用户名: 密码: 验证码:
草麻黄表观型化学组成特征研究柳叶白前化学成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草麻黄(Ephedra sinica Stapf)为麻黄科麻黄属植物,柳叶白前(Cynanchum stauntonii (Decne) Schltr. ex Levl.)为萝藦科鹅绒藤属植物,二者分别是中国药典收载的中药麻黄的基源植物之一和中药白前的基源植物之一。草麻黄主要含苯丙胺类生物碱、黄酮类以及酚酸类成分,柳叶白前主要含C21型甾体苷类成分。鉴于天然存在的苯丙胺类生物碱、黄酮类成分以及C21甾体及其苷类成分均具有结构的多样性和特征性,并具有广泛的药理作用,为了从天然有机化学的角度深入研究天然药物的组成特征以及这种组成特征在药用植物基源鉴定方面的应用,本论文分别对具有化学组成特征的草麻黄和柳叶白前的正丁醇萃取部位进行了系统的化学成分研究。
     本论文运用多种色谱方法和波谱技术,对上述两种植物进行了系统的化学成分研究。从草麻黄85%乙醇提取物中分离并鉴定了58个化合物(1*-58),发现新化合物8个(1*-8*)。化合物编号和名称见Table1,结构见Figure1。其中新化合物包括苯丙胺类生物碱1*,香豆素衍生物2*以及芳香酸衍生物3*,化合物4*-8*为新的酰胺类化合物,新化合物5*-8*为四对旋转异构体;从柳叶白前95%乙乙醇提取物的正丁醇部位的大孔树脂60%洗脱部位分离得到20个化合物,鉴定出其中的16个,发现新化合物5个(1*-5*)。化合物编号和名称见Table1,结构见Figure1。其中包括两个新的C21甾体类化合物(1*和2*),两个新的C21甾苷类成分(3*和4*)以及一个新的木脂素类成分(5*)。
     对缺少植物形态学和组织学鉴别特征的中药及其制成品的基源鉴定和质量控制研究一直是中药研究中具有挑战性的研究内容。通过采用植物化学的研究方法表达中药化学组成的整体特征,最终达到中药及其制成品的基源鉴定的目的已经成为该研究领域的共识。本论文在对草麻黄化学成分研究的基础上,采用规范化的程序进一步探讨了来源于两个不同种麻黄,草麻黄(E. sinica Stapf)和中麻黄(E.intermedia Schrenk et C.A. Mey.)的6个样品的专属性特征对照物质(extract-P部分)的1HNMR和HPLC指纹分析方法。通过将各单体成分与各不同来源样品的1HNMR口HPLC图谱进行比较,完成了两个种麻黄的1HNMR和HPLC指纹图谱特征性信号的解析。结果表明两个种的麻黄均主要显示麻黄中具有结构特征性化学成分-苯丙胺类生物碱的特征共振信号(1HNNR谱上并未显示黄酮类成分的特征共振信号),既具有一致性也有不同之处。通过HPLC和HPLC-MS在线分析的方法对extract-P的化学成分特征进行了进一步的确证。所得的1HNMR谱特征信号和HPLC峰均可明确归属为相应的单体化合物。1HNMR谱结合HPLC色谱峰所提供的特征化合物的结构和成分信息,可用于麻黄属植物的基源鉴定。
Ephedra sinica Stapf belonging to the family of Ephedraceae,and Cynachum stauntonii (Decne.)Schltr. ex Levl., a perennial medicinal herb from the family of Asclepiadaceae, have been used as original plants of Eephedrae Herba and Cynanchi stauntonii Rhizoma Et Radix, respectively, in Chinese pharmacopoeia (2010). It has been reported that phenylalkylamines alkaloids, flavonoids and phenolic compounds were the main constituents from the stems of E. sinica, and C21steroids were the main constituents from the roots of C. stauntonii. Based on the diverse structures and extensive pharmacological effects of these types of compounds, this thesis studied the chemical constituents of the stems of E. sinica and the roots of C. stautonii, expecting to find more active substance and functions of the natural medicine.
     By using a variety of chromatographic techniques and spectroscopic methods,58compounds (1*-58) were isolated and structurally determined from the85%EtOH extract of the stems of E. sinica. Names and structures of the purified compounds are listed in Table1and Figure1, respectively. Among them, compounds1*-8*are novel compounds, compound1*is a new phenylalkylamines alkaloids, compound2*is a new coumarin, compound3*is a new phenolic compound, compounds4*-8*are new amides glycosides, among them5*-8*are four pairs of rotational isomers. From the n-BuOH fraction of95%EtOH extract of the roots of C. stauntonii, isolated20compouds,16of them were elucidated. Of which,5are new compounds (1*-5*),1*and2*are new steroids,3*and4*are new steroidal glycosides and5*is a new lignans. Names and structures of the purified compounds are listed in Table2and Figure2, respectively.
     The original determination of plant-derived subjects in the system of traditional herbal medicines is often complicated by the lack of morphological features in visual or microscopic inspection. Improved methods are urgently needed. In this paper, the profiles of proton nuclear magnetic resonance (1H NMR) and high performance liquid chromatography (HPLC) of fractionated polar extracts from samples of E. sinica and E. intermedia were recorded and analyzed by comparing them to each other and to those of the compounds isolated in this work. The1H NMR spectra revealed not only the common features of chemical composition among collected samples of Epheda species with the characteristic signals of their major constituents, phenylalkylamines alkaloids, being exhibited explicitly and reproducibly, but also the significantly signature features in the composition of signals when compared to other species. These features were further confirmed by HPLC and online HPLC-MS (mass spectrometry) analyses. On the basis of chemical investigation, the signals and peaks in the profiles of1H NMR and HPLC were unambiguously assigned to their corresponding monomers. The general feature of1H NMR spectrum coupled with that of HPLC profile established for authentic sample explicitly provided the data of structures and composition for those particular compounds, which can be used as signature features for original authentication of Ephedra species.
