminary investigation on safety of post-UV disinfection of wastewater: bio-stability in laboratory-scale simulated reuse water pipelines[J].Desalination,2009,239(1-3):22-28.
    [47] Martinez N S,Fernandez J F,Segura X F,et al.Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent[J] . Journal of Hazardous Materials,2003,101(3):315-322.
    [48] Kyoung H K,Son K I.Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters[J] . Journal of Hazardous Materials,2011,186(1):16-34.
    [49] Gotvajn A Z,Zagorc K J,Tisler T.Pretreatment of highly polluted pharmaceutical waste broth by wet air oxidation[J].Journal of Environmental Engineering-Asce,2007,133(1):89-94.
    [50] Sebastien L,Olivier B,Jean H F,et al.Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process[J].Chemosphere,2011,84(9):1208-1215.
    [51] Javier B,Juan G,Juan L,et al.Non-catalytic and catalytic wet air oxidation of pharmaceuticals in ultra-pure and natural waters[J].Process Safety andEnvironmental Protection,2011,89(5):334-341.
    [52] Young H S,Hong S L,Young H L,et al.Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation[J].Journal of Hazardous Materials,2009,167(1-3):824-829.
    [53] Bermejo M D,Cocero M J.Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor[J].Journal of Hazardous Materials,2006,137(2):965-971.
    [54] Dai Q Z,Lei L C,Zhang X W.Enhanced degradation of organic wastewater containing p-nitrophenol by a novel wet electrocatalytic oxidation process: Parameter optimization and degradation mechanism[J] . Separation and Purification Technology,2008,61(2):123-129.
    [55] Han G C,Liu Z,Wang Y L.Preparation and application of pharmaceutical wastewater treatment by praseodymium doped SnO2/Ti electrocatalytic electrode[J].Journal of Rare Earths,2008,26(4):532-537.
    [56] Ai Z Hi,Li J P,Zhang L Zi,et al.Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process[J].Ultrasonics Sonochemistry,2010,17(2):370-375.
    [57] Chang J H,Amanda V. E,Hsieh Y H,et al.Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD[J].Science of the Total Environment,2009,407(22):5914-5920.
    [58] Fan J H,Ma L M.The pretreatment by the Fe–Cu process for enhancing biological degradability of the mixed wastewater[J].Journal of Hazardous Materials,2009,164(2-3):1392-1397.
    [59] Shi Y,Liu H,Zhou X,et al.Mechanism on impact of internal-electrolysis pretreatment on biodegradability of yeast wastewater[J].Chinese Science Bulletin,2009,54(12):2124-2130.
    [60]于军,秦霄鹏,高磊,等.内电解技术处理有机废水的应用进展[J].中国给水排水,2009,25(12):12-15.
    [61]程刚,郭倩,王志远,等.催化内电解法处理废水用镀覆电极的研究进展[J],化工环保,2008,28(6):514-517.
    [62] Cheng H F,Liu J L,Wang H J,et al.Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis[J].Journal of Hazardous Materials,2007,146(1-2):385-392.
    [63] Zhu N R,Luan H W,Yuan H S,et al.Effective dechlorination of HCB by nanoscale Cu/Fe particles[J].Journal of Hazardous Materials,2009,176(1-3):1101-1105.
    [64] Liu B,Li S,Zhao Y J,et al.Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process[J].Journal of Hazardous Materials,2009,176(1-30):213-219.
    [65] Ghauch A H,Abou A,Tuqan A.Investigating the mechanism of clofibric acid removal in Fe0/H2O systems[J].Journal of Hazardous Materials,2009,176(1-3):48-55.
    [66] Agrawal A,Tratnyek P G..Reduction of nitro aromatic compounds by zero valent iron metal[J].Environmental Science & Technology,1996,30(1):153-160.
    [67] Keum Y S,Li Q X.Reduction of nitroaromatic pesticides with zero-valent iron[J].Chemosphere,2004,54(3):255-263.
    [68] Rima J,Aoun E,Hanna K,et al.Degradation of phenol into mineral compounds in aqueous solutions using zero-valent iron powder(ZVIP)[J].Journal De Physique Iv,2005,124(4):81-89.