引文
[1]中国科学院中国植物志编辑委员会.中国植物志-第七卷[M].北京,科学出版社,1978:468.
    [2]国家药典委员会.中华人民共和国药典-第一部[M].北京,中国医药科技出版社,2010:300.
    [3]赵巍.草麻黄化学成分研究[D].北京,中国医学科学院&北京协和医学院药物研究所,2009.
    [4]Zhao W, Deng A J, Du G H, et al. Chemical constituents of the stems of Ephedra sinica[J]. Journal of Asian natural products research,2009,11(2):168-171.
    [5]Nawwar M A M, Barakat H H, Buddrust J, et al. Alkaloidal, lignan and phenolic constituents of Ephedra alata[J]. Phytochemistry,1985,24(4):878-879.
    [6]Starratt A N, Caveney S. Quinoline-2-carboxylic acids from Ephedra species[J]. Phytochemistry,1996,42(5):1477-1478.
    [7]Al-Khalil S, Alkofahi A, El-Eisawi D, et al. Transtorine, a new quinoline alkaloid from Ephedra transitoria[J]. Journal of natural products,1998,61(2):262-263.
    [8]Hikino H, Ogata M, Konno C. Structure of feruloylhistamine, a hypotensive principle of Ephedra roots[J]. Planta medica,1983,48(6):108-110.
    [9]Tamada M, Endo K, Hikino H. Maokonine, hypertensive principle of Ephedra roots[J]. Planta medica,1978,34(7):291-293.
    [10]Hikino H, Takahashi M, Konno C. Structure of ephedrannin A, a hypotensive principle of Ephedra roots[J]. Tetrahedron letters,1982,23(6):673-676.
    [11]Tamada M, Endo K, Hikino H. Structure of ephedradine B, a hypotensive principle of Ephedra roots[J].Heterocyles,1979,12(6):783-786.
    [12]Konno C, Tamada M, Endo K, et, al. Structure of ephedradine C, a hypotensive principle of Ephedra roots[J]. Heterocyles,1980,14(3):295-298.
    [13]Hikino H, Ogata M, Konno C. Structure of ephedradine D, a hypotensive principle of Ephedra roots[J]. Heterocyles,1982,17:155-158.
    [14]Purev O, Pospisil F, Motl O. Flavonoids from Ephedra sinica stapf[J]. Collection of czechoslovak chemical communications,1988,53(12):3193-3196.
    [15]Amakura Y, Yoshimura M, Yamakami S, et al. Characterization of Phenolic Constituents from Ephedra herb Extract[J]. Molecules,2013,18(5):5326-5334.
    [16]Chumbalov T K, Chekmeneva L N. Flavonoids of Ephedra equisetina. I[J]. Chemistry of natural compounds,1976,12(4):486-486.
    [17]Zakirova B M, Omurkamzinova V B, Erzhanova M S. Flavonoids of Ephedra lomatolepis[J]. Chemistry of natural compounds,1982,18(6):748-749.
    [18]Nawwar M A M, El-Sissi H I, Barakat H H. Flavonoid constituents of Ephedra alata[J]. Phytochemistry,1984,23(12):2937-2939.
    [19]Hussein S A M, Barakat H H, Nawar M A M, et al. Flavonoids from Ephedra aphylla[J]. Phytochemistry,1997,45(7):1529-1532.
    [20]Tsitsa-Tzardi E, Loukis A, Philianos S. Polyphenolic compounds of Ephedra campylopoda[J]. Fitoterapia,1987,58(3):200.
    [21]Hikino H, Shimoyama N, Kasahara Y, et, al.Structures of mahuannin A and B, hypotensive principles of Ephedra roots[J]. Heterocycles,1982,19(8):1381-1384.
    [22]Hikino H, Shimoyama N, Kasahara Y, et, al. Structures of mahuannin C, a hypotensive principles of Ephedra roots[J]. Heterocycles,1983,20(9):1741-1744.
    [23]Hikino H, Kasahara Y. Structures of mahuannin D, a hypotensive principles of Ephedra roots[J]. Heterocycles,1983,20(10):1953-1956.
    [24]Tao H, Wang L, Cui Z, et al. Dimeric proanthocyanidins from the roots of Ephedra sinica[J]. Planta medica,2008,74(15):1823-1825.
    [25]Hikino H, Takahashi M, Konno C. Structure of ephedrannin A, a hypotensive principle of Ephedra roots[J]. Tetrahedron letters,1982,23(6):673-676.
    [26]Zang X, Shang M, Xu F, et al. A-Type Proanthocyanidins from the Stems of Ephedra sinica (Ephedraceae) and Their Antimicrobial Activities[J]. Molecules, 2013,18(5):5172-5189.
    [27]Song K S, Sankawa U, Ebizuka Y. A novel benzoic acid derivative from yeast-elicited Ephedra distachya cultures[J]. Archives of pharmacal research,1994,17(1): 54-55.
    [28]Cottiglia F, Bonsignore L, Casu L, et al. Phenolic constituents from Ephedra nebrodensis[J]. Natural product research,2005,19(2):117-123.
    [29]Kobaisy M, Tellez M R, Khan I A, et al. Essential oil composition of three Italian species of Ephedra[J]. Journal of essential oil research,2005,17(5):542-546.
    [30]Wang Q, Yang Y, Zhao X, et al. Chemical variation in the essential oil of Ephedra sinica from Northeastern China[J]. Food chemistry,2006,98(1):52-58.
    [31]许爱霞,葛斌,宋平顺,等.甘肃麻黄挥发油化学成分分析[J].中国医院药学杂志,2006,26(7):804-808.
    [32]吉力,徐植灵.草麻黄中麻黄和木贼麻黄挥发油化学成分的GC-MS分析[J].中国中药杂志,1997,22(8):489-492.
    [33]Konno C, Mizuno T, Hikino H. Isolation and Hypoglycemic Activity of Ephedrans A, B, C, D and E, Glycans of Ephedra distachya Herbs [J]. Planta medica,1985, 51(02):162-163.
    [34]王书华,曹淑萍.麻黄果实多糖含量的测定[J].张家口医学院学报,1999,16(2):23-23.
    [35]张连菇,邹国林.麻黄水溶性多糖的提取及其清除氧自由基作用的研究[J].氨基酸和生物资源,2000,22(3):24-26.
    [36]张建中,敖特根,苏日娜.麻黄果营养成分和利用价值的初步研究[J].内蒙古林学院学报,1997,19(3):50.
    [37]Song K S, Ishikawa Y, Kobayashi S, et al. N-acylamino acids from Ephedra distachya cultures[J]. Phytochemistry,1992,31(3):823-826.
    [38]Song K S, Sankawa U, Ebizuka Y.p-Coumaroylamino acids from yeast-elicited. Ephedra distachya cultures[J]. Archives of pharmacal research,1994,17(1):51-53.
    [39]Pullela S V, Takamatsu S, Khan S I, et al. Isolation of lignans and biological activity studies of Ephedra viridis[J]. Planta medica,2005,71(08):789-791.
    [40]王筠默.中药药理学[M].上海:上海科学技术出版社,1985:25-27.
    [41]钟凌云,祝婧,龚千峰,等.炮制对麻黄发汗、平喘药效影响研究[J].中药药理与临床,2008,24(6):53-56.
    [42]刘赜,石倩,杨洋,等.麻黄碱与伪麻黄碱平喘效果及机制比较研究[J].中草药,2009(5):771-774.
    [43]Rustaiyan A, Javidnia K, Farjam M H, et al. Total phenols, antioxidant potential and antimicrobial activity of the methanolic extracts of Ephedra laristanica[J]. Journal of medicinal plants research,2011,5:5713-5717.
    [44]Rustaiyan A, Javidnia K, Farjam M H, et al. Antimicrobial and antioxidant activity of the Ephedra sarcocarpa growing in Iran[J].Journal of medicinal plants research, 2011,5:4251-4255.
    [45]张连茹,邹国林,杨天鸣.麻黄水溶性多糖的提取及其清除氧自由基作用的研究[J].氨基酸与生物资源,2000,22(3):24.
    [46]Kuang H, Xia Y, Yang B, et al. Screening and comparison of the immunosuppressive activities of polysaccharides from the stems of Ephedra sinica Stapf[J]. Carbohydrate polymers,2011,83(2):787-795.
    [47]Kuang H, Xia Y, Liang J, et al. Structural characteristics of a hyperbranched acidic polysaccharide from the stems of Ephedra sinica and its effect on T-cell subsets and their cytokines in DTH mice[J]. Carbohydrate polymers,2011,86(4):1705-1711.
    [48]陈荣明,朱耕新,许芝银.麻黄中不同提取物对细胞免疫的影响[J].南京中医药大学学报(自然科学版),2001,17(4):234-236.
    [49]王艳宏,王秋红,夏永刚,等.麻黄化学拆分组分的性味药理学评价——麻黄化学拆分组分的免疫抑制作用研究[J].中成药,2012,33(12):2044-2047.
    [50]Watson R, Woodman R, Lockette W. Ephedra alkaloids inhibit platelet aggregation [J]. Blood coagulation & fibrinolysis,2010,21(3):266-271.
    [51]邱丽颖,王书华,吕丽等.麻黄果多糖的抗凝血机制研究[J].张家口医学院学报,1999,16(1):3-4.
    [52]Chen W L, Tsai T H, Yang C C H, et al. Acute effects of Ephedra on autonomic nervous modulation in healthy young adults[J]. Clinical pharmacology & therapeutics,2010,88(1):39-44.
    [53]Yamada I, Goto T, Takeuchi S, et al. Mao(Ephedra sinica Stapf) protects against D-galactosamine and lipopolysaccharide-induced hepatic failure[J]. Cytokine,2008, 41(3):293-301.
    [54]Li L, Li J, Zhu Y, et al. Ephedra sinica inhibits complement activation and improves the motor functions after spinal cord injury in rats[J]. Brain research bulletin,2009, 78(4):261-266.
    [55]李良满,朱悦.草麻黄补体抑制成分对大鼠脊髓损伤后免疫炎症反应的影响[J].中国中西医结合杂志,2012,32(10):1385-1390.
    [56]李琴,李宝华.比较麻黄碱和阿扑吗啡的中枢神经锌粉作用[J].中国药理学报,1991,12(5):468-474.
    [57]Kim B Y, Cao L H, Kim J Y. Common responses in gene expression by Ephedra herba in brain and heart of mouse[J]. Phytotherapy research,2011,25(10):1440-1446.
    [58]王艳宏,王秋红,夏永刚,等.麻黄化学拆分组分的性味药理学评价-麻黄化学拆分组分“辛温”发汗,利水作用的实验研究[J].中国中医药科技,2012,18(6):489-491.
    [59]Naik S D, Freudenberger R S. Ephedra-associated cardiomyopathy[J]. Annals of pharmacotherapy,2004,38(3):400-403.
    [60]Mantani N, Iman N I, Kawamata H. Inhibitory effect of (+)-catechin on the growth of influenza A/PR8 virus in MDCK cells[J]. Planta medica,2001,67(3):240-243.
    [61]Takara K, Horibe S, Obata Y. Effects of 19 herbal extracts on the sensitivity to paclitaxel or 5-fluoreuracil in Hela cells[J]. Biological and pharmaceutical bulletin,2005,28(1):138-142.
    [62]Kim B S, Song M, Kim H. The anti-obesity effect of Ephedra sinica through modulation of gut microbiota in obese Korean women[J]. Journal of ethnopharmacology,2014,152(3):532-539.
    [l]中国科学院中国植物志编辑委员会.中国植物志-第七卷[M].北京,科学出版社,1978:477.
    [2]南京中医药大学编著.中药大辞典[M].上海,上海科学技术出版社,2010:3092-3096.
    [3]Chen J J, Chung C Y, Hwang T L, et al. Amides and benzenoids from Zanthoxylum ailanthoides with inhibitory activity on superoxide generation and elastase release by neutrophils[J]. Journal of natural products,2009,72(1):107-111.