    [69]樊金红,马鲁铭,高廷耀.溶解氧对催化铁内电解法预处理混合废水的影响[J].水处理技术,2007,33(10):71-74.
    [70]姜春杰,孙力平,王少坡,等.动态混合微曝气内电解预处理DSD酸生产废水[J].工业用水与废水,2007,38(4):46-49.
    [71]梁少晖,张美婷,朱江,等.Fe-Cu-C三元固定床微电解法处理酸性品红染料废水[J].应用化工,2007,36(9):941-943.
    [72]蒋雨希,杨健,董璟琦,等.铝炭微电解法对印染废水的处理[J].工业水处理,2007,27(9):53-55.
    [73]张海臣,刘藏者,赵建国.曝气催化铁内电解法对印染废水预处理的试验[J].工业水处理,2007,27(6):35-37.
    [74]罗旌生,曾抗美,左晶莹,等.铁碳微电解法处理染料生产废水[J].水处理技术,2005,31(11):67-70.
    [75]祁佩时,陈战利,李辉,等.微电解-Fenton工艺预处理难降解染料废水研究[J].中国矿业大学学报,2008,37(5):686-689.
    [76]迟娟,黄全辉,李敏哲,等.内电解-MBR工艺处理制药废水的研究[J].工业水处理,2006,26(1):27-29.
    [77]谢琴,孙力平,于静洁,等.动态混合曝气-微电解预处理维生素B1生产废水[J].环境工程学报,2008,2(9):1185-1188.
    [78]王丽娟,林年丰,齐翀,等.曝气微电解-絮凝工艺预处理嘧啶废水[J].吉林大学学报(工学版),2008,38(6):1501-1504.
    [79]矫彩山,王中伟,彭美媛,等.铁炭微电解-Fenton试剂氧化法预处理广灭灵及丙草胺废水[J].化工环保,2007,27(4):349-352.
    [80]鲍立新,李建政,刘莹,等.铁碳内电解法预处理安普霉素生产废水[J].哈尔滨工业大学学报,2007,39(16):83-88.
    [81]朱凡,李平,吴锦华,等.铁炭微电解法削减老龄垃圾渗滤液的毒性研究[J].中国给水排水,2006,22(11):83-86.
    [82]赖鹏,赵华章,王超,等.铁炭微电解深度处理焦化废水的研究[J].环境工程学报,2007,1(3):15-20.
    [83]孟志国,王金生,杨谊,等.内电解、Fenton试剂处理腈纶废水[J].化学工程师,2009,161(2):46-49.
    [84]李欣,祁佩时.铁炭Fenton/SBR法处理硝基苯制药废水[J].中国给水排水,2006,22(19):12-15.
    [85]卢平,刘丰山,何海燕.内电解-混凝-吸附法处理松香及樟脑生产废水[J].华南师范大学学报(自然科学版),2003(4):74-78.
    [86]郭秀莲,赵旭涛,李贵贤,等.混凝-内电解法处理ABS树脂废水的研究[J].兰州理工大学学报,2005,31(5):71-74.
    [87] Flynn H G.Physics of acoustic cavitation in liquids[J].Physical Acoustics,1964,58(1):157-172.
    [88] Margulis M A.Sonoluminescence and sonochemical reactions incavitation fields: A review[J].Ultrasonics, 1985,23(1):157-169.
    [89] Hnglein A H . Sonochemistry: historical developments and modern aspects[J].Ultrasonics,1987,25(6):6-16.
    [90] Sehgal C M,Wang S Y.Threshold intensities and kinetics of sonoreaction of thymine in aqueous solutions at low ultrasonic intensities[J].Journal of the American Chemical Society,1981,103(22):6606-6611.
    [91]汤红妍,罗亚田,查振林.超声波降解苯酚溶液的研究[J].环境工艺,2004,16(5):16-18.
    [92]彭晓兰,陈晨,龙兰娟,等.超声内电解协同作用对对硝基苯酚的处理[J].工业给排水,2007,33(5):164-167.
    [93]林俊杰,于清航,赵晓松,等.低频超声+内电解法联用处理酸性红B废水[J].安全与环境学报,2008,8(2):58-60.