    [4]Goodman M, Toniolo C, Falcetta J. Conformational aspects of polypeptide structure. XXX. Rotatory properties of cyclic and bicyclic amides. Restricted and rigid model compounds for peptide chromophores[J]. Journal of the American chemical society, 1969,91(7):1816-1822.
    [5]Pattenden G. Saturated Heterocyclic Chemistry[M]. London, Royal Society of Chemistry,1978:123.
    [6]Konno T, Meguro H, Tuzimura K. Circular dichroism of y-lactams and their sign determinating factors[J]. Tetrahedron letters,1975,16(15):1305-1308.
    [7]Mitscher L A, Kautz F, LaPidus J. Optical rotatory dispersion and circular dichroism of diastereoisomers. I. The ephedrines and chloramphenicols[J]. Canadian journal of chemistry,1969,47(11):1957-1963.
    [8]Liu L, Li W, Koike K, et al. Two new naphthalenyl glucosides and a new phenylbutyric acid glucoside from the fruit of Juglans mandshurica[J]. Heterocycles,2004,63(6): 1429-1436.
    [9]Wright A E, Roth G P, Hoffman J K, et al. Isolation, synthesis, and biological activity of aphrocallistin, an adenine-substituted bromotyramine metabolite from the hexactinellida sponge Aphrocallistes beatrix[J]. Journal of natural products,2009, 72(6):1178-1183.
    [10]Pauling L. The nature of the chemical bond 3rd ed.[M]. Cornell University Press, Ithaca, New York,1960:281.
    [11]Kawahara T, Izumikawa M, Otoguro M, et al. JBIR-94 and JBIR-125, antioxidative phenolic compounds from Streptomyces sp. R56-07[J]. Journal of natural products, 2012,75(1):107-110.
    [12]Cheng M J, Wu C C, Tsai I L, et al. Chemical and antiplatelet constituents from the stem of Zanthoxylum beecheyanum[J]. Journal of the Chinese chemical society,2004, 51(5A):1065-1072.
    [13]Schnur D M, Yuh Y H, Dalton D R. A molecular mechanics study of amide conformations[J]. The Journal of organic chemistry,1989,54(16):3779-3785.
    [14]赵巍.草麻黄化学成分研究[D].北京,中国医学科学院&北京协和医学院药物研究所,2009.
    [15]Zhao W, Deng A J, Du G H, et al. Chemical constituents of the stems of Ephedra sinica[J]. Journal of Asian natural products research,2009,11(2):168-171.
    [16]Angelika M F, Anke K, Carsten B. Ephedrine-and pseudoephedrine-derived thioureas in asymmetric michael additions of keto esters and diketones to nitroalkenes[J]. Synlett,2010(8):1219-1222.
    [17]Hikino H., Konno K., Takata H.. Antiinflammatory principle of Ephedra herbs[J]. Chemical & pharmaceutical bulletin,1980,28(10):2900-2904.
    [18]Chohachi K., Takashi T., Mitsuru T., et, al. Ephedroxane, anti-inflammatory principle of Ephedra herbs[J]. Phytochemistry,1979,18(4):697-698.
    [19]Testa M L, Hajji C,Zaballos-Garcia E, et al. Asymmetric synthesis of (-)-pseudoephedrine from (2S,3S)-3-phenyloxiran-2-ylmethanol. Stereospecific interchange of amino and alcohol functions[J]. Tetrahedron:Asymmetry,2001,12(9): 1369-1372.
    [20]Starratt A N, Caveney S. Quinoline-2-carboxylic acids from Ephedra species[J]. Phytochemistry,1996,42(5):1477-1478.
    [21]Nawwar M A M, Barakat H H, Buddrust J, et al. Alkaloidal, lignan and phenolic constituents of Ephedra alata[J]. Phytochemistry,1985,24(4):878-879.
    [22]李硕,胡立宏,楼凤昌.云木香化学成分研究[J].中国天然药物,2004,2(1):62-64.
    [23]Dubeler A, Voltmer G, Gora V, et al. Phenols from Fagus sylvatica and their role in defence against Cryptococcus fagisuga [J]. Phytochemistry,1997,45(1):51-57.
    [24]Liu P, Guo H, Tian Y, et al. Benzoic acid allopyranosides from the bark of Pseudolarix kaempferi[J]. Phytochemistry,2006,67(13):1395-1398.
    [25]冯子明,杨桠楠,姜建双,张培成.野菊花的化学成分[J].中国中药杂志,2010,35(24):3302-3305.
    [26]Mastelic J, Jerkmic I, Vinkmic M, et al. Synthesis of selected naturally occurring glucosides of volatile compounds. Their chromatographic and spectroscopic properties[J]. Croatica chemica acta,2004,77(3):491-500.
    [27]高亮亮,许旭东,南海江,等.唐古特大黄化学成分研究[J].中草药,2011,42(3):443-446.
    [28]黄占波,宋冬梅,陈发奎.天麻化学成分的研究(Ⅰ)[J].中国药物化学杂志,2005,15(4):227-229.
    [29]Katsumi K., Mikio F., Yoshiteru Ida, et, al. Simple synthesis of βD-glucopyranoside using β-glucosidase from Almonds[J]. Chmical and pharmaceutical bulletin,2004, 52(2):270-275.
    [30]Pauli G F, Junior P. Phenolic glycosides from Adonis aleppica[J]. Phytochemistry, 1995,38(5):1245-1250.
    [31]杨竹雅,卫莹芳,周志宏,等.厚朴叶中具血管舒张作用的化学成分研究[J].天然产物研究与开发,2012,24(3):298-302.
    [32]Wu Z J, Ouyang M A, Wang S B. Two new phenolic water-soluble constituents from branch bark of Davidia involucrata[J]. Natural product research,2008,22(6):483-488.
    [33]Behjat B., Majid M., Abbas R., et, al. Ruthenium hydride catalyzed oxidation reaction of alcohols to carboxylic acids via transfer hydrogenation:styrene epoxide as oxygen source[J]. Synlett,2013,24:90-96.
    [34]Gu L, Zhang Y. Unexpected CO2 splitting reactions to form CO with N-heterocyclic carbenes as organocatalysts and aromatic aldehydes as oxygen acceptors[J]. Journal of the american chemical society,2009,132(3):914-915.
    [35]Ferreira F P, de Oliveira D C R. New constituents from Mikania laevigata Shultz Bip. ex Baker[J]. Tetrahedron letters,2010,51(52):6856-6859.
    [36]Mohammad F., Manmeet K., Natasha J., et, al. a-Glucosidase inhibitor constituents from Bombax ceiba[J]. Trends in carbohydrate research,2010,2(4):29-34.
    [37]Carta F, Vullo D, Maresca A, et al. Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV[J]. Bioorganic & medicinal chemistry,2013,21(6):1564-1569.
    [38]Liu P, Guo H, Tian Y, et al. Benzoic acid allopyranosides from the bark of Pseudolarix kaempferi[J]. Phytochemistry,2006,67(13):1395-1398.
    [39]Park H J. A new aporphine-type alkaloid from the leaves of Magnolia sieboldii K. Koch[J]. Korean journal of pharmacognosy (Korea Republic),1996,27(2):123-128.
    [40]Naressi M A, Ribeiro M A S, Bersani-Amado C A, et al. Chemical composition, anti-inflammatory, molluscicidal and free-radical scavenging activities of the leaves of Ficus radicans'Variegata'(Moraceae)[J]. Natural product research,2012,26(4):323-330.
    [41]何培,姜艳,金晓曦,等.蝴蝶戏珠花茎的化学成分(英文)[J].中国药科大学学报,2012,2:007.
    [42]Olszewska M A, Roj J M. Phenolic constituents of the inflorescences of Sorbus torminalis (L.) Crantz[J]. Phytochemistry letters,2011,4(2):151-157.
    [43]Sakamoto Yutaka. Flavonols in the pollen of tea flowers. I. Ocurrence of pollenitin and pollenin a, b, c[J]. Agriculture and biological chemistry,1969,33(6):818-825.
    [44]Rayyan S, Fossen T, Nateland H S, et al. Isolation and identification of flavonoids, including flavone rotamers, from the herbal drug'crataegi folium cum flore'(hawthorn)[J]. Phytochemical analysis,2005,16(5):334-341.
    [45]Lee Y S, Lee H S, Shin K H, et al. Constituents of the halophyte Salicornia herbacea[J]. Archives of pharmacal research,2004,27(10):1034-1036.
    [46]张勇,郭夫江,曾鹏,等.毛裂蜂斗菜中酚类成分研究[J].中国中药杂志,2012,37(12):1782.
    [47]管惠娟.铁皮石斛的化学成分及指纹图谱研究[D].沈阳药科大学,2009.
    [48]Kim J H, Lee B C, Kim J H, et al. The isolation and antioxidative effects of vitexin from Acer palmatum[J]. Archives of pharmacal research,2005,28(2):195-202.
    [49]Nawwar M A M, El-Sissi H I, Barakat H H. Flavonoid constituents of Ephedra alata [J].Phytochemistry,1984,23(12):2937-2939.
    [50]Fawzy G A, Al-Taweel A M, Baky N A A, et al. Cytotoxic and renoprotective flavonoid glycosides from Horwoodia dicksoniae[J]. African journal of pharmacy and pharmacology,2012,6(15):1166-1175.
    [51]胡永美,叶文才,李茜,等.繁缕中的黄酮碳苷类化合物(英文)[J].中国天然药物,2006,6:004.
    [52]Karioti A, Sokovic M, Ciric A, et al. Antimicrobial properties of Quercus ilex L. proanthocyanidin dimers and simple phenolics:evaluation of their synergistic activity with conventional antimicrobials and prediction of their pharmacokinetic profile[J]. Journal of agricultural and food chemistry,2011,59(12):6412-6422.
    [53]李天景,徐贝贝,白景,等.芫花枝条化学成分研究[J].中草药,2011,42(9):1702-1705.
    [54]Jayaprakasha G K, Ohnishi-Kameyama M, Ono H, et al. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity[J]. Journal of agricultural and food chemistry,2006,54(5):1672-1679.
    [55]孙武兴.毛金竹叶的化学成分研究[D].沈阳市,沈阳药科大学,2008.
    [56]Mariola Puszynska-Tuszkanow, Tomasz Grabowski, Marek Daszkiewicz, et, al. Silver (I) complexes with hydantoins and allantoin(?) Synthesis, crystal and molecular structure, cytotoxicity and pharmacokinetics[J]. Journal of inorganic biochemistry, 2011,105:17-22.
    [57]Pei D, Liu D, Liu J X, et al. Chemical investigation of the pollen of Brassica napus[J]. Chemistry of natural compounds,2012:1-3.
    [58]Wu H F, Hu X R, Zhang X P, et al. Isolation and chemotaxonomic significance of megastigmane-type sesquiterpenoids from Sarcandra glabra[J]. Journal of medicinal plants research,2012,6(28):4501-4504.
    [59]Sahakitpichan P, Disadee W, Ruchirawat S, et al. L-(-)-(N-trans-Cinnamoyl)-arginine, an Acylamino Acid from Glinus oppositifolius (L.) Aug. DC[J]. Molecules,2010, 15(9):6186-6192.
    [60]Wiberg K B. The interaction of carbonyl groups with substituents[J]. Accounts of chemical research,1999,32(11):922-929.
    [61]Ilieva S, Hadjieva B, Galabov B. Theory supplemented by experiment. Electronic effects on the rotational stability of the amide group in p-substituted acetanilides[J]. The Journal of organic chemistry,2002,67(17):6210-6215.
    [62]Fischer S, Dunbrack Jr R L, Karplus M. Cis-Trans imide isomerization of the proline dipeptide[J]. Journal of the American chemical society,1994,116(26):11931-11937.