    [94] Liu H N,Li G T,Qu J H,et al.Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound[J].Journal of Hazardous Materials,2007,144(1-2):180-186.
    [95]张春永,迅伟,徐飞高,等.一种新型微电解材料组合的性能研究[J].水处理技术,2005,31(1):32-34.
    [96]邹昊辰,张思相,栗占彬,等.废水处理用微电解规整化填料的制备[J].化工环保,2008,28(6):546-548.
    [97]李超,吴刚,谢辉,等.一种块状微电解调料及其制备工艺:中国,101486509A[P],2009-12-22.
    [98]张键,季俊杰,徐乃东,等.铁、炭流化床预处理染料废水研究[J].中国给水排水,2001,17(8):6-9.
    [99]叶亚平,唐牧,王丽华,等.动态强化微电解装置处理染料废水[J].中国给水排水,2004,20(6):50-52.
    [100]刘海宁,曲久辉,李国亭,等.转鼓式内电解装置处理水中酸性橙Ⅱ染料[J].环境科学,2007,22(9):1425-1430.
    [101] Wang C,Xi J Y,Hu H Y.Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products[J].Chemosphere,2008,73(8):1167-1171.
    [102] Woo O T,Chung W K,Wong K H,et al.Photocatalytic oxidation of polycyclic aromatic hydrocarbons: Intermediates identification and toxicity testing[J].Journal of Hazardous Materials,2009,168(2-3):1192-1199.
    [103] Nihal O,Snezana T,Mehmet A,et al.Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process electro-Fenton[J].Chemosphere,2008,73(9):1550-1556.
    [104] Yuan S H,Kang J,Wu X H.Development of a Novel Internal Electrolysis System by Iron Connected with Carbon: Treatment of Nitroaromatic Compounds and Case of Engineering Application[J] . Journal of Environmental Engineering-ASCE,2010,136(9):975-982.
    [105] APHA,AWWA,WEF.Standard Methods for the Examination of Water and Wastewater[S].1998.
    [106]王丽莎.氯和二氧化氯消毒对污水生物毒性的影响研究[D].北京:清华大学环境工程系,2007.
    [107]中华人民共和国国家环境保护总局.GB/T15441-1995水质急性毒性的测定-发光细菌法[S].北京:中国标准出版社,1995-03-25.
    [108] Fang Y X,Souhail R.Correlation of 2-Chlorobiphenyl Dechlorination by Fe/Pd with Iron Corrosion at Different pH[J].Environmental Science & Technology,2008,42(18):6942-6948.
    [109]郭文成,吴群河.BOD5/CODCr评价污废水可生化性的可行性分析[J].环境科学与技术,1998,82(3):1-3.
    [110]刘永淞.污水可生化性评价[J].中国给水排水,1995,11(5):36-38.
    [111]侯镜德,路文初.三维全扫描荧光法在油田单井评价中的应用研究[J].分析测试学报,1995,14(4):33-37.
    [112]赵庆良,管凤伟.不同混凝剂处理煤气废水生物出水的研究[J].黑龙江大学自然科学学报,2010,27(2):233-236.
    [113] Badawy M I,Ali M M.Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater[J].Journal of Hazardous Materials,2006,136(3):961-966.
    [114]臧花运,卢平,伊洪坤,等.松香废水处理技术及机理研究[J].干旱环境监测,2008,22(4):230-235.
    [115] Kaichouh G,Oturan N,,Oturan M.Degradation of the herbicide imazapur by Fenton reactions[J].Environmental Chemistry Letter,2004,2(1):31-33.
    [116] Gu B,Phelps T J,Liang L,et al.Biogeochemical Dynamics in Zero-Valent Iron Columns: Implications for Permeable Reactive Barriers[J].Environmental Science & Technology,1999,33(13):2170-2177.
    [117]陈晋阳,黄为.无定形氢氧化铁吸附水溶液中镉离子机理的XPS研究[J].分析测试学报,2002,21(3):70-72.
    [118] Dejongb H,Ellerbroekd W S,SPEKA L.Low- temperature structure of lithium nesosilicate Li4SiO4 and Li1s and O1s X- ray photoelectron spectrum[J].Acta Crystallographica Section B,1994,50(5):511-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700