    [63]Kang Y K. Which functional form is appropriate for hydrogen bond of amides?[J]. The Journal of physical chemistry B,2000,104(34):8321-8326.
    [64]Mirkin N G, Krimm S. Ab initio vibrational analysis of hydrogen-bonded trans-and cis-N-methylacetamide[J]. Journal of the American chemical society,1991,113(26): 9742-9747.
    [65]Scherer G, Kramer M L, Schutkowski M, et al. Barriers to rotation of secondary amide peptide bonds[J]. Journal of the American chemical society,1998,120(22):5568-5574.
    [66]Arava V R, Amasa S R, Goud Bhatthula B K, et al. Asymmetric synthesis of unnatural amino acids and tamsulosin chiral intermediate[J]. Synthetic communications,2013, 43(21):2892-2897.
    [67]Stewart W E, Siddall Ⅲ T H. Nuclear magnetic resonance studies of amides[J]. Chemical reviews,1970,70(5):517-551.
    [1]秦海林,赵天增.核磁共振氢谱鉴别植物中药的研究[J].药学学报,1999,34(1):58-62.
    [2]秦海林,李志宏,王鹏,等.黄连专属性对照物质及其指纹图谱的创建[J].中国医学科学院学报,2005,26(6):622-627.
    [3]秦海林,王峥涛.环草石斛的1H NMR指纹图谱解析[J].中国中药杂志,2002,27(12):919-923.
    [4]Su D M, Han, J L, Yu S S, et al. Assessment of 1H NMR Spectroscopy for Specific Metabolite Fingerprinting of Angelica sinensis[J]. Natural product communications, 2008,3(5):727-730.
    [5]Qin H L, Deng A J, Du G H, et al. Fingerprinting analysis of Rhizoma chuanxiong of commercial types using 1H nuclear magnetic resonance spectroscopy and high performance liquid chromatography method[J]. Journal of integrative plant biology, 2009,51(6):537-544.
    [6]Xin Y Y, Deng A J, Du G H, et al. Fingerprinting Analysis of Saposhnikovia divaricata using 1H Nuclear Magnetic Resonance Spectroscopy and High Performance Liquid Chromatography[J]. Journal of integrative plant biology,2010,52(9):782-792.
    [7]Yu J Q, Deng A J, Qin H L. Distinctive features of chemical composition of Bupleurum chinense applicable to original authentication[J]. Analytical methods,2014,6(4): 1067-1075.
    [1]中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社,1977,63:219,310.
    [2]Wang Y Q, Yan X Z, Gu S S, et al. Two new C21 steroidal glycosides from Cynanchum aurichulatum[J]. Chinese chemical letters,2002,13(6):543-546.
    [3]Liqin W, Yuemao S, Xing X, et al. Five new C21 steroidal glycosides from Cynanchum komarovii Al. Iljinski[J]. Steroids,2004,69(5):319-324.
    [4]赵益斌,沈月毛,何红平,等.青阳参的一个新C21甾体苷[J].云南植物研究,2005,27(4):443-446.
    [5]Liu Y, Hu Y, Yu S, et al. Steroidal glycosides from Cynanchum forrestii Schlechter[J]. Steroids,2006,71(1):67-76.
    [6]Chen G, Wang D, Pei Y H. Two new C21 steroidal glycosides from Cynanchum wallichii Wight[J]. Journal of Asian natural products research,2008,10(7):671-676.
    [7]Gan H, Xiang W J, Ma L, et al. Six New C21 Steroidal Glycosides from Cynanchum bungei Decne[J]. Helvetica chimica acta,2008,91(12):2222-2234.
    [8]Gu X J, Yao N, Qian S H, et al. Four new C21 steroidal glycosides from the roots of Cynanchum auriculatum[J]. Helvetica chimica acta,2009,92(1):88-97.
    [9]Xiang W J, Ma L, Hu L H. C21 steroidal glycosides from Cynanchum wilfordii[J]. Helvetica chimica acta,2009,92(12):2659-2674.
    [10]Chen G, Xu N, Pei Y H. C21 steroidal glycosides from Cynanchum wallichii Wight[J]. Journal of Asian natural products research,2009,11(2):177-182.
    [11]Chen G, Xu N, Li Z F, et al. Steroidal glycosides with anti-tumor activity from the roots of Cynanchum wallichii Wight:Original Article[J]. Journal of Asian natural products research,2010,12(6):453-457.
    [12]Ma X X, Wang D, Zhang Y J, et al. Identification of new qingyangshengenin and caudatin glycosides from the roots of Cynanchum otophyllum [J]. Steroids,2011, 76(10-11):1003-1009.
    [13]Kanchanapoom T, Kasai R, Ohtani K, et al. Pregnane and pregnane glycosides from the malagasy plant, Cynanchum aphyllum[J].Chemical and pharmaceutical bulletin, 2002,50(8):1031-1034.
    [14]Sheng-xiang Q, Zhuang-xin Z, Lin Y, et al. Two new glycosides from the roots of Cynanchum versicolor[J]. Planta medica,1991,57(05):454-456.
    [15]Konda Y, Toda Y, Takayanagi H, et al. A new modified steroid, hancopregnane, and a new monoterpene from Cynanchum hancockianum[J]. Journal of natural products, 1992,55(8):1118-1123.
    [16]Day S H, Wang J P, Won S J, et al. Bioactive constituents of the roots of Cynanchum atratum[J].Journal of natural products,2001,64(5):608-611.
    [17]Wang L Q, Shen Y M, Wei Y Q, et al. Three new C21 steroidal glycosides from the roots of Cynanchum komarovii Al. Iljinski[J]. Chinese chemical letters 2004,15(2): 200-203.
    [18]Bai H, Li W, Koike K, et al. Cynanosides A-J, ten novel pregnane glycosides from Cynanchum atratum[J]. Tetrahedron,2005,61 (24):5797-5811.
    [19]Li X, Sun H, Ye Y, et al. C-21 steroidal glycosides from the roots of Cynanchum chekiangense and their immunosuppressive activities[J]. Steroids,2006,71(1):61-66.
    [20]Dou J, Li P, Bi Z M, et al. New C21 steroidal glycoside from Cynanchum paniculatum [J]. Chinese chemical letters,2007,18(3):300-302.
    [21]Fu M H, Wang Z J, Yang H J, et al. A new C21-steroidal glycoside from Cynanchum stauntonii[J]. Chinese chemical letters,2007,18(4):415-417.
    [22]Wang L Q, Wang J H, Shen Y M, et al. Three new C21 steroidal glycosides from the roots of Cynanchum inamoenum [J]. Chinese chemical letters,2007,18(10):1235-1238.
    [23]Liu Y, Qu J, Yu S S, et al. Seven new steroidal glycosides from the roots of Cynanchum forrestii[J]. Steroids,2007,72(4):313-322.
    [24]Wang L Q, Lu Y, Zhao Y X, et al. Three new C21-steroidal glycosides from the roots of Cynanchum inamoenum[J].Journal of Asian natural products research,2007,9(8): 771-779.
    [25]Chen H, Xu N, Zhou Y, et al. Steroidal glycosides from the roots of Cynanchum amplexicaule Sieb. et Zucc[J]. steroids,2008,73(6):629-636.
    [26]Huang X, Tan A M, Yang S B, et al. Two New C21 Steroidal Glycosides from the Stems of Cynanchum paniculatumKitag[J]. Helvetica chimica acta,2009,92(5):937-943.
    [27]谭华,李顺林,郁志芳,等.徐长卿中的一个新的C21甾体配糖体[J].云南植物研究,2002,24(7):7.
    [28]Li S L, Tan H, Shen Y M, et al. A pair of new C-21 steroidal glycoside epimers from the roots of Cynanchum paniculatum[J]. Journal of natural products,2004,67(1):82-84.
    [29]Wang P, Qin H L, Zhang L, et al. Steroids from the roots of Cynanchum stauntonii[J]. Planta medica,2004,70(11):1075-1079.
    [30]Wang L Q, Shen Y M, Hu J M, et al. A new C21 steroidal glycoside from Cynanchum inamoenum (Maxim.) Loes[J]. Journal of Asian natural products research,2008, 10(9):867-871.
    [31]Chen G, Chen H, Li W, et al. Steroidal glycosides from Cynanchum amplexicaule[J]. Chemistry of natural compounds,2013,48(6).
    [32]Yeo H, Choi Y H, Kim J. New pregnane glycosides from Cynanchum ascyrifolium[J]. Chemical & pharmaceutical bulletin,2002,50(6):847-849.
    [33]Lee K Y, Sung S H, Kim Y C. New Acetylcholinesterase-inhibitory pregnane glycosides of Cynanchum atratum Roots[J]. Helvetica chimica acta,2003,86(2):474-483.
    [34]Bai H, Li W, Asada Y, et al. Twelve pregnane glycosides from Cynanchum atratum[J]. Steroids,2009,74(2):198-207.
    [35]Dou J, Li P, Bi Z M, et al. New C21 steroidal glycoside from Cynanchum paniculatum [J]. Chinese Chemical Letters,2007,18(3):300-302.
    [36]Li L, Ni W, Li X R, et al. Taccasubosides A-D, four new steroidal glycosides from Tacca subflabellata[J]. Steroids,2011,76(10):1037-1042.
    [37]Plaza A, Perrone A, Balestrieri C, et al. New antiproliferative 14,15-secopregnane glycosides from Solenostemma argel[J]. Tetrahedron,2005,61(31):7470-7480.
    [38]杜彦艳,刘士斌,刘鑫,等.香加皮杠柳苷对结肠癌细胞SW480体内外生长的影响[J].癌变.畸变.突变,2009,21(3):181-184.
    [39]张如松,叶益萍,沈月毛,等.白首乌体外抑制肿瘤细胞的成分研究[J].药学学报,2000,35(6):431-434.
    [40]姚楠,顾晓洁,李友宾.白首乌中3个C21甾体苷类成分对人肺癌A549细胞生长及周期的影响[J].中国中药杂志,2009(11):1418-1421.
    [41]李娜,仇凤梅,郑燕一,等.白首乌苷体外抗肿瘤作用研究[J].医药导报,2010, 29(5):582-584.
    [42]赵瑾,王少君,韩进红,等.白首乌总苷对荷瘤小鼠免疫功能的影响[J].中国药理学通报,1990,6(2):126-126.
    [43]王冬艳,李心,张洪泉,等.江苏地产白首乌C21甾体苷对荷瘤小鼠的免疫保护作用[J].中国临床药理学与治疗学,2007,12(2):168-172.
    [44]顾立刚,郑嘉,陶君娣,等.白何首乌对小鼠免疫功能调整作用的研究[J].中西医结合杂志,1987,7(1):37.
    [45]顾立刚,郑嘉,陈蕾,等.白首乌苷体外对小鼠T淋巴细胞功能影响的研究[J].中国中医药信息杂志,2001,8(1):34-35.
    [46]宋俊梅,王增兰,丁霄霖,等.白首乌总苷对小鼠免疫功能的影响[J].无锡轻工大学学报,2001,20(6):588-593.
    [47]张静,单保恩,李巧敏,等.香加皮杠柳苷对荷瘤小鼠的免疫调节作用[J].细胞与分子免疫学杂志,2009,25(10):887-890.
    [48]宋俊梅,丁霄霖.白首乌中C21甾体苷及甾体苷元清除羟自由基的功能[J].无锡经工业大学学报,1998,17(2):43.
    [49]张颖,贵长恩,王德福,等.白首乌甾体醣苷对溶血性贫血肝脏影响的组织化学和生物化学研究[J].中国医药学报,1987,2(4):25.
    [50]张晓蓉,陈文为.白首乌总甾体酮苷对心脏和肝脏氯代谢的实验研究[J].中国医药学报,1987,2(5):23-25,27.
    [51]孙树凯,田海深,等.青阳参总苷治疗小鼠肝损伤机制的初步研究[J].宁夏医学杂志,2010,32(2):120-122.
    [52]杨秦飞,房良敏,等.白首乌C21甾体苷对心肌细胞电活性的影响[J].中国医药学报,1987,2(6):23.
    [53]刘冠军,王辉,张敏迪.鹅绒藤属植物药理作用研究进展[J].西北药学杂志,2009,24(5):430-432.
    [54]Wang Y Q, Zhang S J, Lu H, et al. A C21-Steroidal Glycoside Isolated from the Roots of Cynanchum auriculatum Induces Cell Cycle Arrest and Apoptosis in Human Gastric Cancer SGC-7901 Cells[J]. Evidence-Based Complementary and Alternative Medicine,2013,2013.
    [55]Shi L M, Liu W H, Yu Q, et al. Two new polyhydroxypregnane glycosides from the roots of Cynanchum otophyllum[J]. Journal of Chemical Research,2013,37(7):404-405.
    [56]Liu S, Chen Z, Wu J, et al. Appetite suppressing pregnane glycosides from the roots of Cynanchum auriculatum[J].Phytochemistry,2013,93:144-153.
    [57]Shan W G, Liu X, Ma L F, et al. New polyhydroxypregnane glycosides from Cynanchum otophyllum[J]. Journal of Chemical Research,2012,36(1):38-40.
    [58]Yang Q X, Ge Y C, Huang X Y, et al. Cynanauriculoside C-E, three new antidepressant pregnane glycosides from Cynanchum auriculatum[J]. Phytochemistry Letters,2011,4(2):170-175.
    [59]Teng H L, Lu Y, Li J, et al. Two new steroidal glycosides from the root of Cynanchum auriculatum[J]. Chinese Chemical Letters,2011,22(1):77-80.
    [60]Wang S, Shan W, Ma L, et al. Two new pregnane glycosides from the roots of Cynanchum atratum[J]. Journal of Chemical Research,2013,37(12):727-729.
    [61]Oh J Y, Kim C S, Lee K R. C21 Steroidal Glycosides from the Root of Cynanchum paniculatum[J]. Bulletin of the Korean Chemical Society,2013,34(2):637.
    [62]Chen G, Yi S, Hua H M, et al. Two new steroidal glycosides from Cynanchum amplexicaule[J]. Journal of Asian natural products research,2012,14(6):559-563.
    [63]Kim C S, Oh J Y, Choi S U, et al. Chemical constituents from the roots of Cynanchum paniculatum and their cytotoxic activity[J]. Carbohydrate research,2013,381:1-5.
    [64]Shibano M, Misaka A, Sugiyama K, et al. Two secopregnane-type steroidal glycosides from Cynanchum stauntonii (Decne.) Schltr. ex Levl[J]. Phytochemistry Letters,2012,5(2):304-308.
    [65]Yu J Q, Deng A J, Qin H L. Nine new steroidal glycosides from the roots of Cynanchum stauntonii[J]. Steroids,2013,78(1):79-90.
    [66]Mitsuhashi H, Hayashi K, Sawada H, et al. Steroids of Cynanchum grandifolium var. nikoense[J]. Phytochemistry,1970,9(11):2403-2405.
    [67]营间恒,等.日本药学会第107年会讲演要旨集[C].东京,1987,335.
    [1]邱声祥.柳叶白前化学成分研究[J].中国中药杂志,1994,19(8):488-489.
    [2]刘卫卫,等.鹅绒藤属植物化学成分与药理作用研究进展[J].中药材,2003,26:216-218.
    [3]Kennard O, Fawcett J K, Watson D G, et al. Hirundigenin and anhydrohirundigenin, two natural 15-oxasteroids of plant origin. Chemical and x-ray investigation[J]. Tetrahedron letters,1968,9(35):3799-3804.
    [4]Chen H, Xu N, Zhou Y, et al. Steroidal glycosides from the roots of Cynanchum amplexicaule Sieb. et Zucc[J]. Steroids,2008,73(6):629-636.
    [5]于金倩.北柴胡和柳叶白前皂苷结构多样性发现与药理活性的研究[D].北京,北京协和医学院&中国医学科学院药物研究所,2013.
    [6]Antus S, Kurtan T, Juhasz L, et al. Chiroptical properties of 2,3-dihydrobenzo [b] furan and chromane chromophores in naturally occurring O-heterocycles[J]. Chirality,2001, 13(8):493-506.
    [7]Yoshikawa M, Morikawa T, Fengming Xu, et al. (7R,8S) and (7S,8R) 8-5'linked neolignans from Egyptian herbal medicine Anastatica hierochuntica and inhibitory activities of lignans on nitric oxide production[J]. Heterocycles,2003,60(8): 1787-1792.
    [8]Hirai N, Okamoto M, Udagawa H, et al. Absolute configuration of dehydrodiconiferyl alcohol[J]. Biosciences biotechnology and biochemistry,1994,58(9):1679-1684.
    [9]娄红祥,李铣,朱廷儒.华北白前中的C21甾体类化合物[J].药学学报,1992,27(8):595-602.
    [10]陈佩东,徐丹洋,孔祥鹏,等.黄芩中黄酮类成分的分离鉴定及其体外对凝血系统 的影响[J].中草药,2012,43(12):2333-2336.
    [11]Su B N, Chang L C, Park E J, et al. Bioactive constituents of the seeds of Brucea javanica[J]. Planta medica,2002,68(08):730-733.
    [12]Dassonneville B, Witulski B, Detert H. [2+2+2] cycloadditions of alkynylynamides-a total synthesis of perlolyrine and the first total synthesis of "Isoperlolyrine"[J]. European journal of organic chemistry,2011,2011(15):2836-2844.
    [13]Pei D, Liu D, Liu J X, et al. Chemical investigation of the pollen of Brassica napus[J]. Chemistry of natural compounds,2012:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700